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Conductor and dielectric loss



ELEC-E4130 / Taylor
Lecture 20

Waveguide Loss Setup: Taylor Expansion

In general, power 
dissipation in a non-ideal 
waveguide may be 
attributed to both conductor 
loss and dielectric loss

α
P

2P 𝑁𝑝/𝑚

In a lossy waveguide, as power decays according to the factor 𝑒

Define the power dissipated after 
traveling length in waveguide as 
Pℓ and the incident power as P0 , 
the ratio between the power 
observed at the unit length away 
and the original incident power is

The attenuation constant per 
unit length can thus be 
determined by:

𝛼
𝑃ℓ 𝑃ℓ

2𝑃 𝛼 𝛼

conductor loss dielectric loss attenuation constant due to 
conductor loss

attenuation constant due to 
dielectric loss

𝑃 𝑃ℓ
𝑃 𝑒 ℓ

when loss is small

1
𝑃ℓ
𝑃 𝑒 ℓ

𝑃ℓ
𝑃 1 𝑒 ℓ 2𝛼ℓ

Let ℓ = 1
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Waveguide Loss Setup: Transmission lines
Forward traveling waves

V z V e

I z
V
Z e

γ α jβ R jωL G jωC

Time–average power 
propagated long the 
line at any z

V z V e

I z
V
Z e

P z
1
2ℝe V z I∗ z

V
2 Z R e

Rate of decrease in 
P(z) along z equals 
the time-average 
power loss along z

𝜕P z
𝜕z P z 2αP z

Loss per unit length
Drop from initial 
power per unit length

Conductor loss Dielectric loss

α
P z
2P z Np/m

The attenuation constant per 
unit length can thus be 
determined by:
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TE10 mode Equations
y

x

z

b

a

H B cos
πx
a e

E E H 0

H
jβa
π B sin

πx
a e

E
jωμa
π B sin

πx
a e

Fields

Surface Current Density

β k k , k
π
a k 1

λ
2a

Phase constant

λ ,
2π
k

2π
π/a 2a f ,

c/ ε
λ ,

c/ ε
2a

1
2a με

Cutoff wavelength Cutoff frequency

Wall (x=0): 𝐉𝐬 𝐚𝐲A e Wall (x=a): 𝐉𝐬 𝐚𝐲A e

Floor (y=0): 𝐉𝐬 𝐚𝐱A cos
πx
a 𝐚𝐳A

jβ a
π sin

πx
a e

Ceiling (y=b): 𝐉𝐬 𝐚𝐱A cos
πx
a 𝐚𝐳A

jβ a
π sin

πx
a e
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Average power flow in the TE10 mode 

𝐒 𝐄 𝐇∗ → 𝐒𝐀𝐕𝐄
1
2ℝe 𝐄 𝐇∗ P

1
2ℝe E H∗dydx

P
ωμa
2π ℝe β A sin

πx
a dydx

P
𝜔𝜇𝑎 𝑏

4𝜋 ℝe 𝛽 𝐴
𝜔𝜇𝑎 𝑏𝛽

4𝜋 𝐴

ab
2H

jβa
π B sin

πx
a e

E
jωμa
π B sin

πx
a e

P
1
2ℝe 𝐄 𝐇∗ ⋅ 𝐚𝐳dydx

Poynting vector

P 𝐒 · 𝐝𝐀 → P
1
2ℝe 𝐄 𝐇∗ · 𝐝𝐀

Power subtended by an area

Average power flowing in the TE10 mode

Average power flowing in the TE10 mode
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Current Flow in Good Conductor
DC current

s

area A’w

l

area A

l

w

h

High Frequency
current

𝑅
1
𝜎
𝑙
𝐴

1
𝜎

𝑙
𝑤 ⋅ ℎ

Current flows inside the conductor uniformly. The 
resistance of the conductor is given by Ohm’s law,

Due to the skin effect, current flows within a very 
thin layer of conductor close to the surface. The 
resistance of the conductor is thus given by,

𝑅
1
𝜎𝛿

𝜋𝑓𝜇
𝜎

Surface impedance is 
thus defined as,

𝑅
1
𝜎
𝑙
𝐴′

1
𝜎

𝑙
𝑤 ⋅ 𝛿

1
𝜎𝛿

𝑙
𝑤

𝑅

𝛿
1
𝜋𝑓𝜇𝜎
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Conductor Loss 
Consider the power dissipated over length ℓ

Pℓ ℓ
R
2 𝐉𝐬 · 𝐉𝐬∗dS

Area reduces to contour integral due to sheet current

P
Pℓ
ℓ

R
2 𝐉𝐬 ds

R
2 𝐉𝐬 dl

Sheet current, 2D integral 
reduces to 1D contour integral

P
R
2 𝐉𝐬,𝐲 dy

R
2 𝐉𝐬,𝐲 dy

R
2 𝐉𝐬,𝐱 𝐉𝐬,𝐳 dx

R
2 𝐉𝐬,𝐱 𝐉𝐬,𝐳 dx

Wall (x=0): Wall (x=a): Floor (y=0): Ceiling (y=b):

Consider the power dissipated over length ℓ

P 𝑅 𝐴 𝑏
𝑎
2

𝛽 𝑎
2𝜋

α
P

2P

𝑅 1 2𝑏
𝑎

𝑓
𝑓

𝜂𝑏 1 𝑓
𝑓

Significant algebra
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Dielectric Loss 
If the waveguide is complete filled in with a homogenous lossy medium, the complex propagation constant is, 

γ α jβ k k

k ω μ ε′ jε"
Define loss tangent as the ratio between 
the imaginary part and real part of the 
complex permittivity

tan δ
ε"
ε′k ω με 1 j tan δ

Binomial expansion, significant algebra (see your book, page 544)

α
ησ

2 1 f
f

ε"
ε′

π
λ

λ
λ

ε"
σ
ω
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Waveguide loss
Conductor loss Dielectric loss

a = 2.29 cm
b = 1.53 cm
fc(TE10) = 6.55 GHz

a = 2.29 cm
b = 0.76 cm
fc(TE10) = 6.55 GHz

a = 2.29 cm
b = 1.02 cm
fc(TE10) = 6.55 GHz

α , 𝑑𝐵/𝑚 8.686α , 𝑁𝑝/𝑚

TE10

TM11

TE10

TM11
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Waveguide loss
Conductor loss Dielectric loss

a = 2.29 cm
b = 1.53 cm
fc(TE10) = 6.55 GHz

a = 2.29 cm
b = 0.76 cm
fc(TE10) = 6.55 GHz

a = 2.29 cm
b = 1.02 cm
fc(TE10) = 6.55 GHz

α , 𝑑𝐵/𝑚 8.686α , 𝑁𝑝/𝑚

TE10

TM11

TE10

TM11
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Waveguide loss
Conductor loss Dielectric loss

a = 2.29 cm
b = 1.53 cm
fc(TE10) = 6.55 GHz

a = 2.29 cm
b = 0.76 cm
fc(TE10) = 6.55 GHz

a = 2.29 cm
b = 1.02 cm
fc(TE10) = 6.55 GHz

α , 𝑑𝐵/𝑚 8.686α , 𝑁𝑝/𝑚

TE10

TM11 TE10

TM11
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Waveguide Dimensions

α → f / for f ≫ f

α → f for f ≫ f

next mode
occurs @ f , 2

f
f  a 2b

next mode
occurs @ f , 2

f
f  a 2bα ↓ for 

a
b ↓

Propagation loss Bandwidth

 Conductor loss decreases as the waveguide aspect ratio becomes taller
 Normalized waveguide bandwidth  = 1fc1,0 until a<2b
 a = 2b → loss minimized subject to 1fc1,0 bandwidth constraint
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Rectangular Waveguide Cavities
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Transmission Line Resonator

Open ended transmission line

d

open open resonance when:          𝑑
𝜆
2 ⋅ 𝑙 𝑓𝑜𝑟 𝑙  1, 2, 3, …

Equal Phase Analysis

Resonance: Self sustaining of electromagnetic energy in waveguide structures at certain discrete frequencies 

maximum energy 
accumulation & absorption



open open

0o 180o

180o360o

0o


0o 180o

360o180o (0o)

360o (0o)

short short
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Transmission Line Resonator

So the total transfer phase is

φ ∠ Γ ⋅ Γ ∠ Γ 0

Examples:


0o 180o

360o180o

180o

No resonance!


0o 90o

270o360o

0o

Yes resonance!

Resonance Condition:

Γ Γ ∗ (first order approximation when Z1 and Z2
are not very different)

General Case

(I) (II)Z1 Z2

Γ Γ

jX1 jX2
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Rectangular Waveguide Cavity
Basically, the rectangular cavity can be considered as TE and TM waves of 
the waveguide bounce back and forth between the two conductor plates at 
z=0 and z=d

For TEmn mode,

H x, y, z A e B e cos
mπx

a cos
nπy

b

β k
mπ

a
nπ
b

y

x

z

a

PEC

PEC

db
From previous slides, if two ends are 
shorted, the resonance should occur at d

λ
2 ⋅ p

Add a reverse propagating mode 

Original +z 
prop. mode

New -z 
prop. mode
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Rectangular Waveguide Cavity

For TEmn mode,

H x, y, z A e B e cos
mπx

a cos
nπy

b

β k
mπ

a
nπ
b

y

x

z

a

PEC

PEC

db

Original +z 
prop. mode

New -z 
prop. mode

Boundary conditions (in additional to the original waveguide B.C):

H H 0 at
z 0

z d

A B 0

A e B e 0

A B

sin β d 0

Normal component of H is 0 at PEC
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Rectangular Waveguide Cavity
y

x

z

a

PEC

PEC

db

sin β d 0 β d pπ, p 1,2,3. . . .

H x, y, z 2A cos
mπx

a cos
nπy

b sin
lπz
d

Longitudinal H:

Resonant wave number for the 
mnpth mode is thus given by,

𝛽
𝑝𝜋
𝑑 𝑘

𝑚𝜋
𝑎

𝑛𝜋
𝑏Hz satisfies: k can only be certain discrete values !

𝑘 ,
𝑚𝜋
𝑎

𝑛𝜋
𝑏

𝑝𝜋
𝑑

β
pπ
d

Therefore,

λ
2π
β

d
λ
2 ⋅ l

agree with TRL model



ELEC-E4130 / Taylor
Lecture 20

Rectangular Waveguide Cavity
y

x

z

a

PEC

PEC

db

Resonant wave number for the 
mnpth mode is thus given by, 𝑘 ,

𝑚𝜋
𝑎

𝑛𝜋
𝑏

𝑝𝜋
𝑑

λ
2π

k ,

2π

mπ
a

nπ
b

pπ
d

f
c / ε
λ

k ,

2π ⋅
c
ε

Resonant Wavelength

Resonant Frequency

 Rectangular waveguide with ends 
capped with PEC will only 
resonate at discrete frequencies

 Only energy at discrete 
frequencies can be stored in the 
cavity 
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Rectangular Waveguide Cavity 
Similarly, for TMmn mode, field is derived the same way and 
resonant frequencies are the same

E x, y, z 2A sin
mπx

a sin
nπy

b cos
lπz
d

For TE101 mode (lowest resonant frequency when a&d >b), the 
resonant wavelength is,

𝜆
2

1
𝑎

1
𝑑

𝐻 𝐴 cos
𝜋𝑥
𝑎 sin

𝜋𝑧
𝑑

𝐻
𝑎
𝑑 𝐴 sin

𝜋𝑥
𝑎 cos

𝜋𝑧
𝑑

𝐸
𝑗𝜔𝜇𝑎
𝜋 𝐴 sin

𝜋𝑥
𝑎 sin

𝜋𝑧
𝑑

The field are
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Excitation of waveguide, cavity

 A current probe can be used to excite 
electromagnetic field into the waveguide

 The electric field excited by the current probe 
will resemble the direction of current flow in 
the probe 

 For a fixed amount of current, the maximum 
power of electromagnetic wave is excited for 
that mode if the probe is probing at the 
maximum electric field position of that mode



ELEC-E4130 / Taylor
Lecture 20

Resonator Quality factor, TE101

P ,
R
2 J ds

W
ε
4 E dv

W
μ
4 H H dv

 Electric energy: sum of square electric field 
subtended by the volume

 Magnetic energy: sum of square Magnetic  
field subtended by the volume

 Power loss: total power lost meaning sum 
(integral) of surface current density in a lossy 
conductor over walls for length d + sum 
current density in a lossy conductor at the 
end caps
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Resonator Quality factor, TE101

For most resonators, the Q is inversely proportional to the fractional 
bandwidth of the resonance  

Quality factor Q for a resonator is defined as

Q
f
Δf

𝑄
𝜋f μ 𝑎𝑏𝑑 𝑎 𝑑

𝑅 2𝑏 𝑎 𝑑 𝑎𝑑 𝑎 𝑑

For rectangular waveguides, the quality factor for the dominant TE101 mode is given by

Q ω
average energy stored

energy loss/second ω
W W
P ,

stored magnetic 
energy

stored electric 
energy

power dissipation

𝑅
1
𝜎𝛿

𝜋𝑓𝜇
𝜎

Conductor loss but 
no dielectric loss
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Example
 A square based (a = c) cavity of rectangular corss sectionis

constructed of an X-band (8.2 GHz – 12.4 GHz) copper (σ = 5.7 
x 107 S/m) waveguide that has inner dimensions a = 2.29 cm, b 
= 1.02 cm. For the dominant TE101 mode, determine the Q of 
the cavity. Assume free space medium inside the cavity.

𝑘 ,
𝜋
𝑎

𝜋
𝑑

f
k ,

2π ⋅
c
ε

c k ,
2π 9.28 𝐺𝐻𝑧

𝑅
1
𝜎𝛿

𝜋𝑓𝜇
𝜎 0.0254 Ω

𝑄
𝜋f μ 𝑎𝑏𝑑 𝑎 𝑑

𝑅 2𝑏 𝑎 𝑑 𝑎𝑑 𝑎 𝑑 7757.9

Much higher than can be reasonably 
achieved in practice with lumped 
element circuits

y

x

z

a

PEC

PEC

db
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Circular, conductor walled waveguide
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Recall: Waveguide solutions

transverse component longitudinal component

longitudinal 
variation

transverse variation

𝐄 x, y, z 𝐞𝐭 x, y 𝐚𝐳e x, y e

𝐇 x, y, z 𝐡𝐭 x, y 𝐚𝐳h x, y e

E r,ϕ, z e r,ϕ e

PEC

transverse component longitudinal component

longitudinal 
variation

transverse variation

𝐄 r,ϕ, z 𝐞𝐭 r,ϕ 𝐚𝐳e r,ϕ e

𝐇 r,ϕ, z 𝐡𝐭 r,ϕ 𝐚𝐳h r,ϕ e

H r,ϕ, z h r,ϕ e
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Focus on Ez

PEC

E r,ϕ, z e r,ϕ e

𝛁𝐓E γ k E 0
Vector wave equation

E r,ϕ, z E r,ϕ e
Rectangular Waveguide Notation Book Notation

Explicit Trans. Variables
𝛁𝐫𝛟E h E 0

𝐓 → 𝐫𝛟

h γ k

1
𝑟
𝜕
𝜕𝑟 𝑟

𝜕E
𝜕𝑟

1
𝑟
𝜕 E
𝜕ϕ h E 0

Cylindrical coordinates

Assume separable E r,ϕ R r Φ ϕ

Cylindrical coordinates
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Focus on Ez

PEC

r
R r

d
dr r

dR r
dr h r

1
Φ ϕ

d Φ ϕ
dϕ 0

Cylindrical coordinates

E r,ϕ R r Φ ϕ

Cylindrical coordinates

n2 - n2

These terms vary 
independently and 
therefore must 
equal the same 
constant

r
R r

d
dr r

dR r
dr h r n

1
Φ ϕ

d Φ ϕ
dϕ n

d R r
dr

1
r

dR r
dr h

n
r R r 0

d Φ ϕ
dϕ n Φ ϕ 0
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d R r
dr

1
r

dR r
dr h

n
r R r 0

Bessel’s Differential equation

R r C J hr → J hr
1 hr

m! n m ! 2
Arbitrary Constant

Bessel functions
J0

J1

J2
J'0 J'1 J'2

Bessel function of the first kind

x01 x02

x03
x11

x'01 x'02

x'03
x'11

xnp

x'np
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TE vs TM modes
TM modes TE modes

E r,ϕ C J hr cos nϕ

E r,ϕ
jβ
h C J′ hr cos nϕ

E r,ϕ
jβn
h r C J hr sin nϕ

H r,ϕ 0

H r,ϕ
jωεn
h r C J hr sin nϕ

H r,ϕ
jωε

h C J′ hr cos nϕ

E r,ϕ 0

E r,ϕ
jω𝜇n
h r C′ J hr sin nϕ

E r,ϕ
jω𝜇
h r C′ J′ hr cos nϕ

H r,ϕ C′ J hr cos nϕ

H r,ϕ
jβ
h C′ J′ hr cos nϕ

H r,ϕ
jβn
h r C′ J hr sin nϕ

E r a,ϕ 0 → J ha 0 H r a,ϕ 0 → J′ ha 0

𝑥 → ℎ
2.405
𝑎 → 𝑓 ,

ℎ
2𝜋 𝜇𝜀 𝑥′ → ℎ

1.841
𝑎 → 𝑓 ,

ℎ
2𝜋 𝜇𝜀
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Propagation equations

β
2π
λ

Guide wavelength

λ
2π
β

2π

k k

2π

k 1 f
𝑓

λ

1 f
𝑓

Z
η / ε

1 f
𝑓

Z
η
ε 1

f
𝑓

Propagation constant

TE wave impedance

TM wave impedance

 The same equations apply as to 
circular waveguides as did for 
rectangular waveguides

 The cutoff frequencies are defined 
by the geometry and dimensions.

 Once the cutoff frequency is 
determined, then everything else is 
determined
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Circular Waveguide modes
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In class exercise 1
 A circular waveguide of radius a = 3 cm that is filled with 

polystyrene (εr = 2.56) is used at a frequency of 2 GHz. For the 
dominant TEmn mode determine the following
 (a) Cutoff frequency
 (b) guide wavelength in cm
 (c) Phase constant beta
 (d) Wave impedance ZTE
 (e) Compare the cutoff frequency to the fundamental mode 

of a square (a = b) waveguide whose diagonal is equal to 
the circular waveguide diameter

 (f) Compare the cutoff frequency to the fundamental mode 
of a square (a = b) waveguide whose side is equal to the 
circular waveguide diameter

PEC

f
𝑘

2𝜋 𝜇𝜀
c

2 ε
m
a

n
b

Cutoff frequency of rectangular 
waveguide mode
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In class exercise 1

PEC

f ,
c

2 ε
m
a

n
b

Cutoff frequency of rectangular 
waveguide mode

β
2π
λ 0.2692 𝑟𝑎𝑑/𝑠

λ
λ

1 f
𝑓

9.357 cm Z
η / ε

1 f
𝑓

586.56 Ω

f
1.841

2𝜋𝑎 𝜇𝜀 1.835 GHz

2a 2a

a 2a

f ,
c

2a 2ε
2.21 GHz

a 2a

f ,
c

4a ε 1.56 GHz

(a) Cutoff frequency

(b) guide wavelength in cm

(c) Phase constant beta

(d) Wave impedance ZTE

(e) Cutoff frequency (f) Cutoff frequency
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Compare to Rectangular Waveguide modes

 Rectangular waveguide modes less densely 
distributed than circular waveguide modes
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Comparison

 Rectangular waveguides have broadest single mode operation
 In an oversized circular metal waveguide, a very low-loss TE01 mode can propagate.
 The cut-off wavelength of this mode is λc = 1.64a

α ,

𝑅 1 2𝑏
𝑎

𝑓
𝑓

𝜂𝑏 1 𝑓
𝑓

α ,

𝑅 𝑓
𝑓

𝑎𝜂 1 𝑓
𝑓
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Why should we care about circular waveguides?

 Waveguides are often used as a transmission line between and device and antenna
 Good beam patterns are obtained with radially symmetric aperture cross sections
 How do you couple a rectangular waveguide to a circular mode?
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Why should we care about circular waveguides?
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Conclusions
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Propagation
y

x

z

b

a

 The one conductor geometry supports TE/TM operation
 The longitudinal phase variation of a TE/TM is not equal to the free space (plane wave) 

TEM phase variation
 β → rectangular waveguide longitudinal phase variation
 k → free space longitudinal phase variation

 β is a strong function of frequency and geometry


