ELEC-E4130

Lecture 19: Rectangular Waveguides Ch. 10

Recap of modes

Waveguide modes

Number of propagating modes

Wave impedance

$$
\begin{aligned}
& a=2.29 \mathrm{~cm} \\
& b=0.76 \mathrm{~cm} \\
& \mathrm{f}_{\mathrm{c}}\left(\mathrm{TE}_{10}\right)=6.55 \mathrm{GHz}
\end{aligned}
$$

Phase/Group Velocity

$$
\begin{aligned}
& a=2.29 \mathrm{~cm} \\
& \mathrm{~b}=1.53 \mathrm{~cm} \\
& \mathrm{f}_{\mathrm{c}}\left(\mathrm{TE}_{10}\right)=6.55 \mathrm{GHz}
\end{aligned}
$$

> Standard waveguide size (WR-90)

Waveguide modes

Number of propagating modes

$\mathrm{a}=2.29 \mathrm{~cm}$
$\mathrm{b}=1.02 \mathrm{~cm}$
$\mathrm{f}_{\mathrm{c}}\left(\mathrm{TE}_{10}\right)=6.55 \mathrm{GHz}$

Wave impedance

$a=2.29 \mathrm{~cm}$
$\mathrm{b}=0.76 \mathrm{~cm}$
$\mathrm{f}_{\mathrm{c}}\left(\mathrm{TE}_{10}\right)=6.55 \mathrm{GHz}$

Phase/Group Velocity

$$
\begin{aligned}
& \mathrm{a}=2.29 \mathrm{~cm} \\
& \mathrm{~b}=1.53 \mathrm{~cm} \\
& \mathrm{f}_{\mathrm{c}}\left(\mathrm{TE}_{10}\right)=6.55 \mathrm{GHz}
\end{aligned}
$$

$>$ Making the waveguide shorter spaces the modes out

Waveguide modes

$$
\begin{aligned}
& a=2.29 \mathrm{~cm} \\
& b=1.02 \mathrm{~cm} \\
& \mathrm{f}_{\mathrm{c}}\left(\mathrm{TE}_{10}\right)=6.55 \mathrm{GHz}
\end{aligned}
$$

$$
\begin{aligned}
& a=2.29 \mathrm{~cm} \\
& b=0.76 \mathrm{~cm} \\
& \mathrm{f}_{\mathrm{c}}\left(\mathrm{TE}_{10}\right)=6.55 \mathrm{GHz}
\end{aligned}
$$

Phase/Group Velocity

> Making the waveguide taller makes the modes more dense and also reorders where the fall in frequency space

Phase velocity, group velocity, and dispersion

Plane Wave View of Non-TEM Waves

Plane Wave View of Non-TEM Waves

> Consider TE_{10} mode, $\quad \beta_{1}=\sqrt{k^{2}-(\pi / d)^{2}}$
> $E_{x}(x, y, z)=A_{1} \sin \frac{\pi y}{d} e^{-j \beta_{1} z}=\frac{A_{1} y}{2 j}\left\{e^{j \pi y / d-j \beta_{1} z}-e^{-j \pi y / d-j \beta_{1} z}\right\}$

Observation: When the frequency is very close to the cutoff, θ approaches to 90 degree.

Phase Velocity

Equal phase planes

Phase Velocity:

 Velocity of the wave front or equal phase

According to the definition, the phase velocity is,

$$
v_{p}=\frac{\Delta d^{\prime}}{\Delta t} \text { (observe in z direction) }
$$

Since $\left\{\begin{array}{l}C=\frac{\Delta d}{\Delta t} \\ \Delta d^{\prime}>\Delta d\end{array} \Rightarrow \begin{array}{l}\mathrm{u}_{\mathrm{p}} \text { could be greater }>\mathrm{c} \\ \mathrm{u}_{\mathrm{p}}=\mathrm{f} \lambda_{\mathrm{g}}=\frac{\omega}{\beta}\end{array}\right.$
Plane wave traveling speed: $\frac{c}{\sqrt{\varepsilon_{r}}}=\frac{\overline{P_{1} P_{2}}}{\Delta t}$
$\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} \quad \omega \sqrt{\mu \varepsilon}$
$u_{p}=\frac{\overline{\mathrm{P}_{1} \mathrm{P}_{3}}}{\Delta \mathrm{t}}=\frac{\overline{\mathrm{P}_{1} \mathrm{P}_{2}} / \cos \theta}{\Delta \mathrm{t}}=\frac{\mathrm{c}}{\sqrt{\varepsilon_{\mathrm{r}}}} \frac{1}{\cos \theta}=\frac{\mathrm{c}}{\sqrt{\varepsilon_{\mathrm{r}}}} \frac{\mathrm{k}}{\beta}=\frac{\omega}{\beta}$

Group Velocity

Group Velocity: Energy propagation velocity of the wave: (The true velocity!!!)

The group velocity is,

$$
\mathrm{u}_{\mathrm{g}}=\frac{\overline{\mathrm{P}_{1} \mathrm{P}_{4}}}{\Delta \mathrm{t}}=\frac{\overline{\mathrm{P}_{1} \mathrm{P}_{2}} \cos \theta}{\Delta \mathrm{t}}=\frac{\mathrm{c}}{\sqrt{\varepsilon_{\mathrm{r}}}} \cos (\theta)=\frac{\mathrm{c}}{\sqrt{\varepsilon_{\mathrm{r}}}} \frac{\beta}{\mathrm{k}}
$$

We thus have,

$$
\mathrm{u}_{\mathrm{p}} \cdot \mathrm{u}_{\mathrm{g}}=\frac{c^{2}}{\varepsilon_{\mathrm{r}}}
$$

$$
\cos (\theta)=\frac{\beta_{1}}{\mathrm{k}}
$$

it take to travel this distance?
(generally applicable to any uniformly filled waveguides)

"Information theory" view of $u_{p} v s u_{g}$

Group velocity: Propagation speed of an envelop (signal group) modulated on a carrier

Original
modulated
signal:

$$
\mathrm{e}^{\mathrm{j}\left[\left(\omega_{0}+\Delta \omega\right) \mathrm{t}-\beta\left(\omega_{0}+\Delta \omega\right) \mathrm{z}\right]}=\mathrm{e}^{\mathrm{j}\left\{\omega_{0} \mathrm{t}+\Delta \omega \mathrm{t}-\left[\beta\left(\omega_{0}\right)+\Delta \omega \frac{\Delta \beta}{\Delta \omega}\right] \mathrm{z}\right\}}
$$

$$
=\underbrace{\mathrm{e}^{\mathrm{j}\left(\omega_{0} \mathrm{t}-\beta \mathrm{z}\right)}}_{\text {carrier }} \cdot \mathrm{e}^{\mathrm{j} \Delta \omega\left(\mathrm{t} \frac{\Delta \beta}{\Delta \omega} \mathrm{z}\right)} \underbrace{\Delta \omega}_{\text {envelop }}
$$

$$
\tau=\frac{\Delta \beta}{\Delta \omega} \mathrm{z}=\frac{\mathrm{d} \beta}{\mathrm{~d} \omega} \mathrm{z} \quad \text { (group delay) }
$$

Therefore the
group velocity is
obtained as,

Dispersion relationship in a Waveguide

For each mode, β is a function of the wave number k, this relationship is called dispersion relationship

Wave velocities in presence of dispersion

Center frequency

$$
\mathrm{f}_{0}=9 \mathrm{GHz}
$$

Spectral components

$$
\begin{gathered}
\mathrm{f}_{\mathrm{m}}=\mathrm{f}_{0}+\mathrm{m} \Delta \mathrm{f} \quad \mathrm{~m}=0 \ldots 30 \\
\Delta \mathrm{f}=500 \mathrm{MHz}
\end{gathered}
$$

Wavenumber k
$\mathrm{k}_{\mathrm{m}}=\frac{2 \pi \mathrm{f}_{\mathrm{m}}}{\mathrm{c}_{0}}$

Propagation constant
$--------1 .-1$
$\beta_{\mathrm{m}}=\left(\mathrm{k}_{\mathrm{m}}\right)^{1.25}$
Exaggerated

Spectral component phasors

$$
E_{m}(z)=A_{m} e^{-j \beta_{m} z}
$$

Band limit

$$
\mathrm{A}_{\mathrm{m}}=\mathrm{e}^{-\frac{1}{2}\left(\frac{4.5 \mathrm{n}}{\mathrm{~L}-1}\right)^{2}}
$$

Total Field phasor

$$
\mathrm{E}(\mathrm{z})=\sum_{m=0}^{30} \mathrm{E}_{\mathrm{m}}(\mathrm{z})=\sum_{m=0}^{30} A_{m} \mathrm{e}^{-\mathrm{j} \beta_{\mathrm{m}} \mathrm{z}}
$$

Total real field

$$
E(z, t)=\mathbb{R e}\left\{\sum_{m=0}^{30} E_{m}(z) e^{-j \omega t}\right\}=\sum_{m=0}^{30} A_{m} \cos \left(\omega t-\beta_{m} z\right)
$$

Wave velocity in presence of dispersion

$\beta \neq k$

Propagation constant

$$
\beta_{\mathrm{m}}=\left(\mathrm{k}_{\mathrm{m}}\right)^{1.25}
$$

> Waveform in red
> Envelope in black
> Phase velocity variation arises from beta not a linear function
\Rightarrow Pick a peak on the red curve. Note that the red curve peak moves faster than the black curve peak
$>u_{p}>u_{g}$

In class exercise 1

Cutoff frequency
$\mathrm{f}_{\mathrm{c}}=\frac{k_{c}}{2 \pi \sqrt{\mu \varepsilon}}=\frac{\mathrm{c}}{2 \sqrt{\varepsilon_{\mathrm{r}}}} \sqrt{\left(\frac{\mathrm{m}}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n}}{\mathrm{b}}\right)^{2}}$

$>$ Consider the propagating waveguide modes above as a function of normalized fundamental mode frequencies
$>$ Derive an expression for a and b such that the fundamental waveguide mode spans normalized bandwidth [1, 2]
> Assume $\mathrm{a}>\mathrm{b}$

In class exercise 1

Cutoff frequency
$\mathrm{f}_{\mathrm{c}}=\frac{k_{c}}{2 \pi \sqrt{\mu \varepsilon}}=\frac{\mathrm{c}}{2 \sqrt{\varepsilon_{\mathrm{r}}}} \sqrt{\left(\frac{\mathrm{m}}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n}}{\mathrm{b}}\right)^{2}}$
TE_{10} cutoff frequency

$$
\mathrm{f}_{\mathrm{c}, \mathrm{TE}, 10}=\frac{\mathrm{c}}{2 \sqrt{\varepsilon_{\mathrm{r}}}} \frac{1}{\mathrm{a}}
$$

Normalized cutoff frequency

$$
\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{c}, \mathrm{TE}, 10}}=a \sqrt{\left(\frac{\mathrm{~m}}{\mathrm{a}}\right)^{2}+\left(\frac{\mathrm{n}}{\mathrm{~b}}\right)^{2}}
$$

Normalized cutoff frequency for TE_{20}

$$
\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{c}, \mathrm{TE}, 10}}(\mathrm{~m}=2, \mathrm{n}=0)=\mathrm{a} \sqrt{\left(\frac{2}{\mathrm{a}}\right)^{2}}=2
$$

Normalized cutoff frequency for TE_{01}

$$
\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{c}, \mathrm{TE}, 10}}(\mathrm{~m}=0, \mathrm{n}=1)=\mathrm{a} \sqrt{0+\left(\frac{1}{\mathrm{~b}}\right)^{2}}=\frac{\mathrm{a}}{\mathrm{~b}}
$$

$$
\frac{a}{b}>2 \quad \rightarrow \quad a>2 b
$$

$>$ If $\mathrm{a}<2 \mathrm{~b}$, the normalized bandwidth is less than 1
$>$ If $\mathrm{a}>2 \mathrm{~b}$, the normalized bandwidth $=1$

Current density in the TE_{10} mode

TE boundary conditions

Generalized on top of PEC
B.C. $\left\{\begin{array}{l}\mathrm{E}_{\mathrm{t} 1}=0 \\ \mathrm{H}_{\mathrm{n} 1}=0 \\ \mathbf{a}_{\mathbf{n}} \times \mathbf{H}_{\mathbf{1}}=\mathbf{J}_{\mathbf{s}}\end{array}\right.$

The curl equation

$$
\begin{aligned}
& \nabla \times \mathbf{H}=j \omega \varepsilon \mathbf{E} \\
& \left|\begin{array}{ccc}
\mathrm{a}_{\mathrm{u}} & \mathrm{a}_{\mathrm{v}} & \mathrm{a}_{\mathrm{n}} \\
\frac{\partial}{\partial \mathrm{u}} & \frac{\partial}{\partial \mathrm{v}} & \frac{\partial}{\partial \mathrm{n}} \\
\mathrm{H}_{\mathrm{u}} & \mathrm{H}_{\mathrm{v}} & \mathrm{H}_{\mathrm{h}}
\end{array}\right|=j \omega \varepsilon\left(\mathbf{a}_{\mathbf{u}} \mathrm{E}_{\mathrm{u}}+\mathbf{a}_{\mathrm{v}} \mathrm{E}_{\mathrm{k}}+\mathbf{a}_{\mathbf{n}} \mathrm{E}_{\mathrm{n}}\right)
\end{aligned}
$$

Compare the tangential components (in u, v)

Dominant TE_{10} mode

The cutoff wave number is, $k_{c, 10}=\frac{\pi}{a}$
The phase constant is thus given by,

$$
\beta_{10}=\sqrt{k^{2}-k_{c, 10}^{2}}=\sqrt{k^{2}-\left(\frac{\pi}{a}\right)^{2}}=k \sqrt{1-\left(\frac{\lambda}{2 a}\right)}
$$

The cutoff wavelength is, $\lambda_{c, 10}=\frac{2 \pi}{k_{c}}=\frac{2 \pi}{\pi / a}=2 a$
(the waveguide has to be at least greater than half of the wavelength in order for the wave to propagate)
The cutoff frequency is thus: $f_{c, 10}=\frac{c / \sqrt{\varepsilon_{r}}}{\lambda_{c, 10}}=\frac{c / \sqrt{\varepsilon_{r}}}{2 a}=\frac{1}{2 a \sqrt{\mu \varepsilon}}$
The guide wavelength:
The phase velocity:

$$
v_{p}=\frac{\omega}{\beta_{10}}=\frac{c / \sqrt{\varepsilon_{r}}}{\sqrt{1-\left(\frac{\lambda}{2 a}\right)^{2}}}=\frac{c / \sqrt{\varepsilon_{r}}}{\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}},
$$

TE_{10} mode Surface Current density

$\mathbf{J}_{\mathbf{s}}$ plot for TE_{10} mode

$$
\begin{aligned}
& E_{y}=\frac{-j \omega \mu a}{\pi} B_{10} \sin \left(\frac{\pi x}{a}\right) e^{-j \beta z} \\
& H_{x}=\frac{j \beta a}{\pi} B_{10} \sin \left(\frac{\pi x}{a}\right) e^{-j \beta z} \\
& H_{z}=B_{10} \cos \left(\frac{\pi x}{a}\right) e^{-j \beta z} \\
& E_{z}=E_{x}=H_{y}=0
\end{aligned}
$$

> Lets use the fields and the boundary conditions to compute surface current densities $\left(\mathrm{J}_{\mathrm{s}}\right)$ on the waveguide walls

TE_{10} mode Surface Current density

Boundary conditions: $\mathbf{J}_{\boldsymbol{S}}=\mathbf{a}_{\mathbf{n}} \times \mathbf{H}_{\mathbf{1}} \mathbf{z}\left\{\begin{array}{l}\mathrm{H}_{\mathrm{z}}=\mathrm{A}_{10} \cos \left(\frac{\pi \mathrm{x}}{\mathrm{a}}\right) \mathrm{e}^{-\mathrm{j} \beta \mathrm{z}} \\ \mathrm{H}_{\mathrm{x}}=\frac{j \beta \mathrm{a}}{\pi} A_{10} \sin \left(\frac{\pi \mathrm{x}}{\mathrm{a}}\right) \mathrm{e}^{-j \beta z}\end{array}\right.$
Mirror image \quad Side wall ($x=0$):

$$
\mathbf{a}_{\mathrm{n}}=\mathbf{a}_{\mathrm{x}}
$$

J_{s} plot for TE_{10} mode

$$
\mathrm{H}_{\mathrm{x}}=0, \mathrm{H}_{\mathrm{z}} \neq 0
$$

$$
\mathrm{H}_{\mathrm{x}}=0, \mathrm{H}_{\mathrm{z}} \neq 0
$$

$$
\mathbf{a}_{\mathrm{n}}=-\mathbf{a}_{\mathrm{x}}
$$

$$
\mathbf{J}_{\mathbf{s}}=-\mathbf{a}_{\mathbf{x}} \times \mathbf{a}_{\mathbf{z}} \mathrm{H}_{\mathrm{z}}=\mathbf{a}_{\mathbf{y}} \cos (\pi) \mathrm{A}_{10} \mathrm{e}^{-\mathrm{j} \beta \mathrm{z}}
$$

$$
\mathrm{J}_{s}=-\mathbf{a}_{\mathbf{y}} \mathrm{A}_{10} \mathrm{e}^{-\mathrm{j} \beta \mathrm{z}}
$$

TE_{10} mode Surface Current density

$$
\begin{array}{ll}
\begin{array}{ll}
\text { Mirror image } \\
180^{\circ} \text { out of phase }
\end{array} & \begin{array}{l}
\mathbf{a}_{\mathbf{n}}=\mathbf{a}_{\mathbf{y}}
\end{array} \\
\mathbf{J}_{s}=\mathbf{a}_{\mathbf{y}} \times\left(\mathbf{a}_{\mathbf{z}} H_{z}+\mathbf{a}_{x} H_{x}\right) \\
\text { Hointing into } \\
\text { the dielectric }
\end{array}
$$

$\mathbf{J}_{\mathbf{s}}$ plot for TE_{10} mode

Top wall ($\mathrm{y}=\mathrm{b}$):

$$
\mathbf{a}_{\mathbf{n}}=-\mathbf{a}_{\mathbf{y}} \rightarrow \begin{aligned}
& \text { Pointing into } \\
& \text { the dielectric }
\end{aligned}
$$

$$
\mathbf{J}_{s}=-\mathbf{a}_{\mathbf{y}} \times\left(\mathbf{a}_{\mathbf{z}} H_{z}+\mathbf{a}_{\boldsymbol{x}} H_{x}\right)
$$

$$
\mathbf{J}_{s}=\left(-\mathbf{a}_{x} A_{10} \cos \frac{\pi x}{a}+\mathbf{a}_{z} A_{10} \frac{j \beta_{10} a}{\pi} \sin \frac{\pi x}{a}\right) e^{-j \beta z}
$$

In class exercise 2

$>$ Its difficult to cut a deep hole with a rectangular cross section
$>$ Rectangular cross section pipes can be extruded but not with sufficient tolerance for high frequency operation
$>$ High frequency waveguides are often manufactured in split blocks where two rectangular trenches are cut and then the two halves are pieced together
> Which process would you use to create a high frequency rectangular waveguide (a) or (b) and why? Consider only the TE_{10} mode

Desired

Process (a)

Process (b)

In class exercise 2

Desired

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{s}}(\boldsymbol{x}=\mathbf{0}, \boldsymbol{y}=\boldsymbol{b} / \mathbf{2})=\mathrm{a}_{\mathrm{y}} \mathrm{~A}_{10} \mathrm{e}^{-\mathrm{j} \beta \mathrm{z}} \\
& \mathrm{~J}_{\mathrm{s}}(\boldsymbol{x}=\boldsymbol{a}, \boldsymbol{y}=\boldsymbol{b} / \mathbf{2})=\mathrm{a}_{\mathrm{y}} \mathrm{~A}_{10} \mathrm{e}^{-\mathrm{j} \beta \mathrm{z}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{J}_{\mathrm{s}}\left(\boldsymbol{x}=\frac{\boldsymbol{a}}{\mathbf{2}}, \boldsymbol{y}=\mathbf{0}\right)=\mathbf{a}_{\mathbf{z}} A_{10} \frac{j \beta_{10} a}{\pi} e^{-j \beta z} \\
& \mathbf{J}_{\mathbf{s}}\left(\boldsymbol{x}=\frac{\boldsymbol{a}}{\mathbf{2}}, \boldsymbol{y}=\mathbf{0}\right)=-\mathbf{a}_{\mathbf{z}} A_{10} \frac{j \beta_{10} a}{\pi} e^{-j \beta z}
\end{aligned}
$$

Process (b)

> The break in the metal creates resistance.
$>$ In process (a) the current is orthogonal to the break and therefore must cross it
> In process (b) the current is parallel to the break and therefore never traverses the break

Conclusions

Real WG

Some standard waveguide specs.

Guide	Size (inch)	Rec. (GHz)	$f_{c}(\mathrm{GHz})$	Band	(GHz)
WR650	6.500×3.250	$1.12-1.70$	0.91	L	($1.0-2.0)$
WR284	2.840×1.340	$2.60-3.95$	2.08	S	($2.0-4.0$)
WR187	1.872×0.872	$3.95-5.85$	3.15	C	($4.0-8.0)$
WR90	0.900×0.400	$8.20-12.40$	6.56	X	(8.0-12.0)
WR62	0.622×0.311	12.40-18.00	9.49	$K u$	(12.0-18.0)
WR42	0.420×0.170	18.00-26.50	14.05	K	(18.0-27.0)
WR28	0.280×0.140	$26.50-40.00$	21.08	$K a$	(27.0-40.0)
	a b		$\mathrm{f}_{\mathrm{c}}\left(\mathrm{TE}_{10}\right)$		

$>$ All the above waveguides follow the convention $a>=2 b$
$>$ They are all intended to operate in the TE_{10} (lowest order mode)
$>$ Recommended operating range provides buffer above the TE10 cutoff frequency and below the TE_{20} and TE_{01} cutoff frequencies

Propagation

$>$ The one conductor geometry supports TE/TM operation
$>$ The longitudinal phase variation of a TE/TM is not equal to the free space (plane wave) TEM phase variation
> $\beta \rightarrow$ rectangular waveguide longitudinal phase variation
$>\mathrm{k} \rightarrow$ free space longitudinal phase variation
$\Rightarrow \beta$ is a strong function of frequency and geometry

Next time

> Use surface current densities to compute loss and realistic performance of waveguide

