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Exercise 1 - PS6

A consumer’s utility function is

u(x , y) = 2 ln x + 3 ln y .

The consumer’s budget constraint is

pxx + pyy ≤ w ,

where the parameters px , py and w are all strictly positive.

(a) Solve the consumer’s utility maximization problem.

(b) Use the envelope theorem to estimate the change in the indirect

utility function (i.e., the problem’s value function) when the price py
is changed to py + ϵ, with ϵ > 0.

(c) Use the envelope theorem to estimate the change in the indirect

utility function (i.e., the problem’s value function) when the utility

function is changed to ũ(x , y) = 2.2 ln x + 3 ln y .
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Exercise 1 - Solution

The Lagrangian is

L = 2 ln x + 3 ln y − λ(pxx + pyy − w)

x∗ =
2w

5px
, y∗ =

3w

5py
, λ∗ =

5

w
.

Let v be the indirect utility function of this problem. By the envelope

theorem,

dv

dpy
=

∂L
∂py

(x∗, y∗, λ∗) = −λ∗y∗ = − 3

py
.

Since dpy = ϵ, we have dv = − 3
py
dpy = − 3ϵ

py
.

Similarly, let’s rewrite the utility function as u(x , y) = a ln x + 3 ln y . By

the envelope theorem, and by evaluating all terms at a = 2,

dv

da
=

∂L
∂a

(x∗, y∗, λ∗) = ln x∗ = ln(2w)− ln(5px).

Since da = 0.2, we have

dv = (ln(2w)− ln(5px)) da = 0.2 (ln(2w)− ln(5px)).
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Exercise 2

Consider the following maximization problem:

max
x,y

x + y

s.t. xy ≥ 1.

(a) Check if the non-degeneracy constraint qualification (NDCQ) is

satisfied.

(b) Form the Lagrangian and find all the points that satisfy the

first-order conditions for optimality.

(c) Is any point you found in (b) a solution to this problem? How can

you reconcile your results with the Proposition at p. 12 in the slides

from Lecture 14?
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Exercise 2 - Solution

The NDCQ fails only at (0, 0), which does not belong to the constraint

set. Hence the NDCQ is always satisfied. The only point which satisfies

the first-order conditions is x = y = −1 and λ = 1. However, this is not

a solution. In fact, this problem does not have any solution at all. Notice

that, when x and y are both positive, it is always feasible to increase

either of them without bound, so leading to arbitrarily large values of the

objective function. This is consistent with the Proposition at p. 12,

which asserts that, if a solution exists, then there must be a Lagrange

multiplier as well. However, the Proposition does not say that the

existence of Lagrange multiplier (which is what happens in this problem)

guarantees the existence of a solution.
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Exercise 3

Consider the following constrained maximization problem:

max
x,y ,z

f (x , y , z) = ax + by + cz

s.t. g(x , y , z) = αx2 + βy2 + γz2 ≤ L,

where a, b, c , α, β, γ, L are all positive parameters.

(a) Solve the maximization problem.

(b) Let V be the value function of this maximization problem, L the

corresponding Lagrangian function and λ the Lagrange multiplier.

Verify that:

dV

dL
= λ∗,

dV

da
=

∂L
∂a

(x∗, y∗, z∗),

dV

dβ
=

∂L
∂β

(x∗, y∗, z∗).
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Exercise 3 - Solution

The Lagrangian is

L = ax + by + cz − λ(αx2 + βy2 + γz2 − L)

The first order conditions are

a− 2λαx = 0 (1)

b − 2λβy = 0 (2)

c − 2λγz = 0 (3)

λ(αx2 + βy2 + γz2 − L) = 0 (4)

λ ≥ 0 (5)
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Exercise 3 - Solution

a) a, b, c , α, β, γ, L are all positive. Therefore, from (1), (2), (3), λ

cannot be 0. Then, x,y, z are also positive, and αx2 + βy2 + γz2 − L = 0.

From (1), (2), (3), x = a
2αλ , y = b

2βλ , z = c
2γλ . This is the solution of

the maximization problem because L is concave.
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Exercise 3 - Solution

b) From a,

αx2 + βy2 + γz2 − L = 0 (6)

α
a

2αλ∗

2
+ β

b

2βλ∗

2

+ γ
c

2γλ∗

2
− L = 0 (7)

λ∗ =
1

2
L

−1
2

√
a2

α
+

b2

β
+

c2

γ
(8)

The value function is:

V = ax∗+by∗+cz∗ =
a2

2αλ∗ +
b2

2βλ∗ +
c2

2γλ∗ =
√
L

√
a2

α
+

b2

β
+

c2

γ
(9)
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Exercise 3 - Solution

dV

dL
= λ∗

dV

da
=

1

2

√
L

1√
a2

α + b2

β + c2

γ

2a

α
=

a

2αλ∗ =
∂L
∂a

dV

dβ
=

1

2

√
L

1√
a2

α + b2

β + c2

γ

−b2

β
=

−b2

4βλ∗ = −λ∗y2 =
∂L
∂β
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Exercise 4

Find the solutions of the following difference equations with the given

initial values of x0. In addition, determine whether the solutions are

stable or not.

(a) xt+1 = 3xt − 5, x0 = 3;

(b) 4xt+1 = xt + 2, x0 = 2;

(c) −2xt+1 + 6xt + 4 = 0, x0 = 5;

(d) 2xt+1 − 2xt + 3 = 0, x0 = 6.
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Exercise 4 - Solution

We can rewrite all the equations in the form xt+1 = axt + b. When

a ̸= 1, the solution is

xt = at
(
x0 −

b

1− a

)
+

b

1− a

(a) xt =
1
2 · 3t + 5

2 ; unstable because a > 1

(b) xt =
4
3

(
1
4

)t
+ 2

3 ; stable because |a| < 1

(c) xt = 6 · 3t − 1; unstable because a > 1

(d) Here a = 1 so we cannot use the formula above. The solution is

xt = 6− 3
2 t, which is unstable
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Exercise 5

Consider the following matrix:

A =

(
6 −8

4 −12

)
.

(a) Find all the eigenvalues of A.

(b) Find an eigenvector for each eigenvalue of A.

(c) Use the eigenvalues and the eigenvectors you found to form a square

matrix P and a diagonal matrix D such that

A = PDP−1. (10)

Verify that (10) is satisfied by the matrices you found.

(d) Use (10) to calculate An, where n ≥ 1.
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Exercise 5 - Solution

(a) The two eigenvalues are λ1 = −10 and λ2 = 4.

(b) Two possible eigenvectors are

v 1 =

(
1

2

)
and v 2 =

(
4

1

)
.

(c) The decomposition is

A = PDP−1 =

(
1 4

2 1

)(
−10 0

0 4

)(
− 1

7
4
7

2
7 − 1

7

)

(d)

An = PDnP−1 =

(
1 4

2 1

)(
(−10)n 0

0 4n

)(
− 1

7
4
7

2
7 − 1

7

)
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