MEC-E1050 Finite Element Method in Solid, week 48/2021

1. Determine stress components at the midpoint of element
shown if uy, is non-zero and the other nodal displacements
are zeros. The approximations to the displacement components
u,v are bi-linear. The material parameters E, v and thickness
t are constants. Use the strain-displacement and stress-strain
relationship of linearly elastic isotropic material and assume
plane stress conditions.
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2. Determine the stress components oy, oy, and oy, of the
triangle element shown in terms of the displacement components
Uyq, Uyq Of node 1. Assume plane-strain conditions and use
linear approximation to displacement components. The material
parameters E, vand thickness t are constants.
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3. Athin slab (1) of square shape is loaded by a point force (2) as vy = @
shown in the figure. Derive the relationship between the force F :
and the displacement uy, of its point of action. Young’s
modulus E, Poisson’s ratio v, and thickness of the slab t are
constants. External distributed forces vanish. Assume plane
stress conditions and use a bilinear approximation.
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4. A long wall having triangular cross-section, and made of |y,Y

homogeneous, isotropic, linearly elastic material, is subjected to its
own weight. Material properties E,v, p are constants. Determine
the displacement components uy 3 and uy3 of node 3. Nodes 1 and
2 are fixed. Use just one three-node element and assume plane strain
conditions.
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A thin triangular slab of thickness t is loaded by a point force
at node 3. Nodes 1 and 2 are fixed. Derive the virtual work
expression oW of the structure in terms of uy; and uys,
and solve for the nodal displacements. Approximation is
linear and material parameters E and v are constants.
Assume plane-stress conditions. 12 L 3]
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A thin triangular slab (assume plane stress conditions) loaded
by its own weight is allowed to move vertically at node 1 and
nodes 2 and 3 are fixed. Find the displacement uy;. Material
parameters E, v , p and thickness t of the slab are

constants. .
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A long dam of homogeneous, isotropic, linearly elastic
material, is subjected to water pressure on one side. Material
properties E and v are constants. Determine the
displacement components uy; and uy; of node 1. Nodes 2
and 3 are fixed. Use a three-node element and assume plane
strain conditions. Consider a slab of thickness t in
calculations. The peak value of the linearly varying pressure

s p.
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A thin slab is loaded by a distributed force as shown. Derive
the relationship between the force peak value f and
displacement uy 4. Young’s modulus E, Poisson’s ratio v, and
thickness of the slab t are constants. Assume plane stress
conditions and use the virtual work density of the thin slab and
a bilinear approximation.
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A structure, consisting of a thin slab and a bar, is loaded by a «—

horizontal force F acting on node 1. Material properties are E
and v, thickness of the slab is t and the cross-sectional area of
the bar is A. Determine displacement of node 1 uy; and uy,
by using a linear bar element and a linear plane-stress element.

LL+v)

Answer Uy, =-4—+—"——
Lt+4AQ+v)

F
— and uy,;=0
E Y1

Point force F is acting on node 1 of the tetrahedron element of
the figure. Nodes 2, 3 and 4 are fixed so that the displacement
components are zeros. Determine displacement uz; of node 1
if uy, =uyq =0. Material properties E and v are constants. Use
linear approximation.
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Determine stress components at the midpoint of element shown if
Uy, and the other nodal displacements are zeros. The
approximations to the displacement components u,v are bi-
linear. The material parameters E, vand thickness t are constants.
Use the strain-displacement and stress-strain relationship of
linearly elastic isotropic material and assume plane-stress
conditions.

Solution
Under the plane-stress condition, the stress-strain and strain-displacement relationships of isotropic
linearly elastic material are
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The material parameters are Young’s modulus E and Poisson’s ratio v. The relationships can be
used to calculate stress out of the given displacement components.

Element approximation of the present case simplifies to (shape functions can be deduced from the
figure with £=x/L and n=y/L)
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Strain components follow from the strain-displacement relationship
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After that, stress components follow from the stress-strain relationship
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Evaluation at the midpoint x=L/2 and y=L/2 gives
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Determine the stress components oy , oy, and oy, of the triangle
element shown in terms of the displacement components uyq, Uyg
of node 1. Assume plane-strain conditions and use linear
approximation to displacement components. The material parameters
E, vand thickness t are constants.

Solution
Under the plane-stress condition, the stress-strain and strain-displacement relationships of isotropic
linearly elastic material and the matrix of elastic properties are
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The material parameters are Young’s modulus E and Poisson’s ratio v. The relationships can be
used to calculate stress out of the given displacement components.

Let us start with the approximation. Nodes 2 and 3 are fixed, uy; and uy;. The shape function
expressions can be deduced from the figure:
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Strain components follow from the strain-displacement relationship
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After that, stress components follow from the stress-strain relationship
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A thin slab (1) of square shape is loaded by a point force (2) as shown
in the figure. Derive the relationship between the force F and the
displacement uy, of its point of action. Young’s modulus E,
Poisson’s ratio v, and thickness of the slab t are constants. External
distributed forces vanish. Assume plane stress conditions and use a
bilinear approximation.

L

Solution
Let us start with the shape functions of element 1 and approximations. As nodes 1, 2, and 3 are fixed,
it is enough to deduce the shape function of node 4
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Approximations to the displacement components and their derivatives with respect to x and y are
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When the approximations are substituted there, the virtual work density of thin slab model simplifies
to (plane stress conditions, only the internal part is needed)
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Integration over the domain occupied by the element gives the element contribution
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Virtual work expression of the point force (element 2) follows from the definition of work
SW2 = Suy 4F .

Virtual work expression of a structure is the sum of element contributions
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Finally, principle of virtual work in the form oW =0 Voa and the fundamental lemma of variation
calculus imply that
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A long wall having triangular cross-section, and made of homogeneous,
isotropic, linearly elastic material, is subjected to its own weight.
Material properties E,v, p are constants. Determine the displacement
components Uy and uy3 of node 3. Nodes 1 and 2 are fixed. Use a
three-node element and assume plane strain conditions.

Solution
Under the plane strain conditions, the virtual work densities (virtual works per unit area) of the thin
slab model

osulox " ou / ox T
int ext ou fX
oW =-— oov /oy t[E] ov /oy and owg = where
oou /oy +0ov | ox ou/ oy +ov /[ ox
l1-v v 0

E

Bl = s

1 %4
0 0 (@1-2v)/2

take into account the internal forces (stress) and external forces acting on the element domain. Notice
that the components f, and f, are external forces per unit area. Distributed forces on the boundaries
and point forces are taken into account by separate force elements.

Shape function N3 =y/L of node 3 can be deduced from the figure. Linear approximations to the
displacement components are
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Virtual work of internal forces under the plane strain conditions with G=E/(2+2v)
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Force density due to gravity is given by f, =0 and f, =-pgt. Virtual work of external forces
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Virtual work expression in the sum of the internal and external parts
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A thin triangular slab of thickness t is loaded by a point force at
node 3. Nodes 1 and 2 are fixed. Derive the virtual work
expression oW of the structure in terms of uy3 and uyz, and
solve for the nodal displacements. Approximation is linear and
material parameters E and v are constants. Assume plane stress
conditions.

Solution
The virtual work densities (virtual works per unit area) of the thin slab model under the plane stress
conditions
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take into account the internal forces (stress), external forces acting on the element domain, and
external forces acting on the edges. Notice that the components f, and f, are external forces per
unit area. The forces acting on the element edges are taken into account by separate force elements.

Expressions of linear shape functions in material xy —coordinates can be deduced from the figure.
Only the shape function of node 3 is actually needed:
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When the approximation is substituted there, virtual work expression of internal forces per unit area
simplifies to
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As the integrand is constant, integration over the triangular domain gives
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If also the point force is accounted for, the virtual work expression of the structure takes the form
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Principle of virtual work SW =0 Véa and the fundamental lemma of variation calculus give
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A thin triangular slab (assume plane stress conditions) loaded by
its own weight is allowed to move vertically at node 1 and nodes
2 and 3 are fixed. Find the displacement uy, . Material parameters
E, v, p and thickness t of the slab are constants.

Solution
For the plane stress conditions and the thin-slab model, virtual work density of internal and external
volume forces are given by
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Let us start with the approximations. Only the shape function of node 1 is needed as the other nodes
are fixed. By using linearity and conditions N;(0,0) =1, N;(L,0)=N;(0,L)=0
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Displacement components simplify to
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When approximations are substituted there, virtual work density simplifies to
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Integration over the domain gives the virtual work expression. As the integrand is constant
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Virtual work expression of the external volume force due to gravity takes the form
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Virtual work expression of the thin slab is sum of the internal and external parts
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A long dam of homogeneous, isotropic, linearly elastic material, | y,Y
IS subjected to water pressure on one side. Material properties E ;:_
and v are constants. Determine the displacement components i
[,]
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Uyq and uy4 of node 1. Nodes 2 and 3 are fixed. Use a three-node L
element and assume plane strain conditions. Consider a slab of
thickness t in calculations. The peak value of the linearly varying  —==

pressure is p. P L;.

Solution
Under the plane strain conditions, the virtual work densities of thin slab are

osulox " ou / ox T
int ext ou fX
oW =-— oov /oy t[E] ov /oy and owg = where
oou /oy +0ov | ox ou/ oy +ov /[ ox
l1-v v 0

E

Bl = s

1 %4
0 0 (@1-2v)/2

The external forces t, and t, (force per unit length in this case) acting on the element edges can be
taken into account by a separate force element with the density expression (per unit length)
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although the expression is actually part of the thin slab model. The approximation on the boundary is
just the restriction of the element approximation to the boundary.

Only the shape function for node 1 is needed as the other nodes are fixed (displacement vanishes). In
terms of the displacement components uy; and uy; of node 1, element approximations of the
displacement components and their derivatives are
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When the approximation is substituted there, the virtual work densities simplify to
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Integrations over the element and edge 2-1 give the virtual work expressions (notice that the virtual
work density of internal forces is constant)
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Principle of virtual work oW = oW ™ + sW®' =0 vsa and the fundamental lemma of variation
calculus give
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A thin slab is loaded by a distributed force as shown. Derive the U ¥ f
relationship between the force peak value f and displacement uy 4
. Young’s modulus E, Poisson’s ratio v, and thickness of the slab
t are constants. Assume plane-stress conditions and use the virtual
work density of the thin slab and a bilinear approximation.

Solution L

Under the plane stress conditions, the virtual work densities (virtual works per unit area) of the thin
slab model

oou [ ox ou / ox T
int _ ext _ ou X
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dSu 1 by + SV | ox ou / 8y +ov | 6x y
1 v 0
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take into account the internal forces (stress) and the external area forces acting on the element domain.
The external forces t, and t, (tractions per unit length in this case) acting on the element edges can
be taken into account by a separate force element with the density expression (per unit length)
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although the expression is actually part of the thin slab model. The approximation on the boundary
IS just the restriction of the element approximation to the boundary.

Only the shape function associated with node 4 is needed as the other nodes are fixed (displacement
vanishes). In terms of the displacement component uy, of node 4, approximations to the
displacement components and their derivatives are
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Virtual work density of the internal forces simplifies to (when the approximations are substituted
there)
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Integration over the element gives the virtual work expression of internal forces
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Virtual work expression of external forces t, and t, is obtained as an integral over the edge defined
by x = L. The restriction of approximation to x = L and the linear distribution t, = fy/L give
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Virtual work expression is the sum of internal and external parts
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Principle of virtual work SW =0 Vda and the fundamental lemma of variation calculus in the form
0aR=0 Voa < R=0 give
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A structure, consisting of a thin slab and a bar, is loaded by a Y
horizontal force F acting on node 1. Material properties are Eand v, ~— %
thickness of the slab is t, and the cross-sectional area of the bar A are 3
constants. Determine displacement components uy; and uy; of
node 1 by using a linear bar element and a linear plane-stress
element.

. L
Solution

Under the plane stress conditions, the virtual work densities (virtual works per unit area) of the thin
slab model

oou [ ox ou / ox T
int _ ext _ ou X
oW = oov | oy t[E], ov /oy and owg = Sy ¢ where
dSu 1 by + SV | ox ou / 8y +ov | 6x y
1 v 0
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Vo 0 1-v)/2

take into account the internal forces (stress) and external forces acting on the element domain. Notice
that the components f, and f, are external forces per unit area. Forces acting on the element edges
can be taken into account by separate force elements.

Element contribution for the thin slab needs to be derived from approximation and virtual work
densities. Approximations to the displacement components depend only on the shape function
associated with node 1 as the other nodes are fixed (displacement vanishes). In terms of the
displacement components uy4 and uyq

u:uxj_l = a—u=0 and a_U:qul’
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Virtual work density of the internal forces simplifies to (when the approximations are substituted
there)
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Virtual work expression is the integral of density over the domain occupied by the element (note that
the virtual work density is constant in this case). Therefore
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Virtual work expression of the bar element is given in the formula collection with u,; =uy4 and
Uyp =0
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Virtual work expression of the point force follows e.g. directly from the definition (force multiplied
by the virtual displacement in its direction)
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Virtual work expression of the structure is the sum of element contributions
SW = oW+ 5w 2+ w3
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Principle of virtual work SW =0 V¢da and the fundamental lemma of variation calculus give

1 Et EA

u F
41+v L X1 n -0 o qu:_ME and uY1:0_ €«
1 Et |luyf |0 tL+4(1+v)A E

21—v2



Point force F is acting on node 1 of the tetrahedron element of the
figure. Nodes 2, 3 and 4 are fixed so that the displacement
components are zeros. Determine displacement uz; of node 1 if
Uy 1 =Uyq = 0. Material properties E and v are constants. Use linear
approximation.

Solution
Virtual work density of the solid model is (only internal forces in this problem)
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Approximations to the displacement components depend only on the shape function associated with
node 1 as the other nodes are fixed (displacement vanishes). In addition, the only non-zero
displacement component is uz;. Here, u=v=0 and
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Virtual work density of the internal forces simplifies to (when the approximations are substituted
there)
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Virtual work expression of the body element is integral of the density over the domain occupied by
the element (note that the virtual work density is constant and volume V = L3/ 6)
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Virtual work expression of the given force follows, e.g., directly from the definition: force multiplied
by the virtual displacement in its direction.
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Virtual work expression of the structure is the sum of element contributions

W = WL+ W2 = —suy, (£ EE=Y)
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Principle of virtual work SW =0 V¢da and the fundamental lemma of variation calculus give
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