
ELEC–E4130 Electromagnetic fields, Autumn 2021

Antennas and radiating systems

Henrik Wallén

December 8, 2021



Schematic view of the big picture

Antennas are designed to efficiently radiate and receive EM waves, or
equivalently, to convert between guided and unguided waves:

Tx Rx

guided wave guided wave

waves in
free space

antenna antenna
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Antennas and radiating systems
Outline for lecture weeks 11–12

Week 11: Basics of antenna radiation

ñ Elemental dipoles [11–2]

ñ Antenna parameters [11–3]

ñ Thin linear antennas [11–4]

ñ Antenna arrays [11–5]

Week 12: Antenna systems and more

ñ Receiving antennas [11–6]

ñ Transmit-receive systems [11–7]

ñ Microstrip antennas [extra]

ñ Aperture radiators [11–9]

No lecture on Dec 6 (Indepence Day).

D.K. Cheng, Field and Wave Electromagnetics, 2nd Ed., Chapter 11
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Time-harmonic potentials

From lecture week 3, we have B = ∇×A and E = −∇V − jωA, and the
time-harmonic retarded potential solution:

V = 1
4πε

∫
V ′

ρ e−jkR

R
dv′, A = µ

4π

∫
V ′

J e−jkR

R
dv′, k =ω√µε

For a given source current J in free space, we’ll calculate the radiated fields as

A = µ0

4π

∫
V ′

J e−jkR

R
dv′, H = 1

µ0
∇×A, E = 1

jωε0
∇×H

where R is the distance between dv′ and the observation point.

The vector potential A is a useful intermediate step in the calculation, while the
scalar potential V can be ignored. (Equation of continuity: ∇ · J = −jωρ)
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Radiation fields of elemental dipoles

Cheng 11–2



Hertzian dipole

d` I

+Q

−Q

z Short conducting wire (d`� λ) between conducting
spheres, with uniform current

i(t) = I cos(ωt) =Re
[
Ie+jωt

]
, I > 0

⇒ charge accumulation at the ends

i(t) = ±dq(t)
dt

a I = ±jωQ

So this is an oscillating electric dipole with electric moment p = azQd`.

However, for calculating the radiated fields, we can forget the charge and just
assume a uniform current I of length d` in free space.
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EM fields of Hertzian dipole = elemental electric dipole

z

R
θ

Id`

A
aR

E

H

Outline of the solution:

1. Calculate the vector potential A = azAz due to I

2. Express A = aRAR + aθAθ

3. Calculate the magnetic field H = aφHφ due to A

4. Calculate the electric field E = aRER + aθEθ due to H

Step 1 is a trivial integral while steps 3–4 are straightforward but somewhat
tedious curls in spherical coordinates. Use the formula sheet to get steps 2–4
right!

In the far field, we get a spherical wave that locally is like a plane wave (like in the
figure).
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Vector potential of Hertzian dipole

1. Vector potential t Note that β = k = k0 in Ch. 11

A = µ0

4π

∫
V ′

J e−jkR

R
dv′ = az

µ0Id`
4πR

e−jβR, β = k0 =ω
√
µ0ε0 =

ω
c
= 2π
λ

Since the dipole is infinitesimally small (and d`� R), we assume that R is
constant in the integral, that is, R is just the spherical coordinate R.

2. In spherical coordinates using the formula sheet (subst. Ax, Ay = 0, Az = 1)
AR
Aθ
Aφ

 =


sinθ cosφ sinθ sinφ cosθ
cosθ cosφ cosθ sinφ − sinθ
− sinφ cosφ 0



Ax
Ay
Az

 ⇒ az = aR cosθ − aθ sinθ

⇒ A = (aR cosθ − aθ sinθ)
µ0Id`

4π

(
e−jβR

R

)
= aRAR + aθAθ

Note: A in the formula sheet is not the same as the vector potential A in this case.



3. Magnetic field of Hertzian dipole

A = aR
µ0Id`

4π

(
e−jβR

R

)
cosθ − aθ

µ0Id`
4π

(
e−jβR

R

)
sinθ

H = 1
µ0
∇×A = 1

µ0R2 sinθ

∣∣∣∣∣∣∣∣∣
aR aθR aφR sinθ
∂
∂R

∂
∂θ 0

AR RAθ 0

∣∣∣∣∣∣∣∣∣
= aφ

1
µ0R

[
∂
∂R
(RAθ)−

∂
∂θ
(AR)

]
= aφ

Id`
4πR

[
∂
∂R

(
−e−jβR sinθ

)
− ∂
∂θ

(
e−jβR

R
cosθ

)]

= aφ
Id`
4πR

[
jβe−jβR sinθ + e

−jβR

R
sinθ

]

⇒ H = −aφ
Id`
4π
β2 sinθ

[
1
jβR

+ 1
(jβR)2

]
e−jβR = aφHφ



4. Electric field of Hertzian dipole

H = −aφ
Id`
4π
β2 sinθ

[
1
jβR

+ 1
(jβR)2

]
e−jβR

E = 1
jωε0

∇×H = 1
jωε0

1
R2 sinθ

∣∣∣∣∣∣∣∣∣
aR aθR aφR sinθ
∂
∂R

∂
∂θ 0

0 0 (R sinθ)Hφ

∣∣∣∣∣∣∣∣∣
= η0

jβ

[
aR

1
R sinθ

∂
∂θ

(
Hφ sinθ

)
− aθ

1
R
∂
∂R

(
RHφ

)]
η0 =

√
µ0

ε0

= −η0

jβ
Id`β2

4π

{
aR

1
R sinθ

∂
∂θ

(
sin2 θ

)[ 1
jβR

+ 1
(jβR)2

]
e−jβR

−aθ
1
R
∂
∂R

[(
1
jβ
+ 1
(jβ)2R

)
e−jβR

]
sinθ

}

E = − Id`
4π
η0β2

{
aR2 cosθ

[
1

(jβR)2
+ 1
(jβR)3

]

+aθ sinθ
[

1
jβR

+ 1
(jβR)2

+ 1
(jβR)3

]}
e−jβR



EM fields of Hertzian dipole

General solution (d` is infinitesimally small, but no other approximations)

z

R
θ

Id`

aR

E

H ER = −
Id`
4π
η0β22 cosθ

[
1

(jβR)2
+ 1
(jβR)3

]
e−jβR

Eθ = −
Id`
4π
η0β2 sinθ

[
1
jβR

+ 1
(jβR)2

+ 1
(jβR)3

]
e−jβR

Hφ = −
Id`
4π
β2 sinθ

[
1
jβR

+ 1
(jβR)2

]
e−jβR

Important special cases

ñ In the near field, βR� 1 and e−jβR ≈ 1 (≈ statics)

ñ In the far field, βR� 1
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Near fields of Hertzian dipole

In the near field, when βR� 1 and R� d`, we get

E = p
4πε0R3

(
aR2 cosθ + aθ sinθ

)
, p = Id`

jω

H = aφ
Id`

4πR2
sinθ

These expressions are identical to the electrostatic field by a z-directed dipole
with moment p and the magnetostatic field by a z-directed current element Id`.

We didn’t cover electrostatics and magnetostatics on this course, and for antenna
applications these near field expressions are not that essential.
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Far fields of Hertzian dipole

z

R
θ

I0d`

aR

E

H

In the far field, when βR� 1, we get

E = aθ V0

(
e−jβR

R

)
sinθ

H = aφ
V0

η0

(
e−jβR

R

)
sinθ

V0 = jβη0
Id`
4π
, [V0] = V

The far field is locally like a plane wave whose amplitude depends on the
direction (sinθ) and distance from the antenna (1/R).
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EM fields of magnetic dipole

The small current loop in the figure (radius b, current phasor I) is a magnetic
dipole with magnetic moment m = azm = azIπb2.

z

R
θ

I

aRH

E
HR = −

jωµ0m
4πη0

β22 cosθ
[

1
(jβR)2

+ 1
(jβR)3

]
e−jβR

Hθ = −
jωµ0m
4πη0

β2 sinθ
[

1
jβR

+ 1
(jβR)2

+ 1
(jβR)3

]
e−jβR

Eφ =
jωµ0m

4π
β2 sinθ

[
1
jβR

+ 1
(jβR)2

]
e−jβR

The integral for calculating A is quite tedious [see the textbook for details], but
the end result is very similar to the Hertzian (electric) dipole, due to duality.

Id` = jβm a

{
Ee = η0Hm

He = −Em/η0

{
subscript e = electric dipole

subscript m =magnetic dipole

The figure shows the directions of the far fields where βR� 1.



Antenna patterns and antenna parameters
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Radiation fields and radiation patterns

We are often primarily interested in the far fields or radiation fields of an
antenna. The electric radiation field can be written in the general form

E = aV0

(
e−jβR

R

)
F(θ,φ)

where a is a unit vector (linear combination of aθ and aφ), V0 is a constant, and
F(θ,φ) is normalized so that max |F| = 1.

The radiation pattern or antenna pattern F(θ,φ) is the relative field strength as
function of direction at a fixed distance R in the far field.

Instead of a three-dimensional plot of F(θ,φ), we typically plot |F| in two
orthogonal planes that include the main radiation direction.
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Radiation patterns of a Hertzian dipole

|F| = |sinθ|
z

xy

θ

−1 1

(a) E-plane pattern

x

y

φ

1

1

(b) H-plane pattern

Since E = aθEθ and H = aφHφ for the z-oriented Hertzian dipole, any plane
containing the z axis is an E-plane while the xy plane is the H-plane.
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Beamwidth and sidelobe level

Radiation pattern with main beam in the φ = 0◦ direction and 4 sidelobes

x

y

φ

1

|F|

−180◦ −90◦ 0◦ 90◦ 180◦

1√
2

1
4

The (3 dB) beamwidth or width of main beam is the angle between the points
with amplitude 1/

√
2 in the radiation pattern. In this case 60◦.

The sidelobe level is the amplitude of the largest sidelobes. Here 1/4.

If the sidelobes are very small, it is convenient to plot the radiation pattern in
decibels: FdB = 10 log |F|2 = 20 log |F|. (Here the sidelobe level is −12 dB.)



Directive gain and directivity

Radiation intensity U = R2Pav is the time-average radiated power per unit solid
angle in the far field, and the total time-average power radiated is

Pr =
∮
Pav · ds =

∮
U dΩ =

∫ 2π

0

∫ π
0
U(θ,φ) sinθ dθ dφ

Directive gain

GD(θ,φ) =
U(θ,φ)
Pr/(4π)

= 4π U(θ,φ)∮
U dΩ

= intensity
avg. intensity

Directivity

D = Umax

Uav
= 4π Umax

Pr
= 4π∫ 2π

0

∫ π
0

∣∣F(θ,φ)∣∣2 sinθ dθ dφ

Note that U ∼ R2 |E|2 ∼ |F|2 in the far field, and max |F| = 1.
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Directive gain and directivity of a Hertzian dipole

The electric far field or radiation field of a Hertzian dipole is

E = aθV0

(
e−jβR

R

)
sinθ ⇒

∣∣F(θ,φ)∣∣2 = sin2 θ

Directive gain

GD(θ,φ) =
4π U(θ,φ)∮

U dΩ
= 4π sin2 θ∫ 2π

0

∫ π
0

sin2 θ sinθ dθ dφ
= 2 sin2 θ∫ π

0
sin3 θ dθ

= 3
2

sin2 θ

Directivity D =maxGD = 1.5 ≈ 1.76 dB

Trigonometric integral using ξ = cosθ substitution:∫ π
0

sin3 θ dθ =
∫ π

0

(
1− cos2 θ

)
sinθ dθ =

∫ 1

−1

(
1− ξ2

)
dξ = 4

3
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Example problem 11.1

The far field of an antenna is

E = aθV0

(
e−jβR

R

)
sinθ

∣∣∣∣cos
φ
2

∣∣∣∣
Determine

(a) the direction of the main lobe,

(b) the (3 dB) beamwidth in the E-plane and H-plane, and

(c) the directivity of the antenna pattern.
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Solution

Radiation pattern F(θ,φ) = sinθ
∣∣∣cos φ2

∣∣∣
(a) The main beam is in the +x direction (θ = π/2,φ = 0) and there are no

sidelobes.
(b) Beamwidth in E-plane:

|sinθ| = 1√
2

⇒ θ = π
4

or
3π
4

⇒ ∆θ = π
2
= 90◦

Beamwidth in H-plane:∣∣∣∣cos
φ
2

∣∣∣∣ = 1√
2

⇒ φ = ±π
2

⇒ ∆φ = π = 180◦

(c) Directivity:∮
|F|2 dΩ =

∫ π
0

sin3 θ dθ︸ ︷︷ ︸
4/3

∫ 2π

0
cos2(φ/2)︸ ︷︷ ︸

1
2+

1
2 cosφ

dφ = 4π
3

⇒ D = 4π∮
|F|2 dΩ

= 3
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Input impedance, power gain and radiation efficiency

−

+
Vg

Zg

I

Rr

R`

jXin

Zin

Input impedance

Zin = Rr + R` + jXin

Rr = radiation resistance

R` = loss resistance

Total input power

Pi = Pr + P` =
1
2
Rr I2 +

1
2
R`I2

Antenna power gain or simply gain

GP =
4π Umax

Pi

Radiation efficiency

ηr =
GP
D
= Pr
Pi
= Rr
Rr + R`

The antenna reactance Xin is important for matching the antenna, but very
difficult to calculate.



Hertzian dipole, again

The radiation resistance of a Hertzian dipole (see the book for details)

Rr ≈ 80π2

(
d`
λ

)2

Ω, d`� λ

is very small and its loss resistance can be of the same size.

Moreover, it has a large capacitive input reactance.

So the Hertzian dipole is a poor radiator that is nearly impossible to match to a
50Ω transmission line.

ELEC–E4130 Electromagetic fields 2021 / Wallén
Antennas and radiating systems

24 (81)



Thin linear antennas

Cheng 11–4



Center-fed linear dipole antenna

z

0

+h

−h

I(z)

Vin

Thin straight conducting wire of length 2h comparable
with the wavelength with a sinusoidal voltage source Vin

at the center.

The current phasor I(z) must be zero at the ends
(z = ±h), and we can approximate it with a sinusoidal:

I(z) = Im sin [β(h− |z|)] , −h < z < h,

where Im is a constant that depends on Vin.

This current distribution is an approximation that
should be good enough for calculating the radiated fields
with reasonable accuracy.
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Center-fed linear dipole antenna radiation

z

0

+h

−h

dz

R′

R

θ

I(z)

z cosθ

An infinitesimally short part of the dipole is a Hertzian
dipole with length dz, current I(z), and far field
component

dEθ = jβη0
I(z)dz

4π

(
e−jβR′

R′

)
sinθ.

Using trigonometry we see that R′ = R − z cosθ.

The difference between R and R′ is important for the
phase but irrelevant for the amplitude:

Eθ =
jβη0 sinθ

4πR

h∫
−h

I(z)e−jβ(R−z cosθ)dz
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Center-fed linear dipole antenna radiation (cont.)

The integral is a bit tedious but doable exploiting symmetry and some trig.
formulas:

Eθ =
jβη0Im sinθ

4πR
e−jβR

h∫
−h

sin [β(h− |z|)] ejβz cosθdz

= jβη0Im sinθ
4πR

e−jβR2

h∫
0

sin [β(h− z)] cos (βz cosθ)dz = . . .

= jη0Im
2π

(
e−jβR

R

)
F(θ), F(θ) = cos (βh cosθ)− cos(βh)

sinθ

Here F(θ) looks like a radiation pattern, but it is unfortunately not normalized.

(The constant η0/(2π) ≈ 60Ω.)
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E-plane radiation patterns for center-fed linear dipole antennas

Normalized |F(θ)| compared with the Hertzian dipole (dashed):

z

2h = λ/2

2h = λ

z
2h = 3λ/2

2h = 2λ

Longer dipole → narrower beam, but when 2h > λ several lobes appear.

Dipoles with length 2h = λ,2λ, . . . are difficult to feed since the current is
approximately 0 at the center.
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Half-wave dipole (1/3)

For a half-wave dipole βh = 2πh/λ = π/2 and the pattern function

F(θ) =
cos

(
π
2 cosθ

)
sinθ

happens to be normalized and non-negative for 0 ≤ θ ≤ π , and the current has its
maximum at the feed I(0) = Im sin(βh) = Im.

The far fields and time-average Poynting vector are

Eθ =
jη0Im

2π

(
e−jβR

R

)
F(θ), Hφ =

jIm
2π

(
e−jβR

R

)
F(θ),

Pav =
1
2
Re

[
E×H∗

]
= aR

η0 |Im|2
8π2R2

F2(θ)
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Half-wave dipole (2/3)

Total radiated power

Pr =
∫ 2π

0

∫ π
0
PavR2 sinθ dθ dφ = η0 |Im|2

4π

∫ π
0
F2(θ) sinθ dθ

= η0 |Im|2
4π

∫ π
0

cos2
(
π
2 cosθ

)
sinθ

dθ︸ ︷︷ ︸
≈1.21883

≈ (36.54Ω) |Im|2 =
1
2
Rr |Im|2

Radiation resistance

Rr ≈ 73Ω

Moreover, the antenna reactance Xin ≈ 0 if the dipole is slightly shorter
(2h ≈ 0.48λ), so a half-wave dipole is easy to feed.

ELEC–E4130 Electromagetic fields 2021 / Wallén
Antennas and radiating systems

31 (81)



Half-wave dipole (3/3)

Directivity

D = 4πUmax

Pr
= 4πR2Pav(θ = π/2)

Pr
≈ 1.64 ≈ 2.15 dB

(3 dB) Beamwidth

F(θ) =
cos

(
π
2 cosθ

)
sinθ

= 1√
2

⇒ θ = 50.96◦ or 129.04◦ ⇒ ∆θ ≈ 78◦.

As was also evident from the plot a few slides back, the half-wave dipole is
slightly more directive than the Hertzian dipole.

Electrically small antennas will almost always radiate like short dipoles. To get
more directivity we need large antennas or antenna arrays.
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Example problem 11.2

Figure out the radiation resistance and directivity of a quarter-wave monopole
over a PEC ground-plane.

PEC
coax feed

I(z)λ/4
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Solution

Using image theory, we get the same EM fields in the upper half-space if we
remove the PEC plane and add the appropriate mirror image of the quarter wave
monopole ⇒ half-wave dipole in free space.

The total radiated power Pr = 1
2Rr |Im|

2 is halved compared with the dipole, so
the radiation resistance must also be halved:

Rr ≈ 36.5Ω

The directivity remains the same as for the half-wave dipole

D = Umax

Uav
= 1.64 = 2.15 dB

since both the maximum and average radiation intensity remains the same.

(One half of the total power distributed over one half of the solid angle gives the
same average.)
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Antenna arrays
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Two-element array

x

d

α

R0

R1
≈ R0

− d
cosα

I0 I1 = I0 ξ = I0ejξ

Two identical antennas 0 and 1 are fed
with the same current amplitude but
different phase. The observation point is
in the far field.

The electric far field amplitude can be written in the form

E = Em
(
e−jβR0

R0

)
F(θ,φ)+ Emejξ

(
e−jβR1

R1

)
F(θ,φ)

≈ EmF(θ,φ)
R0

[
e−jβR0 + ejξe−jβ(R0−d cosα)

]
where Em is a constant and F(θ,φ) is the (normalized) radiation pattern. The
difference between R0 and R1 is important for the phase and irrelevant for the
amplitude. Using the formula sheet, we get cosα = ax · aR = sinθ cosφ.
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Element factor and array factor

The far field amplitude can be put in the form

E = Em
(
e−jβR0

R0

)
F(θ,φ)

[
1+ ejψ

]
= Em

(
e−jβR0

R0

)
F(θ,φ)ejψ/2

[
e−jψ/2 + ejψ/2

]
︸ ︷︷ ︸

2 cos(ψ/2)

where
ψ = βd sinθ cosφ+ ξ

Thus we have

|E| = 2 |Em|
R0

∣∣F(θ,φ)∣∣︸ ︷︷ ︸
element

∣∣∣∣cos
ψ
2

∣∣∣∣︸ ︷︷ ︸
array

Array radiation pattern = element factor × array factor

assuming that the coupling between the antenna elements can be neglected.
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H-plane patterns for two-element arrays of z-directed dipoles

Broadside array

x

y

cos
(
π
2

cosφ
)

d = λ/2, ξ = 0

Endfire array

x

y

cos
[
π
4

(
cosφ− 1

)]

d = λ/4, ξ = −π/2
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General uniform linear array

N uniformly spaced identical antennas along the x-axis, fed with equal amplitude
and progressive phase shift ξ between adjacent elements (In = I0ejnξ):

x

y

φ

d
I0 I1 I2 IN−2 IN−1

The normalized array factor in the xy-plane is

|A(ψ)| = 1
N

∣∣∣1+ ejψ + ej2ψ + · · · + ej(N−1)ψ
∣∣∣ = 1

N

∣∣∣∣∣1− ejNψ
1− ejψ

∣∣∣∣∣
or

|A(ψ)| = 1
N

∣∣∣∣∣sin(Nψ/2)
sin(ψ/2)

∣∣∣∣∣ , ψ = βd cosφ+ ξ

Choosing appropriate βd and ξ (and N) we can design some useful arrays.



Normalized array factor of five-element array

ψ

|A(ψ)|

1

0.25 0.2 0.25

1

2π0.4π 0.8π 1.2π 1.6π

As φ varies from 0 to 2π , ψ = βd cosφ+ ξ varies from βd+ ξ to −βd+ ξ
covering the range 2βd. This defines the visible range of the pattern.
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Array factor of the uniform linear array

|A(ψ)| = 1
N

∣∣∣∣∣sin(Nψ/2)
sin(ψ/2)

∣∣∣∣∣ , ψ = βd cosφ+ ξ

Main beam direction

ψ = 0 = βd cosφ0 + ξ a cosφ0 = −
ξ
βd

Broadside array: φ0 = ±π/2 and ξ = 0
Endfire array: φ = 0 and ξ = −βd
Null locations

sin(Nψ/2) = 0 ⇒ ψ = ±2πk
N
, k = 1,2,3, . . .

The 3 dB beamwidth needs to be solved numerically, but the width of the main
beam between the first nulls (k = 1) is straightforward to calculate.
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Sidelobe locations and sidelobe level

If N is large, the sidelobes (minor maximas) occur approximately when

|sin(Nψ/2)| = 1 ⇒ Nψ
2
= ±(2m+ 1)

π
2
, m = 1,2,3, . . .

(m = 0 is inside the main beam)

First sidelobe locations

ψ = ±3π
N

Sidelobe level
1
N

∣∣∣∣∣∣ 1

sin 3π
2N

∣∣∣∣∣∣ ≈ 1
N

∣∣∣∣2N
3π

∣∣∣∣ = 2
3π

≈ 0.212

By increasing N, we can get a very narrow main beam, but the sidelobe level stays
fairly large.
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Smaller sidelobes?

Five-element broadside array (ξ = 0) with tapered excitation with amplitude ratios
1 : 2 : 3 : 2 : 1

|A(ψ)| = 1
9

∣∣∣1+ 2ejψ + 3ej2ψ + 2ej3ψ + ej4ψ
∣∣∣

= 1
9

∣∣∣ej2ψ∣∣∣∣∣∣3+ 2(ejψ + e−jψ)+ (ej2ψ + e−j2ψ)
∣∣∣

= 1
9
|3+ 4 cosψ+ 2 cos(2ψ)|

If the element spacing d = λ/2, we get ψ = π cosφ and∣∣A(φ)∣∣ = 1
9

∣∣3+ 4 cos(π cosφ)+ 2 cos(2π cosφ)
∣∣

The same array with uniform excitation has

∣∣Au(φ)∣∣ =
∣∣∣∣∣∣ sin

(
5π
2 cosφ

)
5 sin

(
π
2 cosφ

)
∣∣∣∣∣∣
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Array factors for the five-element broadside arrays∣∣A(φ)∣∣

0 30 60 90 120 150 180

0.111

0.25

1

uniform

tapered

Tapered excitation
gives smaller
sidelobe level at the
expense of a broader
main beam.

(This holds for any
electrically large
antenna.)
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Example problem 11.3

Design an endfire array with five elements, as narrow main beam as possible, and
sidelobe level 0.25. (Determine ξ and the optimal d.)

ψ = βd cosφ+ ξ

|A(ψ)|

1 1

2π

0.25

0.32π 1.68π
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Solution

Endfire array:

ξ = −βd ⇒ ψ = βd cosφ− βd

Since −2βd ≤ ψ ≤ 0 in this case, the
optimal choice is (from the figure):

−2βd = −1.68π ⇒ d = 0.42λ

The plot on the right is the array factor∣∣A(φ)∣∣.

0

40

80

120

160

200

240

280

320

0.25

0.707

1
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Next week

This is the end of lecture week 11. We’ll continue with transmit-receive systems
and some other antenna types next week.

Next week we only have a lecture on Thursday (hall AS6 or online), since we
celebrate Finnish Independence Day on Monday.
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Receiving antennas

Cheng 11–6



Effective area

If the incident electromagnetic wave has time-average power density Pav, the
receiving antenna deliver the average power

PL = AePav

to a matched load when the antenna is optimally oriented with respect to the
polarization of the incident wave.

The quantity Ae is called effective area, effective aperture, or receiving cross
section.

The effective area is the receiving counterpart of the directivity

D = Umax

Uav
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Radio link between two lossless optimally oriented antennas

Pt PL
r

A B

Antenna A radiates power Pt. At
antenna B

Pav =
Pt

4πr2
DA

and the power delivered to a matched
load at antenna B is

PL = AeBPav ⇒ PL
Pt
= AeBDA

4πr2

For the same link in the opposite
direction, we get

PL
Pt
= AeADB

4πr2

Due to reciprocity the power transfer
ratio is the same both ways, so

⇒ AeBDA = AeADB ⇒ DA

AeA
= DB

AeB

⇒ the ratio D/Ae is the same constant
for any (lossless) antenna.
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Receiving Hertzian dipole

The antenna impedance Zin is the
same at transmission and reception.

−

+
Voc

Zin I

ZL

antenna load

For a lossless Hertzian dipole

Zin = Rr + jXin, Rr =
2πη0

3︸ ︷︷ ︸
≈80π2Ω

(
d`
λ

)2

The open circuit voltage Voc = Eid` if
Ei ‖ Hertzian dipole.

Matched load ZL = Z∗in = Rr − jXin

PL =
1
2

∣∣∣∣ Voc
Zin + ZL

∣∣∣∣2

Rr =
|Ei|2 d`2

8Rr

Since Pav = |Ei|
2

2η0
, the effective area is

Ae =
PL
Pav

= η0d`2

4Rr
= 3λ2

8π
= λ2

4π
D

where D = 3/2 for a Hertzian dipole.
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Effective area Ae and directivity D

For any lossless optimally oriented antenna, we have

D = 4π
Ae
λ2

The textbook uses the somewhat more general definition with angle dependent
effective area and directive gain

GD(θ,φ) =
4π
λ2
Ae(θ,φ)

If we assume optimal orientation but allow losses, we get the same relation
between antenna (power) gain and effective area

GP = 4π
Ae
λ2
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Example problem 12.1

At frequency 10 GHz, what is the effective area (in cm2) of the following antennas:

(a) A Hertzian dipole of length λ/100.

(b) A half-wave dipole.

(c) A horn-antenna with 20 dB directivity.

Solution:

(a) Ae =
3λ2

8π
≈ 1.1 cm2

(b) Ae =
λ2

4π
D ≈ λ2

4π
1.64 ≈ 1.2 cm2

(c) Ae =
λ2

4π
D ≈ λ2

4π
100 ≈ 72 cm2

The geometrical aperture of the horn antenna ≈ Ae (slightly larger), while the
lengths of the dipoles (0.03 cm and 1.5 cm) doesn’t seem to correlate with Ae.
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Effective area Ae and effective length `e

The effective area Ae is convenient for calculating received power, and for an
electrically large antenna (such as a parabolic dish) this area can be about the
same as the physical size of the antenna.

For thin linear antennas Ae is conceptually a bit odd and the (vector) effective
length `e appears more related to the geometric size:

|Voc| =
∣∣`e · Ei

∣∣
See [11–4.2] in the textbook for more details.

For a Hertzian dipole `e = d`. For a half-wave dipole `e = λ/π < 2h.
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Backscatter cross section

If a object intercepts all power that hits the area σbs and scatter that energy
uniformly in all directions, we get

Ps =
σbsPi
4πr2

where

Pi = time-average incident power density at the object

Ps = time-average scattered power density at the receiver

r = distance between scatterer and receiver

The area σbs is called backscatter cross section or radar cross section

σbs = 4πr2Ps
Pi

Since Ps ∼ 1/r2, this area is independent of r .
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Transmit-receive systems

Cheng 11–7



Radio link from antenna 1 to antenna 2

Pt PL = ?
r

D1 D2 = 4π
Ae2
λ2

Time-average power density at antenna 2

Pav =
Pt

4πr2
D1

The time-average power delivered to a matched load at antenna 2 is

PL = Ae2Pav =
(
λ2

4π
D2

)(
PtD1

4πr2

)
= PtD1D2

(
λ

4πr

)2
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Friis transmission formula

The Friis transmission formula can be written in several forms for lossless
optimally oriented antennas

PL
Pt
= D1D2

(
λ

4πr

)2

= Ae1Ae2
r2λ2

It is also common to express Friis transmission formula using antenna gain
instead of directivity

PL
Pt
= GP1GP2

(
λ

4πr

)2

This version takes antenna losses into account, but still assume optimal
orientation and matched load (and feed). Any mismatch at some point will
decrease the power transmission.
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Radar equation

Pt

σbsPT

PL = ? r

GD

Time-average power density at the target

PT =
Pt

4πr2
GD GD = directive gain in target direction

Using the radar cross section and the effective area we get the radar equation

PL = Ae
σbsPT
4πr2

=
(
λ2

4π
GD

)
σbsPtGD(
4πr2

)2 a
PL
Pt
= σbsλ2

(4π)3r4
GD

Note the 1/r4 dependence. Radar systems need high power to get good range?



Antenna link above a PEC ground

Link from Hertzian dipole A to B
above a PEC ground

z

h1 h2

dh1

R

R′

A

A′

B

The PEC plane can be replaced with
the image dipole A′.

If d� h1, h2 we have R′ ≈ R for the
amplitude, but the difference in path
length R′ − R can make the received
signals in-phase or opposite phase or
something in between.

Due to this multi-path transmission,
we get the path-gain factor |F|
compared to the free-space link
between the antennas. In this case

0 ≤ |F| ≤ 2.

In real life situations |F| is difficult to
estimate.
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Example problem 12.2

For the S-band data downlink of the Aalto-1
satellite, the following estimates can be
found: Transmit power 1.3 W, frequency
2.4 GHz, satellite antenna gain 9 dB, ground
station antenna gain 30 dB. The satellite
orbit is 900 km above the ground and the
maximum distance for the link is about
3000 km.

What is the received power at min and max distance, if we use this data and
ignore atmospheric attenuation and any other loss or mismatch in the system?

Solution: Friis transmission formula gives

PL ≈ 1.3 pW ≈ −89 dBm and PL ≈ 0.11 pW ≈ −99 dBm

Be careful with the unit conversions and decibels!

ELEC–E4130 Electromagetic fields 2021 / Wallén
Antennas and radiating systems

61 (81)



Outlook

This was the last lecture on the course. This week we have 2 homework problems
instead of the usual 4.

Midterm 2 on Monday will have the same format as midterm 1. It’s nominally 2 h,
with 15 min extra at the end to account for scanning and uploading the answers.

The retake exam on January 10 is a possibility to retake one or both of the
midterms. Since the teaching in the Spring term is supposed to be on campus,
also the retake exam will be held on campus.

Please look at the remaining slides about Microstrip antennas and Aperture
radiators on your own. Those topics will, however, not be included in Midterm 2
(or the corresponding retake).
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Microstrip antennas

(Extra material)



Rectangular patch antenna

x

y

L

W

x

z

h εrE

ground

patch

Rectangular metallic patch on top of a
dielectric substrate with metal ground
plane below.

Antenna = open resonator

The electric field is mainly between the
patch and the ground

E = azEz(x,y).

Let’s assume that W < L (and h� L,W )
and study the lowest resonant mode.
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Transmission line model and EM fields

x

−L/2 +L/2

I(x)

V(x) = hEz

Standing wave in a L = λ/2
transmission line with open ends:

V(x) = V0 sin(βx)

I(x) = −j V0

Z0
cos(βx)

with β = 2π/λ = π/L

Length L = λ/2 in the substrate gives the
resonant frequency f and electric field is

E = azE0 sin(kx), β = k = π
L

Magnetic field

H = j
ωµ
∇× E = −ay

j
kη
∂Ez
∂x

= −ay
jE0

η
cos(kx)

Note that k, η, λ are the parameters in
the dielectric substrate, not in free
space.
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Lowest resonant mode

x

y

L

W
H

x

z

h εrE

ground

patch

Ideal resonator model gives

E = azE0 sin
(
πx
L

)
H = −ay

jE0

η
cos

(
πx
L

)
under the patch and zero elsewhere.

The fringing E-field makes the patch
effectively a bit longer and the fields
leaking out from the resonator also
cause radiation.
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Patch antenna radiation

x

y

L

WMs

Equivalent magnetic surface current
at the edges of the resonator

Ms = −an × E

We can approximate the radiation using
two y-oriented magnetic currents (or
dipoles) of length W spaced L apart
close to a PEC-plane.

This gives a main lobe in the +z
direction with x-directed E-field and
y-directed H-field.

Typical directivity could be 7 to 8 dB.

[C.A. Balanis, Antenna theory: analysis
and design, 3rd Ed., Wiley 2005, Ch. 14]
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Aperture radiators

Cheng 11–9



Example: X-band horn antenna

A horn antenna borrowed from
the lab in 2012.

How does it work and how well
can we calculate its directivity?



Coaxial to waveguide adapter

Adapter HP X281A

ñ 50Ω coaxial type-N connector

ñ WR90-waveguide (X-band: 8.2 . . .12.4 GHz,
0.90′′ × 0.40′′ = 22.9 mm× 10.2 mm)

ñ Maximum VSWR 1.25

Let’s assume that the operation frequency is

f = 10 GHz

and that the adapter works perfectly near the
center of the X-band.
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Waveguide horn

Rectangular aluminium horn

ñ 24 mm× 10 mm waveguide of
length 22 mm

ñ Horn aperture a = 105 mm,
b = 89 mm, horn length 95 mm

ñ Manufacturer and model unknown.
(No datasheet found for this part.)
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Cross section of the horn

adapter horn

TEM

TE10 Ea ≈ TE10
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Aperture field radiation

Assumptions

ñ The aperture field Ea(x,y) is known and has approximately uniform phase
and linear polarization (e.g. ay ) in the aperture.

ñ The fields are approximately zero in the rest of the plane containing the
aperture.

Radiation pattern

F(θ,φ) =
∫∫

aperture

Ea(x′, y′)ejβ sinθ(x′ cosφ+y′ sinφ) dx′ dy′

ñ The (unnormalized) radiation pattern is essentially the 2D Fourier transform
of the aperture distribution. [See the textbook for more details.]

ñ Fourier transform tables help to analyze aperture radiators, and inverse
transforms can also be used for synthesis problems.
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Radiation pattern, beamwidth, sidelobe level, and directivity
X-band horn assuming TE10 aperture field

xz plane (H-plane)

19.5
°

−23.0 dB

aperture distribution cos(πx/a),
−a/2 < x < a/2, a = 105 mm

yz plane (E-plane)

17.2
°

−13.3 dB

constant aperture distribution
b = 89 mm

D = 20.2 dB



Simulation geometry

Geometrically accurate model of the horn + ideal waveguide port
CST Microwave Studio 2011



3D radiation pattern



Directive gain in xz plane



Directive gain in yz plane



Summary of the results

Formulas CST

Directivity 20.2 dB 18.2 dB

H-plane beamwidth 19.5◦ 21.4◦

H-plane sidelobe level −23.0 dB −24.0 dB

E-plane beamwidth 17.2◦ 18.8◦

E-plane sidelobe level −13.3 dB −17.0 dB

There might be some small inaccuracy in the CST simulation, but the main
discrepancy is that the actual aperture field deviates from TE10 significantly.
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Aperture efficiency

For aperture antennas it makes sense to define the aperture efficiency as:

ηa =
Ae
A
= effective area

physical area

For the previous horn antenna we get

Ae =
λ2

4π
D ≈ 74.9 cm2 ηa ≈ 80% (calulated)

Ae ≈ 47.3 cm2 ηa ≈ 51% (simulated)

A = 93.5 cm2
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