
CS-E4300 Network Security, 2021-2022 
Project 3 
Teachers responsible for the project: Mohit Sethi, Aleksi Peltonen, Jacopo Bufalino 

 
WireGuard mesh for IoT devices and cloud servers 
 
In this exercise, you will act as a security and networking consultant and advice Acme Inc. on how to upgrade their 
legacy IPsec VPN tunnels to modern and lightweight WireGuard tunnels.  
 
Current setup: You have already helped Acme to migrate the servers from the customer sites to the cloud. This has 
allowed them to reduce the server instances, and now they only have two servers for IoT devices, one for each of two 
device vendors.  
 
Acme now wants your help to move to modern lightweight WireGuard tunnels between IoT devices and the cloud 
servers. WireGuard is used for establishing direct tunnels between end hosts, which are called peers in WireGuard 
terminology. In comparison, IPsec is typically used for establishing tunnels between gateways or between a device and 
gateway.  
 
ACME manages IoT devices for two different customers. Hence, ACME has two servers in the cloud, one for each 
customer. Based on prudent security practice, ACME wants to isolate each customer’s devices and the corresponding 
server into a separate WireGuard subnet. While currently only a single server for each customer’s devices is needed, 
ACME expects to scale up the number of devices, servers, and customers. 
 
Your goal is to migrate from IPsec-based VPN setup to direct WireGuard tunnels between devices and servers. 
 
WireGuard identifies end hosts with public keys. Asymmetric public-private key pairs can be generated with commands 
such as wg genkey. For establishing a tunnel between two hosts, you will need to configure the public key of the other 
end host. A sample WireGuard configuration file is shown here: 
 

[Interface] 

PrivateKey = <privatekey> 

ListenPort = 21841 

 

[Peer] 

PublicKey = <peer publickey> 

Endpoint = <peer public ip>:<peer listen port> 

AllowedIPs = 192.168.2.0/24 

 

PersistentKeepalive = 25 
 
For a minimum acceptable solution, configure the WireGuard clients and servers manually and submit the 
configuration files.  

 
Use the Vagrant testbed from exercise 2. We recommend creating a separate clone of the testbed repository for 

exercise 3. ACME expects functional WireGuard tunnels between customer 1 devices (client-a1, client-a2) and server 

(server-s1) as well as between customer 2 devices (client-b1, client-b2) and server (server-s2). 
 
While working on this assignment, you will quickly realize that manually copying public keys between end hosts does 
not scale as the number of peers, i.e., IoT devices and servers increases. There are various tools that try to automate 
the process by collecting the public keys at a central management service: 

• https://golangrepo.com/repo/seashell-drago 

• https://tailscale.com/kb/1086/tailscale-vs-wireguard/ 
 
For this assignment, we have developed a simple management API server for tracking WireGuard peers and public 
keys. It is based on an open-source project called Meshmash. You can launch the containerized management API server 
here: https://netsec.vikaa.fi/netsec3. Create either one server per group or one per student, as needed. For full points, 
you should use the management server and submit both the client software that accesses the API and the produced 

https://golangrepo.com/repo/seashell-drago
https://tailscale.com/kb/1086/tailscale-vs-wireguard/
https://netsec.vikaa.fi/netsec3


configuration for the clients and servers. The Management API on the management servers is used for setting up the 
WireGuard mesh: 
 
 
Request 

type 

URL Request Body Response Body 

POST /overlays {"overlay_name":"site1"} {"overlay_id": 

"a9af9b902c8b4007924c492892311

933", "subnet": 

"10.254.2.0/24", 

"overlay_name": "site1", 

"devices": {}} 

GET /overlays  {"overlays": 

["939b14be0a4146e1bd80619b928f

bc76", 

"a9f07e9cdd0d42199b939f1203173

73a", 

"a9af9b902c8b4007924c492892311

933"]} 

POST /devices {"hostname": 

"dev2.example.com", 

"public_ip": "172.18.18.34", 

"public_key": 

"tHsl1dwL6rs5DbgxRftJQ/z9ZpgZ

znQ6QxIQCX6iODQ=", 

"listen_port": 51820, 

"device_name": "my_dev2"} 

{"device_id": 

"ebdce3d2d21d44e4aa05279f13c7c

e2a", "device_name": "my_dev2", 

"hostname": 

"dev2.example.com", 

"public_ip": "172.18.18.34", 

"public_key": 

"tHsl1dwL6rs5DbgxRftJQ/z9ZpgZz

nQ6QxIQCX6iODQ=", 

"listen_port": 51820, "token": 

"f81NOAzhJ1z9UPukhbPamQ", 

"expiry_ts": 

1637494732.068814} 

GET /devices  {"devices": 

["de1f28d603ae4beabfbf95b136fe

c71b", 

"f4aca0cf59f14e90a32cb3598d687

c2d", 

"7d82c9a7b40941239298dde6bbfeb

e23"]} 

GET  /devices/<device_id>  {"device_id": 

"ebdce3d2d21d44e4aa05279f13c7c

e2a", "device_name": "my_dev2", 

"hostname": 

"dev2.example.com", 

"public_ip": "172.18.18.34", 

"public_key": 

"tHsl1dwL6rs5DbgxRftJQ/z9ZpgZz

nQ6QxIQCX6iODQ=", 

"listen_port": 51820, "token": 

"f81NOAzhJ1z9UPukhbPamQ", 

"expiry_ts": 

1637494732.068814} 

PUT /devices/<device_id> {"public_ip":"172.18.18.36","

listen_port":51830} 

{"device_id": 

"ebdce3d2d21d44e4aa05279f13c7c

e2a", "device_name": "my_dev2", 

"hostname": 

"dev2.example.com", 

"public_ip": "172.18.18.36", 

"public_key": 

"tHsl1dwL6rs5DbgxRftJQ/z9ZpgZz

nQ6QxIQCX6iODQ=", 

"listen_port": 51830, "token": 

"f81NOAzhJ1z9UPukhbPamQ", 

"expiry_ts": 

1637494732.068814} 

GET /overlays/<overlay_i

d> 

 {"overlay_id": 

"a9af9b902c8b4007924c492892311

933", "subnet": 

"10.254.2.0/24", 

"overlay_name": "site1", 

"devices": {}} 

DELETE /overlays/<overlay_i

d> 

 {"status": "Deleted"} 



DELETE /devices/<device_id>  {"status": "Deleted"} 

POST /overlays/<overlay_i

d>/devices 

{"device_id":"de1f28d603ae4be

abfbf95b136fec71b"} 

{"status": "Device added", 

"tunnel_ip": "10.0.5.1"} 

DELETE /overlays/<overlay_i

d>/devices/<device_i

d> 

 {"status": "Device removed"} 

GET /devices/<device_id>

/token 

 {"device_id": 

"de1f28d603ae4beabfbf95b136fec

71b", "device_name": "my_dev2", 

"hostname": 

"dev2.example.com", 

"public_ip": "172.18.18.38", 

"public_key": 

"tHsl1dwL6rs5DbgxRftJQ/z9ZpgZz

nQ6QxIQCX6iODQ=", 

"listen_port": 51820, "token": 

"pKJW6x6GLdjZ0xAh8e_FQg", 

"expiry_ts": 

1637501942.5853105} 

 
Each device is identified by a server-assigned identifier. The overlays are isolated subnets, so that peers in each subnets 
can only connect to each other with WireGuard. The subnets of the different overlays on the same management server 
cannot overlap. (This is because it is possible to assign the same device to multiple subnets; however, that feature is 
not needed in the project.) Requests to the API are authenticated by sending an API key in the X-Api-Key request 
header. You can get the API key for your server from the exercise launcher. Remember to specify Content-Type when 
sending requests that contain a body. Example: 

 
x-api-key: fd9r98roieurifddere8re980r9e  
Content-Type: application/json 

 
The Device API is accessed by the IoT devices: 
 
GET /overlays/<overlay_id

>/devices/<device_id>

/wgconfig 

 [Peer 1] 

PublicKey = 

tHsl1dwL6rs5DbgxRftJQ/z9ZpgZznQ6

QxIQCX6iODQ= 

AllowedIPs = 10.254.2.2/32 

Endpoint = 172.18.18.34:51820 

[Peer 2] 

PublicKey = 

SIKSx7FpypvmOHCwsOgSK6DtDmCESf2j

cHEBrWsON0c= 

AllowedIPs = 10.254.2.3/32 

Endpoint = 172.18.18.36:51820 

 

GET /devices/<device_id>/

token 

 {"device_id": 

"de1f28d603ae4beabfbf95b136fec71

b", "device_name": "my_dev2", 

"hostname": "dev2.example.com", 

"public_ip": "172.18.18.34", 

"public_key": 

"tHsl1dwL6rs5DbgxRftJQ/z9ZpgZznQ

6QxIQCX6iODQ=", "listen_port": 

51820, "token": 

"X1jrdiYFW_Tc5kzGPZIv6w", 

"expiry_ts": 1637501942.5853105} 

PUT /devices/<device_id> {"public_ip":"172.18.18.38"} {"device_id": 

"ebdce3d2d21d44e4aa05279f13c7ce2

a", "device_name": "my_dev2", 

"hostname": "dev2.example.com", 

"public_ip": "172.18.18.38", 

"public_key": 

"tHsl1dwL6rs5DbgxRftJQ/z9ZpgZznQ

6QxIQCX6iODQ=", "listen_port": 

51830, "token": 

"f81NOAzhJ1z9UPukhbPamQ", 

"expiry_ts": 1637494732.068814} 

 
A device token is created at the time of device creation. Device API requests from the device are authenticated with 
the Bearer Authorization header that sets the token. The token expires after 30 minutes, and the device should renew 



it before expiry; in a real deployment, the expiry time could be 30 days. Remember to specify Content-Type when 
sending requests that contain a body. Example: 

 
Authorization: Bearer X1jrdiYFW_Tc5kzGPZIv6w  

Content-Type: application/json 

 

WireGuard is already part of the Linux kernel. If you are using the kernel implementation of WireGuard, it might be 
useful to enable dyndebug logging: https://www.procustodibus.com/blog/2021/03/wireguard-logs/#dyndbg to access 
the logs. 

 
 

https://www.procustodibus.com/blog/2021/03/wireguard-logs/#dyndbg

