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I. INTRODUCTION

Nanomechanical systems have emerged in recent years as one of the most promising

devices where one could witness a variety of quantum mechanical effects. This field has

benefited from improvements in nanofabrication and advanced materials, which allowed

the fabrication of high-quality mechanical oscillators, as well as from the use of sensitive

measurement techniques from nanoelectronics and quantum optics.

In this lecture we will focus on optomechanical systems: in these devices a mechan-

ical degree of freedom interacts with a radiation field (either in the microwave or in the

optical range) by radiation pressure. The mechanical degree of freedom can be any col-

lective mechanical oscillation (phonon), for example the vibration of a mechanical beam,

the oscillations of the surface of a metallic nanoscale drum or that of a suspended sheet of

graphene, etc. The initial work in this field dates from the years 1970-1980, when people

started to develop systems such as laser interferometers and Weber bars for the detection

of gravitational waves (tiny ripples in spacetime that would change the distance between

mirrors in the interferometers or make the huge cylindrical Weber bars oscillate). Nowadays

these devices have reached impressive sensitivities: for example laser interferometers have

displacement sensitivities of 10−19m/
√

Hz, meaning that during a 1 second measurement

time they can detect a displacement of 1/1000 radius of a proton [2]. Similarly, the force

sensitivity of present-days detectors based on vibrating cantilevers could be improved if these

devices could be cooled to remove the thermal noise - which as we will see it is possible in

optomechanics. Even now, the sensitivity of atomic force microscopes is of the order of

10−18N/
√

Hz. This means that in 1 second we can measure the gravitational force between

2 persons, one in New York and the other in Los Angeles [2]. Cooling is one very important

process: it would allow us to bring the nanomechanical resonator in a state with only a

few quanta of oscillation (phonons) present, therefore applications in the field of quantum

information can be foreseen. For typical nanomechanical resonators, the frequency ΩM/2π

is typically 1 MHz - up to a few GHz. Therefore, in order to obtain only a few modes, we

would need to cool a 1 MHz resonator to a temperature T < ~ΩM/kB. A few example of

nanomechanical systems are given in Fig. II.
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FIG. 1: Nanomechanical systems: (a) ultracold atoms in a cavity (b,c) optical photonic waveguides

with mechanical oscillation frequencies (d) microspheres (e) metallic membranes (f) microtoroidal

waveguides (g) microscale membranes (h) microscale devices, and (i,j) macroscopic resonators.

Figure from Ref. [2].

II. THE STANDARD OPTOMECHANICAL HAMILTONIAN

We consider the generic problem of a nanomechanical resonator that modulates para-

metrically the frequency of a pumped cavity. Depending on the detuning of the pump with

respect to that of the cavity, we define two regimes, corresponding to red-detuned and blue-

detuned. In the first regime, we show that the device deamplifies an input signal and cools

the nanomechanical resonator; in the second, it functions as a nondegenerate parametric

amplifier. There is also a regime called quantum nondemolition regime, defined by a zero

value for the detuning, but we will not discuss it further. In Fig. II we present a schematic

of these regimes.
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FIG. 2: (a) Standard optomechanical setup consisting of a cavity with a semitransparent mirror

(field operators â, â†) coupled to a mechanical resonator (field operators b̂, b̂†). (b) Examples:

Fabry-Pérot cavity, microtoroidal disc, quasi one-dimensional photonic crystal. (c) Three regimes

can be distinguished, depending on the frequency of the pump laser (or microwave) that inputs

photons in the cavity: the cooling regime (pump red detuned with respect to the mechanical

resonator), quantum nondemolition regime (zero detuning between the pump and the mechanics),

and the amplification and squeezing regime (pump is blue-detuned with respect to the mechanical

oscillator). Figure from Ref. [1].

A. Interaction Hamiltonian

The first step is to derive the interaction Hamiltonian between the radiation field in the

cavity and the mechanical mode. We will consider a single optical or microwave mode a, a†,

confined in a cavity with resonance frequency ωcav. We assume that the cavity frequency

depends on the displacement of a mechanical oscillator b, b† with frequency ΩM, for example

if this oscillator serves as a mirror it will change the optical length (therefore the frequency)

of the cavity as it vibrates,

ωcav(x) ≈ ωcav + x
∂ωcav

∂x
+ ... (1)
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Let us define the optical frequency shift per displacement as

G =
∂ωcav

∂x
. (2)

Thus for this system we have

H = ~ωcav(x)a†a+ ~ΩMb
†b (3)

≈ ~ωcava
†a+ ~ΩMb

†b+Hint, (4)

where

Hint = Gxa†a = ~g0a
†a(b+ b†). (5)

Here x = xZPF(b† + b), and xZPF represents the value of zero-point fluctuations in position

of the nanomechanical device,

xZPF =

√
~

2mΩM

, (6)

and g0 is called the optomechanical single-photon coupling strength,

g0 = xZPF(∂ωcav/∂x) = GxZPF. (7)

The Hamiltonian then reads

H = ~ΩM

(
b†b+

1

2

)
+ ~(ωcav + g0z)

(
a†a+

1

2

)
, (8)

where to remind about notations, ΩM is the resonance frequency of the nanomechanical

device, ωcav is the cavity resonance frequency, and z = x/xZPF = b† + b.

From Hint we can immediately find the force due to radiation pressure,

F =
dHint

dx
= ~Ga†a = ~

g0

xZPF

a†a. (9)

In the input-output formalism, the field equations for the cavity mode a (with decay rate

κ) and the mechanical mode b (with decay rate ΓM) read

ȧ = −i(ωcav + g0z)a− κ

2
a−
√
κain, (10)

ḃ = −iΩMb− ig0

(
a†a+

1

2

)
− ΓM

2
b−

√
ΓMbin, (11)

This type of Hamiltonian is obtained in both optical and microwave setups, see Fig. II A.
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FIG. 3: Generic optical and microwave setups leading to the Hamiltonian Eq. (8). Figure from

Ref. [3].

B. Scales

It is useful to give a few numbers before proceeding further. The mechanical frequency ΩM

can be from kHz to GHz, the effective masses m of the oscillators can be m ≈ 10−15−10−3kg,

leading to xZPF typically of the order of 10−15m. This is an incredibly small displacement

(of the same order as the radius of the proton), that, surprisingly, can be measured very

accuratly in rather small-scale optomechanical setups that fit in a normal lab. The op-

tomechanical single-photon couling g0 is of the order of 100 Hz to a few MHz (in photonic

crystals). κ can be from MHz to GHz, ΓM from Hz to MHz, and the mechanical quality

factor QM = ΩM/ΓM = 105 − 107.
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C. Driven cavity

The cavity is pumped at a frequency ωL, therefore we can separate the pump

ain(t) = exp(−iωLt)[āin + din(t)], (12)

and search for a solution for the cavity field in the form

a(t) = exp(−iωLt)[ā+ d(t)], (13)

b(t) = b̄+ c(t), (14)

where ā and b̄ are time-independent (stationary) classical fields. Note that b̄in = 0, in other

words on the mechanical side we assume that the system admits in only fluctuations (as

typically coming from a thermal bath). Using these expressions in Eq. (10,11) we find for

the stationary fields

ā = −
√
κ(κ/2− i∆)−1āin, (15)

b̄ = −i g0

ΓM/2 + iΩM

(
|ā|2 +

1

2

)
, (16)

with ∆ = ωL − ωcav − g0z̄, where

z̄ = b̄+ b̄∗ = − 2g0ΩM

(ΓM/2)2 + Ω2
M

(
|ā|2 +

1

2

)
(17)

is the stationary displacement of the position of the nanomechanical beam due to radiation

pressure. Note that typically the nanomechanical frequency is about three to six orders of

magnitude larger than ΓM, thus to a very good approximation z̄ ≈ −2(g0/ΩM)
(
|ā|2 + 1

2

)
.

To find the equations for d(t) and c(t), we linearize the Heisenberg equations around

the pump field, and obtain a system of coupled equations describing the dynamics of the

nanomechanical and electromagnetic degrees of freedom,

ḋ = i∆d− κ

2
d−
√
κdin + iα(c+ c†), (18)

ċ = −iΩMc−
ΓM

2
c−

√
ΓMcin + i(α∗d+ αd†), (19)

where α = −g0ā. One often encounters the notation g = |α| = g0

√
< a†a > = g0

√
n̄cav,

which is called light-enhanced optomechanical coupling. This system can be solved

by Fourier transform. We will use systematically throughout this paper the convention
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from [4], for the Fourier transform of the adjoint of an operator, that is c†(ω) = [c(−ω)]†,

d†(ω) = [d(−ω)]†. Also, we introduce the standard notations for the bare mechanical

susceptibility, χM(ω) = [ΓM/2− i(ω − ΩM)]−1 and for the resonator (cavity) susceptibil-

ity χcav(ω) = [k/2− i(ω + ∆)]−1. To see the structure of Eqs. (18,19) it is useful to regard

the mechanical and electromagnetic degrees of freedom as two-component fields defined by

č(ω) =

 c(ω)

c†(ω)

 ; ď(ω) =

 d(ω)

d†(ω)

 , (20)

and introduce the matrices of the bare mechanical (M) and resonator (R) susceptibilities,

as well as the coupling matrices A and Ã,

M(ω) =

 χ−1
M (ω) 0

0 χ−1
M (−ω)∗

 ; (21)

R(ω) =

 χ−1
cav(ω) 0

0 χ−1
cav(−ω)∗

 ; (22)

A =

 −iα∗ −iα
iα∗ iα

 ; Ã =

 −iα −iα
iα∗ iα∗

 . (23)

The structure of Eq. (23) is therefore quite transparent: it shows that the fields č and ď are

coupled to each other by the off-diagonal matrices A and Ã. In the absence of this coupling,

the fields C and D would evolve independently and, moreover, the components c, c† and d,

d† would be decoupled since the susceptibility matrices M and R are diagonal.

With these notations, Eqs. (18,19) can be put in the formM(ω) A

Ã R(ω)

 č(ω)

ď(ω)

 = −

√ΓMčin(ω)
√
kďin(ω)

 . (24)

The system Eq. (24) can be solved by inverting the 4× 4 matrix on the left hand side. The

determinant of this matrix is χ−1
cav(ω)χ−1

cav(−ω)∗N (ω), where N (ω) = χ−1
M (ω)χ−1

M (−ω)∗ +

2ΩMΣ(ω), where Σ(ω) = −i|α|2 [χcav(ω)− χcav(−ω)∗] is called resonator self-energy.

Two important properties of these quantities, which are useful to simplify the form of the

equations, can be readily checked out, namely Σ(ω) = [Σ(−ω)]∗ and N (ω) = [N (−ω)]∗.

The result for the fields č(ω) and ď(ω) can be written as

č(ω) = −
√

ΓM

N (ω)
S(ω)čin(ω)−

√
k

N (ω)
T (ω)ďin(ω), (25)
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ď(ω) = −
√
k

N (ω)
V (ω)ďin(ω)−

√
ΓM

N (ω)
W (ω)čin(ω), (26)

and for the elements of the 2× 2 matrices S, T, V,W we have the results

S11(ω) = S22(−ω)∗ = χ−1
M (−ω)∗ − iΣ(ω); (27)

S12(ω) = S21(−ω)∗ = −iΣ(ω); (28)

T11(ω) = T22(−ω)∗ = iα∗χ−1
M (−ω)∗χcav(ω); (29)

T12(ω) = T21(−ω)∗ = iαχ−1
M (−ω)∗χcav(−ω)∗; (30)

W11(ω) = W22(−ω)∗ = iαχ−1
M (ω)χcav(ω); (31)

W12(ω) = W21(−ω)∗ = iαχ−1
M (−ω)∗χcav(ω); (32)

V11(ω) = V22(−ω)∗ = [χ−1
M (−ω)∗χ−1

M (ω) + 2iΩM|α|2χcav(−ω)∗]χcav(ω); (33)

V12(ω) = V21(−ω)∗ = −2iΩMα
2χcav(−ω)∗χcav(ω). (34)

Now, using these equations all the correlation functions can be evaluated for any value

of the parameters entering the problem. Physically however there are only three relevant

choices, corresponding to zero detuning of the pump field and to ∆ = ±ΩM.

• The cooling regime Cooling and deamplification of a signal occurs for ∆ = −ΩM,

or ωL = ωcav − ΩM (laser red-detuned by the mechanical resonance frequency with

respect to the cavity). The frequency ωcav − ΩM is also called Stokes sideband.

• Amplification and squeezing regime Amplification and squeezing occur for ∆ =

ΩM, or ωL = ωcav+ΩM (laser blue-detuned by the mechanical resonance frequency with

respect to the cavity). The frequency ωcav + ΩM is also called anti-Stokes sideband.

• The quantum nondemolition regime The ∆ = 0 regime (laser on resonance with

the cavity) is relevant for performing nondemolition measurements on the nanome-

chanical resonator.

Compared to other equations obtained in the literature in various approximations (de-

pending on the concrete experimental setup) the expressions presented above have the advan-

tage that they are exact and yet simple enough to be used for comparison with experimental

results. Moreover, they are universal, in the sense that they do not depend on the specific

experimental setup: they can be used equally well for optical and microwave systems.
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parameter mechanical resonator cavity

frequency ΩM ωcav

decay rate ΓM κ

susceptibility χM(ω) = [ΓM/2− i(ω − ΩM)]−1 χcav(ω) = [κ/2− i(ω + ∆)]−1

detuning ∆ = ωL − ωcav

TABLE I: Notations used for the nanomechanical resonator and the cavity. Here ωL is the ”laser”

(pump) frequency.

III. THE RESOLVED-SIDEBAND LIMIT

Given that the general solutions Eqs. (27-34) are obtained, using them for any partic-

ular experimental setup is straightforward. A natural classification of these setups is with

respect to the pumping and probe-beam frequencies: we then have optical-frequencies and

microwave-frequencies experiment. Yet in Eq. (10, 11) only the mechanical frequency and

the detuning with respect to the pump (which is of the same order of magnitude as the

mechanical frequency) appear. From this point of view there is no difference between me-

chanical and optical setups. What makes however a difference is the quality factor of the

cavity used: for

κ/ΩM � 1 (35)

we are in the resolved sideband regime; otherwise not. Some existing experiments are in

this regime or somewhat close (for example, for one experiment at NIST the reported values

are ΩM = 2π × 10.69 MHz, κ = 2π × 170 kHz, κ/ΩM = 0.016, putting it into the deep

resolved sideband regime, the Vienna group [5] has κ = 2π × 215 kHz, ΩM = 2π × 947

kHz, κ/ΩM = 0.2 and for the experiments at LTL ΩM = 2π × 32 MHz, κ = 2π × 10MHz,

κ/ΩM = 0.31), while others are definitely not (for example another experiment at NIST [7]

has ΩM = 2π × 1.04 MHz, κ = 2π × 2.88MHz, κ/ΩM = 2.77).

Here we show that in sideband resolved regime it is possible to get a very clear picture of

the physics behind cooling and especially amplification. Although one could get directly our

results by simply performing the relevant approximation in the equations above, it is more

satisfying to start with the general equations and show that the solutions in the resolved

sideband cooling limit can be obtained by performing a second rotating wave approximation.
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Indeed, by writing the Hamiltonian Eq. (8) in the rotating frame at the pumping fre-

quency ωL and expanding it around the stationary states Eqs. (15,16) we find

H = Heff − ~∆(ād† + ā∗d) + ~g0|ā|2(c+ c†), (36)

where

Heff = ~ΩMc
†c− ~∆d†d+ ~g0(c+ c†)(ā∗d+ ād†) (37)

One recognizes here the expression of a system described by the Hamiltonian Heff , which

comprises two oscillators, described by the operators d and c, both driven by the coherent

field {ā, ā∗}, but with different types of field-oscillator coupling.

The Liouville equations ∂t(ā + d) = i
~ [H, ā + d] − κ

2
(ā + d) −

√
κ(āin + din) and ∂t(b̄ +

c) = i
~ [H, b̄ + c] − ΓM

2
(b̄ + c) −

√
ΓMcin are equivalent to ḋ = i

~ [Heff , d] − κ
2
d −
√
κdin and

ċ = i
~ [H, c]− ΓM

2
c−
√

ΓMcin, and, in turn, to Eqs. (18,19) after using Eqs. (15,16), namely

ā = −
√
κ/(κ/2 − i∆)−1āin, b̄ = −i g0

ΓM/2+iΩM

(
|ā|2 + 1

2

)
and the fact that ā and b̄ are time-

independent. Thus the system is described by Heff = ~ΩMc
†c−~∆d†d−~(c+ c†)(α∗d+αd†)

and its associated Liouville equations. We now notice that in a rotating frame defined

by the transformation U(t) = exp[i~(ΩMc
†c − ∆d†d)t] the Hamiltonian Heff transforms as

H̃eff = U(t)HeffU
†(t) +

[
i~ ∂

∂t
U(t)

]
U †(t), and eliminate the time-dependent (rotating) terms.

• Cooling regime When ∆ = −ΩM (red-detuning) the remaining terms in the Hamil-

tonian are

H̃
(RWA)
eff = −~(α∗c†d+ αd†c), (38)

or, going back to the original frame,

H
(RWA)
eff = ~ΩM

(
c†c+ d†d

)
− ~(α∗c†d+ αd†c). (39)

The Hamiltonians Eqs. (38,39) describe two coupled harmonic oscillators. The cou-

pling term has the form of the beam-splitter interaction in optics: in a beam splitter,

a photon coming from a mode b corresponding to one input direction can exit into

the mode c (another direction) or the other way around. The same procedure can be

applied directly in the Heisenberg picture. Take d(t) = ei∆td̃(t) and c(t) = e−iΩMtc̃(t)

and insert them into Eq. (18,19); by neglecting the counter-rotating terms we obtain

in the ”cooling” regime

˙̃d = iαc̃− k

2
d̃−
√
kd̃in; (40)
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˙̃c = iα∗d̃− ΓM

2
c̃−

√
ΓMc̃in. (41)

• Amplification regime When ∆ = +ΩM (blue-detuning), the remaining terms of the

Hamiltonian are

H̃
(RWA)
eff = −~(α∗cd+ αd†c†), (42)

or, going back to the original frame,

H
(RWA)
eff = ~ΩM

(
c†c− d†d

)
− ~(α∗cd+ αd†c†). (43)

In this case Eqs. (42,43) correspond to a two-mode squeezing interaction between

the modes b and c, which lead to amplification. Note also that one of the oscillators

becomes inverted, thus matching nicely a well-known model of amplification from

quantum optics. The same procedure can be applied directly in the Heisenberg picture.

Take d(t) = ei∆td̃(t) and c(t) = e−iΩMtc̃(t) and insert them into Eq. (18,19); by

neglecting the counter-rotating terms we get in the ”amplification” regime

˙̃d = iαc̃† − k

2
d̃−
√
kd̃in; (44)

˙̃c† = −iα∗d̃− ΓM

2
c̃† −

√
ΓMc̃

†
in. (45)

• The nondemolition regime

In this case ∆ = 0 and from Eq. (37) we immediately obtain

Heff = ~ΩMc
†c− ~

2g0āin√
k

(c+ c†)(d+ d†), (46)

where we have used ā = −2āin/
√
κ at the cavity resonance ωL = ωcav. This is called

nondemolition regime due to the resemblance of the interaction part (c + c†)(d + d†)

with non-demolition Hamiltonians used in quantum optics for non-demolition measure-

ments. Non-demolition measurements of observables are realized by using Hamiltonian

interactions that commute with the observables. Suppose that we are interested in

the observable d + d†, we can see that it commutes with Heff : this means that once

we measure it, the Hamiltonian evolution will not affect it anymore and if we measure

it again we will find the same value. Also, using this interaction Hamiltonian, the

mechanical displacement xZPF(c + c†) can be read out through the phase shift of the

laser field entering the cavity.
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Note that in Fourier space going from c to c̃ amounts to translations in frequency, namely

for an arbitrary frequency ω, d̃(ω) = d(ω − ∆), d̃†(ω) = d†(ω + ∆), c̃(ω) = c(ω + ΩM),

c̃†(ω) = c†(ω − ΩM). Clearly, Eqs. (40, 41) and Eqs. (44, 45) are the Liouville equations

corresponding to H̃
(RWA)
eff = −~(α∗c†d+ αd†c) and H̃

(RWA)
eff = −~(α∗cd+ αd†c†) respectively.

A. The cooling regime

A schematic of the transitions in the cooling regime (laser red-detuned) is shown in Fig.

4. When the cavity is placed at the frequency ωL +ΩM, scattering occurs preferentially along

the “blue” arrows, and the photons emitted from the cavity carry the energy ~ωL + ~ΩM,

that is, a phonon ~ΩM is absorbed from the mechanical resonator and its energy is found in

the output laser beam.

FIG. 4: Diagram of transitions. The cavity, if it is higher in frequency than the laser, enhances

the transitions that result in loss of phonons from the mechanical resonator. Figure from Ref. [3].

From Eqs. (40,41), going to the Fourier transform and then going back to the initial c, d

by using the frequency-translation relations we find χ−1
M (ω) −iα∗

−iα χ−1
cav(ω)

 c(ω)

d(ω)

 =

 −√ΓMcin(ω)

−
√
kdin(ω)

 (47)

This equation can be obtained from the more general form Eq. (24) by projecting on the

relevant subspace identified by the rotating-wave approximation described above.

The solution of this equation is

c(ω) = − 1

χ−1
M (ω)χ−1

cav(ω) + |α|2
[√

ΓMχ
−1
cav(ω)cin + iα∗

√
kdin(ω)

]
, (48)

d(ω) = − 1

χ−1
M (ω)χ−1

cav(ω) + |α|2
[
iα
√

ΓMcin(ω) + χ−1
M (ω)

√
kdin(ω)

]
, (49)
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Validity of the rotating wave approximation

It is useful to remind ourselves here that ∆ = −ΩM and a typical measurement would

monitor the noise within a few mechanical linewidths ΓM around ΩM, i.e. ω = ΩM + δ,

and therefore χ−1
M (ω) = ΓM/2 − iδ, χ−1

cav(ω) = κ/2 − iδ. Since δ is of the same order of

magnitude as ΓM and ΓM � ΩM it follows that χ−1
M (−ω) ≈ 2iΩM, χ−1

cav(−ω) ≈ 2iΩM, Σ(ω) ≈

−i|α|2χcav(ω), N (ω) ≈ −2iΩMχcav(ω)[χ−1
cav(ω)χ−1

M (ω) + |α|2]. Using these approximations,

we can verify that the solutions Eqs. (48, 49) can be obtained from Eqs. (25, 26) and Eqs.

(27-34) provided that |α| �
√

ΓMΩM. This condition is satisfied well enough for the typical

range of powers used in the experiments.

Generalized Manley-Rowe relations for the cooling regime

The classical Manley-Rowe relations for the cooling regime show that in the absence of

dissipation, the sum of the number of photons generated per unit time in the cavity and

in the mechanical resonator is zero. This reflects the fact that every time that a photon

is produced, a phonon in the resonator must be absorbed and the other way around. A

generalized quantum-mechanical version of these relations in the presence of dissipation can

be obtained from Eqs. (40,41). Since photons and phonons are lost through the cavity and

the fixing points of the mechanical resonator at rates k respectively ΓM, we should add these

leaked photons when accounting for the particles that the Hamiltonian is generating, and

define ṅd = ∂t(d
†d) + kd†d and ṅc = ∂t(c

†c) + ΓMc
†c. Then, from Eqs. (40,41) we obtain

ṅd + ṅc = −
√
k(d†ind+ d†din)−

√
ΓM(c†inc+ c†cin). (50)

The classical Manley-Rowe relation reads ṅd + ṅc = 0. What Eq. (50) shows is that, in the

presence of dissipation, even if we would attempt to account for particle losses through the

classical rates κd†(t)d(t) and ΓMc
†(t)c(t), there are still correlations between the input fields

and the cavity and resonator operators that have to be considered, as evident from the right

hand side of Eq. (50).

An useful and perhaps more transparent way to look at Eqs. (38,39) is to take ω = ΩM+δ,

δ � ΩM. Then we have:

c(ω) = − 1

(ΓM/2− iδ)(κ/2− iδ) + |α|2
[
√

ΓM(k/2− iδ)cin(δ) + iα∗
√
κdin(δ)]; (51)

d(ω) = − 1

(ΓM/2− iδ)(k/2− iδ) + |α|2
[iα
√

ΓMcin(δ) + (
√

ΓM/2− iδ)
√
κdin(δ)]; (52)

c†(ω) = 0; (53)
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d†(ω) = 0, (54)

from which c(−ω), d(−ω), c†(−ω), and d†(−ω) can be derived by the use of c(−ω) = [c†(ω)]†,

c†(−ω) = [c(ω)]†, etc..

We now can calculate a number of relevant correlations. For correlations the following no-

tation is useful, 〈A(ω)B(−ω′)〉 = 〈AB〉(ω)δ(ω−ω′), where A, B are two arbitrary operators.

We then have

Self-correlations

One important quantity in the case of cooling is the number of phonons in the microme-

chanical resonator at a given frequency; this quantity is nonzero around the cavity frequency,

〈c†c〉(−ω) =
1

|(ΓM/2− iδ)(κ/2− iδ) + |α|2|2
[
(κ/2 + δ2)ΓM〈c†incin〉(−ω) + |α|2κ〈d†indin〉(−ω)

]
.

(55)

Cross-correlations

〈cd†〉(δ) =
1

|(ΓM/2− iδ)(κ/2− iδ)|+ |α|2|2
[
iα∗ΓM(k/2− iδ)〈cinc

†
in〉(δ) + iα∗κ(ΓM/2 + iδ)〈dind

†
in〉(δ)

]
.

(56)

This shows that even when the system is fed uncorrelated noise, it will generate, by its

own dynamics, correlations between the nanomechanical resonator and the cavity. This

happens even if the input states are mechanical and electromagnetic vacuum. We also note

that due to this correlations the nanomechanical resonator and the cavity can be regarded

as forming a qubit. Indeed, using the Schwinger representation, we have σz = d†d − c†c,

σx = σ+ + σ− = d†c+ c†d, and σy = −i(σ+ + σ−) = −i(d†c− c†d), and therefore H
(RWA)
eff =

~ΩMI − ~(ασ+ + α∗σ−). One recognizes here the interaction-picture Hamiltonian of a two-

level system x- and y- coupled to a classical field {α, α∗}.

B. The amplification regime

This time, if we look in Fig. 4, the cavity will be placed in the |1, n + 1 > state, and

the laser is at ωL = ωcav + ΩM. Note that the Hamiltonians Eqs. (42,43) allows indeed

the coupling of states |0, n > with |1, n + 1 > (indeed, terms that create or annihilate

simultaneously a photon and a phonon are present in this Hamiltonians). Thus a signal din
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can be amplified by using the energy of the laser beam. This is somewhat similar to what

happens in a laser, where the pump is used to create a population inversion.

In the same way as before, from Eqs. (44,45), going to the Fourier transform and then

going back to the initial c, d by using the frequency-translation relations we find χ−1
M (−ω)∗ iα∗

−iα χ−1
cav(ω)

 c†(ω)

d(ω)

 =

 −√ΓMc
†
in(ω)

−
√
kdin(ω)

 (57)

Again, we can verify that this equation can be obtained from the more general form Eq.

(24) by projecting on the relevant subspace identified by the rotating-wave approximation

described above.

The solution of this equation is

c†(ω) = − 1

χ−1
M (−ω)∗χ−1

cav(ω)− |α|2
[√

ΓMχ
−1
cav(ω)c†in − iα∗

√
κdin(ω)

]
, (58)

d(ω) = − 1

χ−1
M (−ω)∗χ−1

cav(ω)− |α|2
[
iα
√

ΓMc
†
in(ω) + χ−1

M (−ω)∗
√
κdin(ω)

]
. (59)

Validity of the rotating wave approximation

Again, we analyze here the validity of the rotating wave approximation in the ampli-

fication regime. This time, ∆ = ΩM and with the notation ω = −ΩM + δ we have

χ−1
M (−ω) = ΓM/2 + iδ, χ−1

cav(−ω) = κ/2 + iδ, χ−1
M (ω) ≈ 2iΩM, χ−1

cav(−ω) ≈ −2iΩM,

Σ(ω) ≈ −i|α|2χcav(ω), N (ω) ≈ 2iΩMχcav(ω)[χ−1
M (ω)∗χ−1

cav(ω) − |α|2]. Again, only for val-

ues of δ not much higher than ΓM we can get some nonzero values for the fields. We can

again verify that the solutions Eqs. (44, 45) can be obtained from Eqs. (25, 26) and Eqs.

(27-34) provided that |α| �
√

ΓMΩM.

Generalized Manley-Rowe relations for the amplification regime

In the amplification regime, the classical Manley-Rowe relations show that the rates of

photon production and phonon production are the same. This reflects the fact that photons

and phonons are born in this system at the same time. The quantum Manley-Rowe relations

for the amplification regime can be again obtained from Eqs. (44,45),

ṅd − ṅc = −
√
κ(d†ind+ d†din) +

√
ΓM(c†inc+ c†cin). (60)

Again we encounter a quantum-mechanical phenomenon, namely that once you open the

system to the external world it is not sufficient to account classically for the particles lost
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through the definitions ṅd = ∂t(d
†d) + κd†d and ṅc = ∂t(c

†c) + ΓMc
†c, but there will be

correlations being built between the field in the cavity and resonator and the input fields.

It is also useful to write explicitly the frequency components given by Eqs. (58,59) around

the cavity resonance, that is ω = −ΩM + δ, δ � ΩM,

c†(ω) = − 1

(ΓM/2− iδ)(κ/2− iδ)− |α|2
[
√

ΓM(κ/2− iδ)c†in(δ)− iα∗
√
κdin(δ)]; (61)

d(ω) = − 1

(ΓM/2− iδ)(κ/2− iδ)− |α|2
[iα
√

ΓMc
†
in(δ) + (

√
ΓM/2− iδ)

√
κdin(δ)]; (62)

c(ω) = 0; (63)

d†(ω) = 0. (64)

from which d(−ω), d†(−ω), c†(−ω), c†(−ω), and can be derived by the use of d(−ω) =

[d†(ω)]†, d†(−ω) = [d(ω)]†, etc..

IV. SUMMARY

We have discussed the two most important regimes for optomechanical systems, cooling

and amplification. A systematic diagram of these processes is presented in Fig. 5.
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FIG. 5: (A) Amplification (laser is blue-detuned with respect to the cavity) and (B) cooling (laser

is red-detuned with respect to the cavity). Scattering from the laser into the cavity is enhanced,

leading to the amplification (suppressing of the anti-Stokes process and enhancing the Stokes

process) and cooling (suppressing the Stokes processes and enhancing the anti-Stokes processes).

Figure from Ref.[3].
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