EEN-E3007 - Process Integration and Energy Optimization L

Espoo 2021

EXERCISE 5

1 Problem table algorithm

We have the following streams:

stream #	type	$cp\cdot \dot{m} [kJ/K\cdot s]$	$T_{start} [^{\circ}C]$	$T_{target} [^{\circ}C]$
1	hot	3.5	180	60
2	hot	1.5	140	30
3	cold	2.0	45	115
4	cold	5.0	70	160

With a global $\Delta T_{min} = 10 \ ^{\circ}C$.

a)

Make a stream table where the temperatures have been adjusted for ΔT_{min} .

b)

Sort the temperatures and draw the streams in a diagram where the temperature intervals can be identified. Which intervals have heat surplus and which intervals have heat deficit?

c)

Draw the heat-cascade and determine the minimum utility consumptions and the pinch temperature.

2 HINT software

a)

Draw the grand composite curve of the stream data in exercise 1 using HINT. Check that the cascade you calculated earlier are in accordance with the grand composite curve drawn by HINT.

b)

Steam is available at two levels:

- High pressure, 12.5 bars and 190 $^{\circ}C$
- Low pressure, 2.7 bars and 130 $^{\circ}C$

Choose the most efficient usage of the steam and draw it in the grand composite curve. How much low pressure and high pressure steam are we using?

3 Heat pump

We want to investigate if a heat pump can reduce the steam and cooling water needs. The available heat pump is an electric motor CCC (closed compression cycle) heat pump.

The heat pump characteristics are:

- Evaporation temperature 60 $^\circ C$
- Sink temperature $125 \circ C$
- Coefficient of performance, $COP = \frac{Q_C}{W} \approx \frac{Q_C}{Q_C Q_E} = 3$

a)

What is the approximate reduction in low pressure steam and cooling water consumption that we can expect?

b)

Draw the heat pump in the grand composite curve.