
Proceedings of the Seminar in Computer
Science (CS-E4000), Spring 2022

Antti Ylä-Jääski and Sara Ranjbaran

Tutors for seminar topics

Alexander Jung, Anton Debner, Antti Ainamo, Antti Ylä-Jääski, Ashutosh

Vaishnav, Chris Brzuska, Esa Vikberg, Jaakko Harjuhahto, Jaakko Har-

juhahto, Kamyar Khodamoradi, Lachlan Gunn, Lorenzo Corneo, Miika

Komu, Nam Hee Kim, Sanna Suoranta, Stephan Sigg, Ti John, Tian Yu,

Tuomas Aura, Vesa Hirvisalo and Wencan Mao

Preface

The Seminar on Network Security, Seminar on Internetworking and Sem-

inar on Software Technology and Systems Research were previously sepa-

rate Master’s level courses in computer science at Aalto University. These

seminar courses have now merged into one seminar course. These sem-

inar series have been running continuously since 1995. From the be-

ginning, the principle has been that the students take one semester to

perform individual research on an advanced technical or scientific topic,

write an article on it, and present it on the seminar day at the end of

the semester. The articles are printed as a technical report. The topics

are provided by researchers, doctoral students, and experienced IT pro-

fessionals, usually alumni of the university. The tutors take the main

responsibility of guiding each student individually through the research

and writing process.

The seminar course gives the students an opportunity to learn deeply

about one specific topic. Most of the articles are overviews of the latest

research or technology. The students can make their own contributions in

the form of a synthesis, analysis, experiments, implementation, or even

novel research results. The course gives the participants personal con-

tacts in the research groups at the university. Another goal is that the

students will form a habit of looking up the latest literature in any area

of technology that they may be working on. Every year, some of the semi-

nar articles lead to Master’s thesis projects or joint research publications

with the tutors.

Starting from the Fall 2015 semester, we have merged the three courses

into one seminar that runs on both semesters. Therefore, the theme of the

seminar is broader than before. All the articles address timely issues in

security and privacy, networking technologies and software technology.

These seminar courses have been a key part of the Master’s studies in

several computer-science major subjects at Aalto, and a formative expe-

rience for many students. We will try to do our best for this to continue.

Above all, we hope that you enjoy this semester’s seminar and find the

proceedings interesting.

Seminar papers

Matteo Calabrese, Securing small networks through automated fire-

wall testing . 9

Tutor: Tuomas Aura.

Stefano Facchini, CNN over unordered sets .19

Tutor: Antti Ainamo.

Karol Lasocki, CNN over unordered sets . 29

Tutor: Stephan Sigg.

Stefano Rumi, Security analysis on challenge-response based biometric

authentication methods . 43

Tutor: Sanna Suoranta.

Zixuan Liu, Multiagent Deep Reinforcement Learning for Video Game

Playing . 53

Tutor: Debner Anton.

Jayshree Rathi, The Design, Architecture and Scalability of Microser-

vices . 65

Tutor: Antti Ylä-Jääskii.

Ádám Balassa, Formal Methods for Security Analysis of Smart Con-

tracts: A Survey . 77

Tutor: Lachlan Gunn.

Jeyhun Yagublu, FSim-to-Real transfer learning using Deep Rein-

forcement Learning (DRL) . 93

Tutor: Anton Debner.

Bipin Khatiwada, Theoretical Framework for Cloud Computing Net-

work Measurements . 105

Tutor: Lorenzo Corneo.

Kun Ren, Layer-2 Integrity Protection . 117

Tutor: Tuomas Aura.

Alessandro Chiarelli, Cryptographic privacy: an overview of identity

hiding and one-sided authenticated key-exchange protocols 127

Tutor: Chris Brzuska.

Aapo Linjama, A Survey of Deterministic Networking 139

Tutor: Miika Komu.

Zetong Zhao, Detecting Anomalies in Firewall Configurations 149

Tutor: Tuomas Aura.

Sinan Sakaoglu, Vehicular Fog Computing: Vision, Capacity Plan-

ning, and Resource Allocation . 163

Tutor: Wencan Mao.

Bastien Gouila, Federated learning in industrial applications: oppor-

tunities and challenges .177

Tutor: Alexander Jung.

Alena Shchevyeva, Deep Learning for Kinematic Character Anima-

tion .189

Tutor: Nam Hee Kim.

Sara Kanerva, The Multiple Layers of Anonymity201

Tutor: Chris Brzuska.

Mariam Moustafa, Task Allocation for Vehicular Fog Computing: A

Survey . 211

Tutor: Wencan Mao.

Buket Karakas, Benefits and Drawbacks of Using Microservices in Big

Data Platform Applications . 225

Tutor: Antti Ylä-Jääski.

Bojana Bakic, Assessment of Security Challenges Encountered in Mi-

croservice Architecture Compared to Traditional Monolithic Architec-

ture . 235

Tutor: Antti Ylä-Jääski.

John Wickström, Asymmetric Multi-core Scheduling 245

Tutor: Jaakko Harjuhahto.

Daniel Zsemberi, Intelligent Character Animation with Deep Rein-

forcement Learning . 255

Tutor: Nam Hee Kim.

Dan Suman, Industrial Applications of Federated Learning: Google

Keyboard query suggestions and next-word predictions 269

Tutor: Alexander Jung.

Sami Mairue, Object tracking for mobile augmented reality 277

Tutor: Ashutosh Vaishnav.

Timo Laalo, Bitrate Adaptation Algorithms in Multimedia Stream-

ing . 291

Tutor: Esa Vikberg.

Martin Spiering, Firewalls and filtering policies for small net-

works . 307

Tutor: Tuomas Aura.

Kasper Henriksson, FApproximation Algorithms for Clustering Prob-

lems . 317

Tutor: Kamyar Khodamoradi.

Valtteri Valtonen, 3D Object Tracking for Mobile Augmented Reality

using Deep Learning Methods . 327

Tutor: Ashutosh Vaishnav.

Otso Friman, Firewall and filtering policy for hybrid cloud 339

Tutor: Tuomas Aura.

Sepehr Javid, Firewalls and filtering policies for small networks . 351

Tutor: Tuomas Aura.

Anastasia Safargalieva, Optimizing packet classification in firewalls

and routers .361

Tutor: Tuomas Aura.

Juan Pablo Valencia Gómez, Formal verification of distributed sys-

tems . 373

Tutor: Lachlan Gunn.

Santeri Sipilä, Theoretical Framework for Cloud Computing Network

Measurements .385

Tutor: Lorenzo Corneo.

Julian Jessen Howard Baker, Biometric authentication: a survey of

different modalities and their potential use cases 397

Tutor: Sanna Suoranta.

Yifan Zhu, Explainable Empirical Risk Minimization 411

Tutor: Alexander Jung.

Maryum Hamid, A Comprehensive Analysis of Generative Model . 423

Tutor: Tian Yu.

Massimo Bertocchi, Optimizing firewall policies 435

Tutor: Tuomas Aura.

Zixin Zhou, Task Allocation for Vehicular Fog Computing 445

Tutor: Wencan Mao.

Hussam Aldeen Alkhafaji, Privacy preserving techniques for continu-

ous authentication . 457

Tutor: Sanna Suoranta.

Elias Arte, Object tracking for mobile augmented reality 467

Tutor: Ashutosh Vaishnav.

Otso Pohjola, Privacy in Authenticated Key Exchange Protocols . . 479

Tutor: Chris Brzuska.

Josephus Jasper Limbago, A survey on touch-based continuous au-

thentication systems in mobile phones . 489

Tutor: Sanna Suoranta.

Elena Serkova, Active Learning for image processing 499

Tutor: Ti John.

Guangkai Jiang, Image generation with generative models 511

Tutor: Yu Tian.

Tommi Räsänen, Energy-efficient asymmetric multi-core scheduling

for virtual machines . 519

Tutor: Jaakko Harjuhahto.

Anton Pirhonen, Explainable Linear Regression 531

Tutor: Alexander Jung.

Soumya Lekkala, Co-inference techniques for Edge and Fog comput-

ing . 549

Tutor: Vesa Hirvisalo.

Anand Vasudevan, Automated probing of firewalls for small business

networks . 561

Tutor: Tuomas Aura.

Lizzy Tengana, Task Allocation for Vehicular Fog Computing: A Re-

view . 571

Tutor: Wencan Mao.

Sergei Kaukiainen, Cloud and Local Game Streaming583

Tutor: Esa Vikberg.

Joose Lehtinen, Visualizing firewall configuration anomalies 593

Tutor: Tuomas Aura.

Securing small networks through
automated firewall testing

Matteo Calabrese
matteo.calabrese@aalto.fi

Tutor: Tuomas Aura

Abstract

Due to a shift in the work environment and the steady rise in the num-

ber of connected devices, small network environments are becoming ubiq-

uitous. While scenarios vary, a common denominator to most is the lack

of professional administration and security auditing. The resulting vast

threat surface is only mitigated at the device level, with little considera-

tion of the network itself. Firewalls represent a simple yet effective way

of protecting many devices in a centralised way, but ensuring the correct-

ness of their policies can be cumbersome to many. The proposed solution

is an application capable of testing a firewall configuration from the point

of view of the attacker, as a tool to make securing small office/home office

(SOHO) networks more accessible. By simulating both desired and mali-

cious behaviour, a generated report guides the user towards a more reliable

firewall configuration.

KEYWORDS: networks, IoT, security, firewall, testing

1 Introduction

In recent years, access to the Internet has become a commodity nearly as

vital as electricity or water. With a penetration rate of 97% in Northern

Europe [8], virtually every household and office has an Internet connec-

tion available.

Additionally, either because of personal, professional, or mixed use, the

number of connected devices has reached yet a new spike, attributable

in part to the recent gain in popularity of smart devices and the Inter-

net of Things (IoT) in general. As a result, securing this heterogeneous

ensemble of devices has become a challenging, as well as vital, task.

Firewalls have always been the cornerstone of network security, and still

play a vital role in securing home, office, or enterprise environments. Due

to the continuously changing scenario, and introduction of new technolo-

gies and devices, a persistent effort is required in order to keep firewall

policies up-to-date and secure. In fact, changes in the policies or rules

can easily pose a risk to the effectiveness of the firewall, as human error

is by nature unpreventable. Thus, the only way to ensure that a firewall

configuration is correct and complete is to put it to the test, and even do

so periodically to verify that no tampering occurred.

In order to facilitate the task of securing networks, this paper focuses

on the study, the development and the evaluation of an application for

automated firewall testing. Starting from a modeled scenario, the config-

uration of a firewall will be tested by carrying out typical type of attacks.

The results will then be used to assess the quality of said configuration

and evaluate the performance of the application.

The structure of this paper is as follows:

Section 2 briefly introduces firewalls, their common configuration, and the

challenges that arise in situations when policy updates and changes need

to be implemented; Section 3 covers the solution and its implementation;

finally, Section 4 draws the conclusions.

2 Background

This section contains a brief introduction to firewalls and their usage and

defines the modeled scenario used in the development of the application.

2.1 Firewalls

A firewall is a network security device that monitors incoming and outgo-

ing network activity and decides whether to allow or block specific traffic

based on a defined set of rules. This device can be either software or

hardware, and it is located on the perimeter of a network, wherever the

network connects to the outside world.

There are numerous kinds of firewalls, and their categorisation is based

on the functionalities offered. A broad distinction divides them into two

large groups: stateless and stateful. Nonetheless, all of them operate from

the internet layer of the TCP/IP model [3] upwards (i.e., the internet layer,

the transport layer and the application layer). Stateless firewalls, also re-

ferred to as packet filters, are the most simple type of firewall, and analyse

network traffic by reading each packet independently, i.e., no attempt is

made to connect them logically. On the other hand, stateful firewalls han-

dle network activity with the help of context, e.g., if a connection happens

to spawn another connection, these are considered related. This approach

gives the administrator better control over the traffic, as numerous ser-

vices require multiple parallel connections to work.

One of the most common amongst firewall software frameworks is netfilter

[9], and it will be the firewall of choice for the modeled scenario in this

study.

2.2 Firewall policies

The behaviour of firewalls is programmed using rules, or policies, that de-

scribe what traffic is to be permitted or rejected in the network. Normally,

default configurations on home or office firewalls permit all traffic with no

restriction whatsoever. Instead, good practice is to block all traffic by de-

fault, and then proceed to permit only the desired traffic selectively.

As a result, defining policies can easily become a challenging task when

many services are available in the network. Most importantly, imple-

menting an update on a stable and secure configuration might result in

unexpected behaviour due to human error. Moreover, the firewall could

be the target of an unauthorised modification. For these reasons, periodic

probing of the firewall can offer the network administrator a valuable in-

sight into the conditions of the filter at any given time.

2.3 Modeled scenario

Figure 1 shows the chosen scenario that will be used to simulate the net-

work environment. This consists of three networks: the two client sites on

the left, containing multiple IoT devices, and one cloud site on the right,

containing two servers. The gateways act as firewalls for all three net-

works. In this scenario, the hosts in the client sites need to be able to com-

municate with the servers in the cloud network, following a client-server

paradigm. In order to protect the traffic and encrypt all communications,

a Virtual Private Network (VPN) is assumed to be configured.

Figure 1. Network topology of the modeled scenario. Source: [1]

The goal of the firewall on the cloud site is to protect the server machines

from unwanted traffic coming from the internet while only allowing com-

munications with the client sites. Additionally, the filtering has to ensure

that only the clients can initiate a connection towards the servers, and

not vice versa. On the other hand, the firewalls on the client sites perform

both Network Address Translation (NAT) and filtering. No inbound traf-

fic from any machine other than the servers should be accepted, as well

as no outbound traffic which is not precisely addressed to the servers.

The desired final result for the presented environment consists of two

communication channels: Site A to Cloud S and Site B to Cloud S. More

specifically, isolation between the sites is desired for security reasons, i.e.,

a client site can only exchange information with one cloud server (and not,

for instance, with the server assigned to the other client site, or with the

other client site itself). Therefore, Site A will be served by Server-1, and

Site B will be server by Server-2.

3 Solution

3.1 Goal

Maintaining firewall policies and ensuring that they are always up to date

with the correct security standards can become a challenging task. As

services rely increasingly on network communication to function, firewall

policies easily grow complex, and incorrect updates to the rule set can un-

dermine its effectiveness. While formal verification of policies is a way to

address this problem [6], the goal of this solution is to provide an appli-

cation that automatically ensures a correct configuration of a firewall by

probing it periodically.

3.2 Design and implementation

The application has been developed using the Python [10] programming

language, with the support of libraries like Scapy [2], and network tools

like Nmap [7]. The software consists of three main modules: the port

scanner, the traffic generator and the traffic sniffer.

Firstly, the application is programmed to match the allowed traffic of the

network. Secondly, it is deployed in the environment by being installed on

all the machines. Finally, both wanted and unwanted traffic is generated

to test the configuration of the firewall.

As the applications runs, it gathers information about the traffic it sees on

the network. By comparing this data against its configuration, it is able

to produce a report describing the quality of the firewall policies.

3.3 Workflow

Programming the application can be done using a configuration file, which

describes the services that should be allowed to flow within the network.

Automated support is provided for the most common services, to allow

for a quicker and simpler set-up process. A more detailed configuration

is also possible by providing additional details such as specific protocols,

ports and addresses.

At first, the port scanner module probes the configured ports to ensure

that the required services are in fact available and reachable. If this step

yields a positive result, the traffic generator then starts flooding the net-

work with wanted and unwanted traffic, both from a legitimate node on

the network and from one that simulates an attacker. In order to account

for possible compromised machines, similarly to the scenario represented

by the Byzantine Generals Problem [5], attacks are also launched from

the clients themselves.

At this point, the traffic generator and the traffic sniffer work in tandem

to gather insightful data from the network. Both responses received by

the traffic generator and data intercepted by the traffic sniffer contribute

to the results.

Finally, the application consults the configuration to draw conclusions and

shows, through an output file, if the desired behaviour is achieved.

3.4 Test cases and attacks

While the tests that will be executed by the application depend on the

provided configuration, this study focuses on the scenario pictured in Fig-

ure 1. Firstly, the tests will ensure that the required services are avail-

able and reachable by the intended machines. For this purpose, Nmap

is used to execute port scanning on the server machines from the client

sites. The scanner probes specific ports by sending different types of pack-

ets addressed to them, and analyzes the responses to infer what services

are running on the target. Nmap supports different kinds of techniques

to achieve this, including the TCP SYN scan, the TCP connect scan, the

UDP scan [7]. The expected result in this case is for the VPN service to

be available, so that clients can establish a tunnel.

Next, the security of the configuration mentioned in Section 2.3 is tested.

In order to do this, attacks are carried out following the Dolev-Yao at-

tacker model [4]. More specifically, in addition to making the attacker

carry the message (i.e., launch the attack from the central Router), some

of the client machines will also simulate malicious behaviour. As a result,

three different type of attacks will be executed:

Attacking from the internet

In this scenario, the attacker is an unauthorised machine on the internet.

Since there are no other machines outside of the client sites, the Router

will impersonate the attacker. To test the configuration of the firewall, the

application will attempt to open a TCP connection with both servers. This

behaviour is programmed using the Scapy Python library, which offers a

high level interface to craft raw packets.

Two results are possible: either the server receives the incoming con-

nection and completes the handshake, or the packets are dropped by the

firewall on Gateway-S before even reaching it. If the connection succeeds

the firewall policy is not strict enough, and the application will report this

in the output.

Attacking from the internet, as a client

The aforementioned attack can be reproduced with a variation: instead

of showing its identity, the attacker could craft the attack in such a way

that the initiator looks like one of the client site gateways. Since NAT is

executed on outbound traffic from these sites, when a client contacts the

server, the traffic appears to be generated by the gateways itself. Thus, a

server cannot determine the specific client that sent the request, at least

judging by the network layer only. However, if the source address of the

traffic is changed, the attacker will not be able to receive a possible re-

sponse from the server. Therefore, the router will be used again to carry

out this test. Being on the network, it can intercept all outgoing traffic

coming from the cloud site, thus verifying if a response to the attack is

returned by the servers.

As previously, two are the possible results: either the packets get er-

roneously let through and reach the servers, or they get dropped on the

path. However, in this case, more than one configuration is tested for cor-

rectness. Firstly, the firewall should not accept packets from the clients

which are not sent through a VPN (and this can be discerned by the pro-

tocol of the traffic). As only the client site gateways are able to open a

tunnel to the cloud site, this factor plays an important role in the filtering

decision. Moreover, if the VPN is configured correctly on Gateway-S, then

by default all traffic originating from the client sites is only forwarded if

sent through the tunnel.

Cross site contamination

This last attack aims to verify that the configuration achieves isolation

between the client sites. A client simulates compromised behaviour by

trying to connect to the server belonging to the other site. This time, the

VPN configuration should not let traffic go through the tunnel from the

client site gateway. In case the configuration is not strict enough, and the

encrypted packets do reach the target, then the router will intercept the

response and signal the outcome in the output.

4 Conclusions and future work

Developing a solution that is capable of adapting to heterogeneous and

distributed networks is definitely a challenging task, but the recurrence

in typical configurations makes it possible to provide a general solution.

The solution presented in this study represents a valuable tool when the

environment contains a relatively small number of services, but covering

a truly exhaustive set of tests may be not possible. For this reason, cus-

tomising the application to better suit the scenario is vital.

Room of improvement can also be found in the architecture. At the time

of writing, the application requires deployment on all the machines in the

network to function properly. While the installation process is by design

simple, and the overhead of the running software is minimal, there are

still cases in which this set-up is not possible. A more targeted and selec-

tive configuration could be possible, but would require greater caution.

References

[1] Tuomas Aura and Aleksi Peltonen. CS-E4300 - Network Security. https:
//github.com/tuomaura/cs-e4300_testbed, 2021. Aalto University School
of Science.

[2] Philippe Biondi and the Scapy community. Scapy, packet crafting for python.
https://scapy.net/, 2021.

[3] Douglas E. Comer. Internetworking with TCP/IP, Volume I. Prentice-Hall
Inc, 4th edition, 2000.

[4] D. Dolev and A. Yao. On the security of public key protocols. IEEE Trans-
actions on Information Theory, 29(2):198–208, 1983.

[5] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Gen-
erals Problem, page 203–226. Association for Computing Machinery, New
York, NY, USA, 2019.

[6] A. X. Liu. Formal verification of firewall policies. In 2008 IEEE Interna-
tional Conference on Communications, pages 1494–1498, 2008.

[7] Gordon Fyodor Lyon. Nmap Network Scanning: The Official Nmap Project
Guide to Network Discovery and Security Scanning. Insecure, 2009.

[8] We Are Social, Hootsuite, and DataReportal. Global internet penetration
rate as of april 2021, by region. https://www.statista.com/statistics/
269329/penetration-rate-of-the-internet-by-region/.

[9] Netfilter Core Team. The netfilter.org project. https://www.netfilter.org,
2021. Netfilter.org.

[10] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Cre-
ateSpace, Scotts Valley, CA, 2009.

University ecosystem for student
startups: a comparison among
European nations

Stefano Facchini
stefano.facchini@aalto.fi

Tutor: Antti Ainamo

Abstract

With the evolution of the technological sector, the number of startups had

a noticeable growth, and, with it, universities and institutions adapted

themselves to provide notions, courses, and support to these kinds of projects.

In this paper, we give an overview of startup ecosystems, including their ac-

tors and their flow of interactions, in different universities of the European

landscape. This paper outlines similarities and differences among these

universities, and it analyzes which factors might contribute the most to

inspiring students and in startup formations.

KEYWORDS: startup, university, entrepreneurship, student, accelerator

1 Introduction

In the last years, the situation regarding tech companies has changed sig-

nificantly, moving from a few big companies with several employees to the

current state where more and more startups are emerging and trying to

enter the market. This is mostly due to the digitalization of every social

aspect, from casual interactions to office meetings, as well as banking, en-

tertainment, and government services. Following this trend, in the last

90 years, several tools such as university courses, events, and accelera-

tors were created to help, support, and sustain potential ideas to grow

into well-defined projects and drive them into the market [1].

In this paper, we focus on the university environment, which is known

for the high number of ideas that are generated in this context, but also

for the low experience of the involved actors [2]. For this reason, these

tools have emerged into the university context, to help students with le-

gal, financial and personal support if they wanted to approach the startup

world.

While this trend was followed by most of the European countries, each na-

tion has a different social, economical and political situation, and hence

the location of the university is relevant in the creation of startups by stu-

dents [3] [4]. This paper focuses on analyzing some European universities

and defining how different structures, locations, and other characteris-

tics might have different impacts on how startups are assisted and led to

market.

2 How university relates with startups

Based on the description given by Ainamo et al. [1], the students’ startups

can be described with the concept of "Platform of trust". The idea is that

different individuals or entities get together and interact, more or less fre-

quently, to reach a status of symbiosis where every involved part works for

its objective and gains some kind of benefits from others. An ecosystem

of students, mentors, professors, and investors is made: students come

up with ideas and take the central role in their project, aiming to bring

them to the market; mentors and professors offer their experience and

time to help students reach success, and get rewarded when a startup

makes some progress; investors offer the financial legal support when a

startup wants to grow and proceed to the next step while gaining part of

the shares when the project becomes relevant. Additionally, other initia-

tives and entities are formed and enter the ecosystem, such as dedicated

degree programmes and external extracurricular organizations.

A key role is held by university incubators and accelerators: although

some differences can be narrowed down, we will use for simplicity these

two terms as synonyms. These structures are typically a sub-unity of the

university that supports potential entrepreneurs with common spaces,

consultancy services by tutors, and strategic relationships with founders,

investors, and other entrepreneurs, and their close-to-university locations

make it easy for students and professors to have a position here [5]. In

the next chapters, we explain how different countries relate to startups,

how this general idea is applied to different universities, and how these

differences are reflected in the interactions and events that occur around

startups.

3 Startups overview in different countries

Before focusing on some specific universities and their support to star-

tups, it’s worth contextualizing the startup situation within the European

Landscape, as it might differ from other regions such as America and

Asia-Pacific (APAC) areas. In Europe, data has been collected by Koll-

mann et al. in the European Startup Monitor (ESM) project [6].

First of all, startups "are defined by three characteristics: startups are

younger than 10 years. Startups feature (highly) innovative technologies

and/or business models. Startups have (strive for) significant employee

and/or sales growth" [6]. As shown by [7], the average number of star-

tups per millions of inhabitants in Europe is 190. Here, Estonia claims

the record for this metric with 865 startups per 1M citizens, followed by

Ireland (666) and Denmark (573). The three countries we will focus on

are ranked fourth place (Finland, 525), fifth (The Netherlands, 507), and

fourteenth (Italy, 234).

Additionally, it’s remarkable to see how startups evaluate their countries’

governments in terms of support to them. On a scale from 1 to 6, Finland

takes first place with an average score of 5.0 out of 6, while the dutch

country scores 3.1 out of 6. Italy is graded 2.4/6, below the Europe Aver-

age (2.7/6) [6]. Another metric to t is the average evaluation of universi-

ties in these countries in "promoting and communicating entrepreneurial

thinking/acting": the European Startup Monitor project reports that the

"highest ratings were found in Finland (4.0) [...] and the Netherlands

(3.0)", while Italy was ranked with a lower score (2.0) [6].

These metrics can partially explain why, even while we stay within the

same continent and even inside the European Union, different countries

have such different startups landscape: the cultural and financial condi-

tions of each country, also dictated by their history, influence how much

comprehension and support the government gives to startup founders and

entrepreneurs.

As shown in Figure 1, The New York Times documented what percent-

age of the GDP consisted of Venture Capital for each country, fetching

data from the Organization for Economic Cooperation and Development

(OECD). As it can be seen, Finland stood out taking second place when

considering only Early Stages (light blue portion of the bars), while the

Netherlands and Italy were ranked lower positions.

Figure 1 Venture capital as a percentage of GDP, 2009 [8]

4 Startup ecosystem at Aalto University and comparison with
others

Being Finland one of the countries with the most startups, as well as being

ranked top positions in the previously analyzed metrics, we want to com-

pare the startup environment Aalto University offers against some other

European universities. More specifically, we will take into consideration

the Netherlands (University of Twente) and Italy (Università degli Studi

di Trento). However, to begin with, we will also introduce the EIT Digi-

tal Master School, a programme that can be a key element in the startup

formations within universities and which is present in all the institutions

we are going to consider.

4.1 EIT Digital Master School

The EIT Digital Master School is a two-years study programme, financed

by the European Union through the EIT Digital organization, which con-

sists of a double-degree Master for students who want to found their own

technological start-up. Partnering with 16 top-rated technical universi-

ties in 7 different countries [9], it offers a mixed study plan involving a

Master Degree in Computer Science integrated with a Minor in Innova-

tion and Entrepreneurship. With these skills, the students and alumni of

EIT Digital have the necessary mindset to ideate, design and grow their

business idea into a well-defined startup company. The universities we

will inspect later are all partners of EIT Digital and therefore they all

offer this Master Programme. As we will describe later, EIT Digital part-

ner universities all show interest toward new technologies and provide

support to students in their attempt to found a new company, offering

dedicated networking with investors, hackathon competitions and orga-

nizing the Innovation Days, where participants can show and pitch their

ideas to mentors and investors.

4.2 Aalto University

Aalto, as explained by Ainamo et al., can be taken as an example in the

startup context, as "Aalto University has developed an international rep-

utation for innovation and mobilization of students and their ideation and

co-creation [...] The Massachusetts Institute of Technology recognized in

2014 Aalto University as a rising star among universities internation-

ally" [1]. According to their website, "up to 100 companies are founded

every year in our ecosystem and 50% of Finnish startups that originate

from universities come from the Aalto community" [10]. Supporting these

statements is the fact Aalto provides common spaces for their students,

and they gain an entrepreneurial mindset, ready in case they would like

to try to do anything in this context. The main body at Aalto University is

the Aalto Entrepreneurial Society, also known as AaltoES: this organiza-

tion is located at the Startup Sauna Hub and its aim is to provide students

with events and contacts to know entrepreneurs and other mentors. In

the same building are also hosted some successful companies which can

be used as inspirations, such as Junction and Startuplifers [11].

Moreover, Aalto can also benefit from the presence of some accelerators,

and some programs associated with them. Kiuas, for instance, is "an ac-

celerator program targeted primarily at Aalto students. Kiuas runs two

biannual accelerator programs and has notable alumni companies" [12].

Some popular stories can certify the effectiveness of the entrepreneurial

system of Aalto: Rovio is probably one of the most known, but also Super-

cell and Swappie started in this institute.

4.3 University of Twente

The University of Twente (often called UTwente or simply UT), has been

nominated in 2017 as the most entrepreneurial institute of the Nether-

lands for the fourth time in a row [13]. This award is given following four

guidelines which are directly related to the entrepreneurial environment,

i.e. the number of spin-off companies, the number of patents applied for,

the availability of financing, and the size of science parks. The high scores

obtained by UTwente in these categories imply that this institute plays a

central role in the startup landscape of the Netherlands.

UTwente boasts the collaboration with Novel-T, an accelerator program

whose aim is to assist their students during their startup experience.

Novel-T defines itself as an ecosystem composed of four elements: Fund-

ings, Talents, Knowledge & facilities and Network. The University of

Twente and Novel-T together furtherly created Incubase, a student incu-

bator dedicated to supporting startup founders with common spaces and

resources to continue their growth.

Finally, the University of Twente can take advantage of a science park

called Kennispark Twente, an entire neighborhood focused on research

companies, startups, and university buildings that work closely with the

university itself. Here are established some spin-off companies of UT:

the physical closeness to the campus is a key element of the science park

so that companies and institutions can share resources and knowledge

with the university when needed. Given that there are approximately

50 new students enrolled every year for each university, EIT Digital con-

tributes in the formation of around 350 potential new entrepreneurs every

12 months.

4.4 Università degli Studi di Trento

The University of Trento (UniTN) is one of the main institutions of the

Trentino region. While being a relatively small city, Trento features the

highest number of innovative startups when this data is normalized on

the number of companies [14]. This university is supported by several

entities: one of the central ones is CLab, a laboratory of UniTN which

creates contacts among different students and professionals to support

innovation. CLab offers training on how to open a startup, while also

hosting the Innovation Olympics, a real-world challenge that students are

required to solve using their creativity. To date, CLab involved more than

2000 students and contributed to the launch of more than 15 startups

[15]. The University of Trento also collaborates with different incuba-

tors such as Hub Innovazione Trentino (HIT) and Trentino Sviluppo. Al-

though these are not restricted to students, they support young startups

offering mentoring sessions, spaces, and foundings. Another structure of

the University of Trento that supports innovation and entrepreneurship

is the School Of Innovation (SOI). As stated by its rector Paolo Collini,

the University of Trento can also rely on the School of Innovation project,

which helps in gaining the management and entrepreneur skills for stu-

dents attending scientific, technological, and social studies [16].

5 Structural analysis

Each one of these institutions, as seen above, offers collaborations with

external entities and/or expanded their structures to include entities ded-

icated to this matter. Given that, it is possible to outline some commonal-

ities among these.

To begin with, all of the aforementioned universities work closely with

incubators and allow students to get in touch with them, through events

and contacts. These incubators, in turn, offer courses and spaces where

the interested students can learn the basics of entrepreneurship and are

guided by experts in their adventure.

Another element is the foundation and financing of external bodies that

specifically focus on assisting students in unleashing their creativity and

transforming their ideas into concrete projects. As the School of Innova-

tion works with the University of Trento, similar projects can be found in

several European universities.

Finally, some universities take advantage of dedicated neighbourhoods

where they advertise and promote innovation and research. Similar to

the science park of the University of Twente, this is a trend being fol-

lowed by more and more universities.

Incubators Programmes Science Parks
EIT

Partner

Aalto University Kiuas AaltoES Campus Area Y

University of Twente Incubase Novel-T Kennispark Y

University of Trento
HIT

Trentino Sviluppo
School of Innovation N/A Y

6 Conclusion

After inspecting some universities and their relationships with startup

development, we outlined some characteristics that they feature to en-

hance the interest in startup founding. More specifically, the universities

we analyzed are central figures in their respective countries: for this rea-

son, their traits can be taken into consideration when defining a model to

take inspiration from.

Although there is no unique structural organization that is defined to

work the best, we can see different elements that attempt to involve the

students in generating ideas and pursuing the creation of a company af-

ter that. There are several ways universities can exploit to promote en-

trepreneurial thinking, each one different from the others, but the insti-

tutes that are lacking this aspect should evaluate the implementation of

one of these to help their members to unlock their potential.

References

[1] Antti Ainamo, Ergo Pikas, and Kari Mikkelä. University ecosystem for stu-
dent startups: A ‘platform of trust’perspective. In International Conference
on Interactive Collaborative Learning, pages 269–276. Springer, 2020.

[2] Alexander Nolte, Irene-Angelica Chounta, and James D Herbsleb. What
happens to all these hackathon projects? identifying factors to promote
hackathon project continuation. Proceedings of the ACM on Human-Computer
Interaction, 4(CSCW2):1–26, 2020.

[3] Heiko Bergmann, Christian Hundt, and Rolf Sternberg. What makes stu-
dent entrepreneurs? on the relevance (and irrelevance) of the university
and the regional context for student start-ups. Small business economics,
47(1):53–76, 2016.

[4] Christopher S Hayter, Roman Lubynsky, and Spiro Maroulis. Who is the
academic entrepreneur? the role of graduate students in the development of
university spinoffs. The Journal of Technology Transfer, 42(6):1237–1254,
2017.

[5] Christos Kolympiris and Peter G Klein. The effects of academic incubators
on university innovation. Strategic Entrepreneurship Journal, 11(2):145–
170, 2017.

[6] Tobias Kollmann, Christoph Stöckmann, Simon Hensellek, and Julia Kens-
bock. European startup monitor 2016. Universität Duisburg-Essen Lehrstuhl
für E-Business Graz, 2016.

[7] Number of start-ups per capita by country. https://2020.stateofeuropeantech.com/chart/746-
3309. Accessed: 2022-02-21.

[8] Despite economic slump, europe gets more tech start-ups. https://bits.blogs.nytimes.com/2011/12/07/as-
europes-economy-slumps-a-rise-in-successful-tech-start-ups/. Accessed: 2022-
02-25.

[9] Home // eit digital master school. https://masterschool.eitdigital.eu/. Ac-
cessed: 2022-04-08.

[10] Aalto university and the startup event slush. https://www.aalto.fi/en/advancing-
entrepreneurship-and-innovations-in-aalto-university/aalto-university-and-
the-startup. Accessed: 2022-02-25.

[11] Space - startup sauna. startupsauna.com/space/. Accessed: 2022-02-26.

[12] Aalto university students guide the way for finnish startup culture. https://www.enterespoo.fi/success-
story/aalto-university-students-guide-way-finnish-startup-culture. Accessed:
2022-02-25.

[13] The netherlands’ most entrepreneurial university. https://www.utwente.nl/en/business/most-
entrepreneurial-university. Accessed: 2022-02-26.

[14] Le startup innovative sono 6.745. https://www.truenumbers.it/startup-innovative/.
Accessed: 2022-02-26.

[15] Discover clab | clab trento. https://clabtrento.it/en/discover. Accessed:
2022-02-26.

[16] Paolo Collini. L’innovazione didattica nell’università di trento. INNO-
VAZIONE DIDATTICA UNIVERSITARIA E STRATEGIE DEGLI ATENEI
ITALIANI, page 69.

CNN over unordered sets

Karol Lasocki
karol.lasocki@aalto.fi

Tutor: Stephan Sigg

Abstract

Convolutional Neural Networks (CNNs) currently dominate the visual

image processing field. However, they require a grid-like structure to op-

erate on, such as pixels or voxels. This makes applying CNNs challenging

for data without clear ordering, for instance, point clouds coming from sen-

sory measures in robotics, where only an error-prone notion of distances be-

tween points exists. This paper reviews methods for utilizing deep learning

on such data, either converting it to a form suitable for CNNs or processing

the point cloud directly using alternative methods.

KEYWORDS: CNN, Convolution, Neural Network, Point Cloud, Unordered

sets, Distance, Metric, Voxelization, Voxel, 3D CNN, Attention, Graph, Ge-

ometric, Deep Learning, Robotics, Object Mapping, Gesture Mapping, Den-

sity Grid, Occupancy

1 Introduction

In recent years, Convolutional Neural Networks (CNNs) have become a

state-of-the-art method for multiple tasks, including the arrival of AlexNET

[4] in 2012, dominating the image recognition field, or models such as

Lightspeech [7] achieving great quality-to-performance ratio in text gen-

eration. CNNs are a substantial improvement in terms of complexity over

classical multi-layer perceptron (MLP) networks, due to a significant re-

duction of required computations by repeatedly considering only a fixed

amount of neighbouring points.

However, one serious limitation of CNNs is that they require the notion

of neighbouring points to exist, that is, they assume some kind of ordering

of the dataset - whether a 2D Euclidean space as is the case with images,

or the 1D time-based order of text or speech. It is not possible to directly

apply CNNs to sets of unrelated or loosely related features, often called a

point cloud, which do not satisfy this property.

Example applications using this type of data include shape modeling

and representation [3], navigation and mapping in robotics [1, 19], and au-

tonomous vehicles [18, 6, 9, 5]. In these increasingly important research

areas, data frequently comes from radars and sensors prone to noise and

the Doppler effect. Therefore, only a vague idea of which of the points

are actually neighbours is present, resulting in point clouds. Moreover,

sensory measures are typically non-uniform, with some parts of the space

being covered sparsely, while others having dense clusters of points.

This paper presents an overview of current methods of overcoming these

difficulties and applying CNNs to cloud point data, their weaknesses and

strengths, as well as areas requiring more research.

2 Existing methods

While a comprehensive extraction of information from point cloud data

is still an open problem, some ways of approaching it have been intro-

duced in recent years. Sec. 2.1 shows the traditional methods of learning

from volumetric grids using voxelization, and their shortcomings. Sec. 2.2

presents examples of learning features directly from the point cloud, aim-

ing to overcome these shortcomings. Finally, Sec. 2.3 demonstrates a

geometric deep learning, graph based approach to point neural networks.

2.1 Volumetric grids and voxelization

VoxNet [8] and OctNet [12] represent the original way of coping with point

cloud data. They use a volumetric occupancy grid representation together

with a 3D CNN. OctNet also aims to exploit the sparsity of the data by

hierarchically partitioning the space, focusing on dense regions to enable

deeper neural networks.

Voxelization and VoxNet

A voxel could be thought of as a 3D equivalent of a pixel, a number repre-

senting a value in a given point of a 3D space. A volumetric occupancy

grid represents the data as voxels containing probability values. In a

point cloud, the values are frequently sensory binary measures, indicat-

ing whether a given point in space has reflected a sensor beam or not.

Occupancy grid allows using this information to obtain continuous prob-

abilities: 0 representing a certain absence of an object, 1 meaning the

object is surely there, and 0.5 being an unknown state. These probabili-

ties are typically calculated as a function of sensor readings and previous

states. This allows for a much more precise mapping than a simple 0/1

representation would.

The VoxNet paper [8] provides three ways of calculating such an occu-

pancy grid. The best performance is achieved by the density grid, where

each voxel has a density, corresponding to a probability that this voxel

would block a sensor beam. The formula for the density at given coordi-

nates (i, j, k) and time t is given as the following posterior mean

µt
ijk =

αt
ijk

αt
ijk + βt

ijk

where α and β are defined as follows for measurement zt at time t:

αt
ijk = αt−1

ijk + zt

βt
ijk = βt−1

ijk + (1− zt).

However, a simplified hit grid model also provided surprisingly good

results, despite ignoring differences between unknown and free space. In

this model, the initial value at time 0 is given as 0, and is updated as:

htijk = min(ht−1
ijk + zt, 1)

Having obtained this occupancy grid representation, VoxNet utilizes it

as the input to a standard CNN, with two 3D convolutional layers, fol-

lowed by a maximum pooling layer and two fully-connected layers. This

allowed VoxNet to beat state-of-the-art solutions in three major 3D object

classification datasets at the time of publishing [18]. However, the main

drawback is the need of voxelization and operating the CNN on each voxel

of the entire 3D space, which raises the complexity of the algorithm to

O(N3 ∗ T). Due to this, VoxNet operates at a fixed voxel grid resolution of

323

Figure 1. Hybrid grid-octree data structure and its bit-representation. Source: [12]

OctNet

The main assumption of OctNet is that 3D data is often sparse [12]: most

of the space is unoccupied, and objects take only a small portion of it.

This allows for a development of an adaptive partitioning scheme, focus-

ing computation on important areas.

The partitions are done using octrees, recursively dividing space into

octans. Subdivisions occur only for cells containing relevant information,

that is, crossing a surface boundary or containing at least one 3D point.

To provide fast access to neighbouring points for CNNs without the need

of tree traversals, a hybrid grid-octree data structure is used, as shown

in Figure 1. By limiting the depth of the tree to a small number, e.g.

3, and placing the resulting shallow trees inside a 3D grid, a compro-

mise between efficiency and ease of access to neighbouring points could

be achieved. Such a grid could easily be represented as a bit string, and

an octree of depth 3 still reduces the required storage from 83 = 512 values

for each voxel at the highest resolution, to a single bit vector.

By rewriting the most common CNN operations, such as convolutions,

pooling and unpooling, to work in this structure, significant computa-

tional savings can be made. While the exact mathematics behind these

modified operations is beyond the scope of this paper, the principle behind

the mapping from regular tensors to their octree versions is given in the

following paragraph.

Let O[i, j, k] be the value of the smallest cell in the grid-octree structure

containing the voxel at coordinates (i, j, k) (note that O is not injective).

Then, the mapping from grid-octree O to tensor T is as follows:

oc2ten : Tijk = O[i, j, k]

The reverse mapping is given by:

ten2oc : O[i, j, k] = pool_voxels(T)

where pool_voxels is a function pooling all voxels belonging to the smallest

grid-octree cell containing the coordinates (i, j, k), necessary since that cell

could contain up to 512 different values.

While using these mappings directly would imply costly conversions,

with clever adjustment of the math behind CNN operations, OctNet was

able to beat state-of-the-art results in terms of both accuracy and run-

time. Both these achievements are owed to reduced computational com-

plexity, which allows for deeper networks, improving results on, e.g., 3D

object classification tasks. It outperformed VoxNet’s accuracy by approx-

imately 5 percentage points on the ModelNet10 [17] 3D object classifica-

tion dataset.

Moreover, OctNet’s efficiency enables the use of high resolution inputs,

ranging up to 2563 voxels, substantially more than 323 supported by VoxNet.

Figure 2 visualizes the importance of resolution for object classification.

When classifying a bathtub vs a bed, it makes a significant difference;

however distinguishing a dresser from a night stand remains a difficult

problem regardless of the resolution. Nevertheless, since 3D point cloud

labeling usually entails high resolution data, and OctNet proves that

depth of the networks matters, it remains an improvement over low-resolution

CNNs.

2.2 PointNet and PointNet++

While methods from Sec. 2.1 convert unordered data into ordered and ap-

ply usual CNNs, PointNet [10] and PointNet++ [11] are networks directly

consuming point clouds. Therefore, they do not require the increased vol-

ume of the data that voxelization entails. They can be applied for ap-

plications ranging from object classification, part segmentation, to scene

semantic parsing [10].

PointNet

Consuming unordered data directly with neural networks usually entails

transforming the features to values invariant to input permutation. This

can be done in various ways, most notable of which are: applying a re-

cursive neural network (RNN) to the training sequences augmented by

varying permutations; or using a symmetric function aggregating the in-

Figure 2. Effect of input resolution on 3D objects. Source: [12]

formation from individual points into a single representation, e.g. addi-

tion, multiplication or pooling.

RNNs, while robust to ordering of short sequences, tend to perform

poorly on longer sequences of thousands of elements [15], which is typ-

ically the case for point clouds. Thus, the authors of PointNet have de-

cided to choose the second approach - they transformed the points using

an MLP network, and combined them using a composition of max pooling

and a single variable function. A general function defined on a point cloud

is then represented as:

f({x1, ..., xn}) ≈ g(h(x1), ..., h(xn))

where h is approximated by a multi-layer perceptron, and g is pooling

composed with a single-variable function, unfortunately not described in

detail in the paper.

Using this input transformation, PointNet was able to achieve results on

par, and sometimes even exceeding state-of-the-art, including an accuracy

improvement from 85.9% to 89.2% on the ModelNet40 [17] dataset over

VoxNet. As shown in Table 1, max pooling proved to be the best practical

choice for the point cloud information aggregation function.

Method Accuracy

MLP (unsorted input) 24.2

MLP (sorted input) 45.0

LSTM 78.5

Attention sum 83.0

Average pooling 83.8

Max pooling 87.1

Table 1. Results of different aggregation functions for point cloud data using PointNet.
Source: [10]

Figure 3. Critical points and upper-bound shapes for unseen objects. Source: [10]

Another advantage of PointNet over VoxNet (potentially also over Oct-

Net, however it was not tested) is robustness to missing data points. When

half of the input points are missing, the performance of VoxNet drops from

86.3% to 46.0% with a 40.3% difference, while PointNet only has a 3.7%

performance drop [10]. This is largely due to the fully neural network ori-

ented architecture of PointNet, enabling it to determine a set of critical

points as shown in Figure 3, making it robust to noisy data.

PointNet++

PointNet++ is an improvement over PointNet aiming to utilize the local

structure given by the metric of the data space, important for CNNs. It

is done by applying PointNet recursively over overlapping partitions of

neighbouring points from the input set. The chosen partitioning scheme

is using the farthest point sampling (FPS) algorithm, resulting in neigh-

bourhood balls in an Euclidean space, defined by their centroid and scale.

This is in contrary to PointNet, which uses max pooling to aggregate the

whole point set. The raw point cloud data is preprocessed using three

layers:

Sampling layer. Using the FPS algorithm, this layer finds a subset

of points {x1, x2, ..., xm} such that any point xj from this set is the fur-

thest in terms of cumulative metric distance from the preceding points

{x1, x2, ..., xj−1}. This results in good coverage of the whole input space.

Contrary to standard CNNs which use sliding filters of fixed size indepen-

dently of the underlying data distribution, this strategy generates data-

dependent receptive fields.

Grouping layer. This layer groups all the points from the set into

neighbourhoods centered around centroids from the previous layer. It is

either done by selecting a fixed number of K nearest neighbours (KNN),

or all the points in a given radius up to a maximum of K. Contrary to

standard CNN kernel sliding, this way of partitioning using euclidean dis-

tance could result in overlapping clusters of varying sizes. However, the

neural networks of the following layer are able to cope with differences in

number of input points when calculating feature vector representations.

PointNet layer. The final step is using PointNet to obtain dense neigh-

bourhood encodings. Point coordinates are translated, in order to make

the vector space of each neighbourhood relative to its centroid.

Including this notion of neighbouring points resulted in an accuracy im-

provement from 89.2% to 91.9% over PointNet on the ModelNet40 dataset.

Moreover, the performance drops only by less than 1% when the number

of test points is randomly reduced from 1024 to 256, which is essential for

real word sensory data, commonly suffering from sampling irregularities.

Unfortunately, the paper does not analyse the runtime performance of the

algorithm, solely indicating that more optimizations in the form of shar-

ing computation between overlapping neighbourhoods might be needed.

2.3 GAPNet

GAPNet [2] is a novel approach to point cloud data, combining graph at-

tention mechanism with stacked Multi-Layer-Perceptron (MLP) layers.

Attention has gained tremendous popularity in areas such as Natural

Language Processing, with methods such as Transformer networks [13]

dominating the state-of-the-art. Inspired by graph attention networks

Figure 4. An illustration of how an attention network is applied to the neighbourhood
graph. Source: [2]

[14], Chen et al. show that this mechanism has the potential for coping

with unordered data as well.

Architecture

The most important part of GAPNet is the GAPLayer. Since attention is

computed per point, doing it for every other point in the cloud is compu-

tationally infeasible. In order to focus on the most important relations, a

k-nearest neighbour graph is constructed from the point cloud. In the sim-

plest case of a 3D space without any additional information, such as color,

each point xi ∈ R3 is a vector of coordinates (x, y, z). The edge features of

the k-nearest neighbour graph are defined as

yij = xi − xij

where xij is the jth neighbour of the point xi. These features are then

used to compute neighbouring attention coefficients, which together with

self-attention allow GAPNet to learn the importance of individual points

and their relationships with the neighbourhood, as shown in Figure 4.

These self and neighbouring attention networks shown above form a

single-head GAPLayer. Its attention coefficients, normalized by a softmax

function, are then concatenated to obtain multi-headed attention features

as shown in figure 5. Softmax is needed to turn the attention coefficients

into a probability distribution, making them comparable across neigh-

bourhoods. Note that the computations can be efficiently parallelized, as

there is no correlation between the self and neighbouring attention net-

works nor between separate attention heads - each of them is learning

to attend to the points in its own way, which has a stabilizing effect on

the training process and allows for learning finer structural information.

In order to increase robustness and improve the quality of predictions,

the multi-graph features are then passed through a max pooling function,

Figure 5. The architecture of a single GAPLayer, taking as input N points of dimension
F. Source: [2]

Method Mean class accuracy Overall accuracy Size in MB Forward time in ms

VoxNet [18] 83.0 85.9 - -

PointNet [10] 86.0 89.2 41.8 14.7

PointNet++ [11] - 90.7 19.9 32.0

DGCNN [16] 90.2 92.2 22.1 52.0

GAPNet 89.7 92.4 22.9 27.9

Table 2. Results of different models on the ModelNet40 dataset. DGCNN is explained in
Section 3. Source: [2]

which selects the most important out of a neighbouring subset of attention

heads.

Results

GAPNet trained on an augmented (by rotating, scaling, and randomly jit-

tering the location of the points) version of the ModelNet40 dataset was

able to achieve state-of-the-art results, beating PointNet++ by nearly 2

percentage points as shown in Table 2. Although it is not the best in

neither size nor computational complexity, it seems like the best trade-off

between the two, while also providing the best overall accuracy. As we can

see from 6, the architecture of GAPNet is also capable of performing se-

mantic part segmentation, with the majority of the points being classified

correctly.

More study is needed on the robustness of GAPNet, as the paper does

not mention how well the network deals with missing points, which was

claimed to be a key feature of PointNet.

Figure 6. Comparison of the ground truth (left) and GAPNet predictions (right) on a se-
mantic part segmentation task. Source: [2]

3 Conclusion

It is clear that much progress has been made in recent years in regard

to point cloud data, as the models improved greatly since the inception of

VoxNet in 2015. Despite failing to perform a comprehensive robustness

study, it seems that GAPNet is the best out of the presented methods,

thanks to its superior performance-to-complexity ratio. Graph based net-

works and the attention mechanism are increasingly popular in the Deep

Learning community, and they have proven very potent in the 3D space

as well.

This conclusion is perhaps slightly surprising given the title of this pa-

per, since GAPNet is a network exploiting the local ordering (although its

3D space is not completely ordered - the distance information does not

need to be perfect, and the data does not have the grid-like structure of a

standard 3D voxel space), and not utilizing CNNs at all, using standard

MLP networks instead. DGCNN [16] is a novel method proposing an edge

convolution operation over a neighbourhood graph, related to both GAP-

Net and PointNet (in fact, PointNet is simply the most basic case of the

DGCNN method). However, as can be seen in Table 2, DGCNN fails to

clearly outperform GAPNet, while being nearly 2 times slower to perform

a forward pass, and thus has been left out of this review. Nevertheless,

applying convolutions to graphs or directly to unstructured data is defi-

nitely a promising research area that should be carefully explored in the

following years.

Another interesting research direction could be utilizing the well per-

forming main idea of OctNet to improve GAPNet as well. Instead of fix-

ing an arbitrary number of k for constructing the neighbourhood graph, it

seems reasonable to increase it for important areas, such as shape bound-

aries or areas with multiple sensory readings. A modified convolution

operation could then use this structure to perform efficient computations,

possibly learning similar features as the GAPLayer does, eliminating the

overhead of calculating attention also for some points the network ulti-

mately does not attend to.

References

[1] Joydeep Biswas and Manuela Veloso. Depth camera based indoor mobile
robot localization and navigation. In 2012 IEEE International Conference
on Robotics and Automation, pages 1697–1702, 2012.

[2] Can Chen, Luca Zanotti Fragonara, and Antonios Tsourdos. Gapnet: Graph
attention based point neural network for exploiting local feature of point
cloud, 2019.

[3] Aleksey Golovinskiy, Vladimir G. Kim, and Thomas A. Funkhouser. Shape-
based recognition of 3d point clouds in urban environments. 2009 IEEE
12th International Conference on Computer Vision, pages 2154–2161, 2009.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Proceedings of the
25th International Conference on Neural Information Processing Systems -
Volume 1, NIPS’12, page 1097–1105, Red Hook, NY, USA, 2012. Curran
Associates Inc.

[5] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven Waslan-
der. Joint 3d proposal generation and object detection from view aggrega-
tion, 2018.

[6] Zhongze Liu, Huiyan Chen, Huijun Di, Yi Tao, Jian wei Gong, Guang ming
Xiong, and Jianyong Qi. Real-time 6d lidar slam in large scale natural
terrains for ugv. 2018 IEEE Intelligent Vehicles Symposium (IV), pages
662–667, 2018.

[7] Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Jinzhu Li, Sheng Zhao, Enhong
Chen, and Tie-Yan Liu. Lightspeech: Lightweight and fast text to speech
with neural architecture search, 2021.

[8] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural
network for real-time object recognition. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 922–928, 2015.

[9] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J. Guibas. Frus-
tum pointnets for 3d object detection from rgb-d data, 2018.

[10] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation, 2017.

[11] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space, 2017.

[12] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning
deep 3d representations at high resolutions, 2017.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2017.

[14] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks, 2018.

[15] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Se-
quence to sequence for sets, 2016.

[16] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein,
and Justin M. Solomon. Dynamic graph cnn for learning on point clouds,
2018.

[17] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xi-
aoou Tang, and Jianxiong Xiao. 3d shapenets: A deep representation for
volumetric shapes, 2015.

[18] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud
based 3d object detection, 2017.

[19] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim, Abhinav Gupta,
Li Fei-Fei, and Ali Farhadi. Target-driven visual navigation in indoor
scenes using deep reinforcement learning, 2016.

Security analysis on challenge-response
based biometric authentication methods

Stefano Rumi
stefano.rumichiapella@aalto.fi

Tutor: Sanna Suoranta

Abstract

Biometric authentication protocols allow users to authenticate without pass-

words, using a unique physical property of the person. This paper will

focus on a type of protocols called challenge-response biometric authenti-

cation protocols. Their main characteristic is that they emit challenges,

which the human body responds to, and these challenges are never reused.

This paper will analyse in depth three different implementations of challenge-

response biometric authentication protocols: electrical muscle stimulation

authentication, reflexive eye movements authentication and hand-surface

vibration authentication.

The main purpose of the paper is to introduce the properties the proto-

col and compare the security, deployability and usability of the aforemen-

tioned systems.

All three systems have advantages and disadvantages in different areas.

Therefore, the choice between them must be done considering which prop-

erties are more valuable to the system being implemented.

KEYWORDS: Challenge-response, Biometric, authentication, Electrical mus-

cle stimulation (EMS), ElectricAuth, Reflexive Eye Movements, Hand-surface

vibration, Velody.

1 Introduction

Due to the current growth of web and mobile applications being devel-

oped by different vendors, password management has become a quotidian

problem [6]. Passwords rely on human memory, which encourages peo-

ple to reuse their passwords. According to Capela [2], Nordpass made

a survey where they found out that on average, a person has between

70 and 80 passwords, such numbers reveal the importance of developing

authentication methods which are not password based. There are three

classifications for authentication methods: those based on something that

the person knows, on something that the person has, or on something that

the person is [7].

Biometric authentication methods verify the identity of a person auto-

matically based on a unique human physical characteristic [10]; thus, on

what the person is. Verifying an identity automatically means that the

authentication process is done by a computer without asking for some-

thing that the person knows; therefore, eradicating the vulnerabilities

produced by human memory in password-based methods.

However, most of the existing systems for biometric authentication have

design flaws, such as allowing replay attacks [6]. These attacks consist

on the biometric data being captured by an attacker and replayed later

to gain access to a system identified as another person [9]. This can be

achieved by intercepting the communication in an authentication process

or by stealing the database where the biometric information is stored.

Active biometrics via challenge-response authentication methods prevent

these attacks by using different human properties each time that the user

authenticates [3]. Therefore, if the attacker obtains the user biometric

information from a previous authentication attempt, it cannot be reused.

This article focuses in the use of active biometric authentication meth-

ods and their security properties. It analyzes primarily three methods:

hand-surface vibration response [5], reflexive eye movement [8] and elec-

trical muscle stimulation [3]. The hand-surface vibration protocol analy-

ses hand responses to vibrations to authenticate the user. The reflexive

eye movement protocol consists of analyzing the reaction of eye pupils to

light variations. The electrical muscle stimulation protocol verifies the

user by applying electrical stimulation on the forearm of the users and

analyzes the movements on their fingertips.

This paper is organized as follows. Section 2 provides background infor-

mation on the aforementioned methods. Section 3 introduces the threat

model used to analyse the security of these methods. Sections 4, 5 and

6, present each method in detail and analyze their security properties.

Sections 7 and 8 compare these methods and section 9 presents the con-

clusions of the paper.

2 Challenge-response authentication

The research on biometric authentication methods is soaring due to the

development of wearables [1]. These are electronic devices that people use

in their body, such as smart watches or glasses. They trigger new chal-

lenges for authentication, as they do not use the classic computer systems

input methods. Authentication relies on sensors that the device has; the

majority of them rely on biometric properties of the person.

As the attention these devises rose, companies launched them to produc-

tion without a deep analysis of the security vulnerabilities that their au-

thentication methods have, allowing attackers to gain access [4] to those

devices. However, researchers have made a great effort to develop secure

methods to improve them.

Moreover, the effort on improving the biometric sensors, there has been

major developments improving how the protocols work. Consequently,

dynamic authentication protocols were created. They rely on a unique

way the human body responds to a certain challenge.

These protocols have two phases. The enrollment phase is when re-

sponses to challenges are recorded. In the authentication phase, one of

the prerecorded challenges is yielded and the response is compared to the

previous one, if it is accepted after such comparison, the user gains access

to the system.

Challenge-response protocols use once a specific challenge and then dis-

card them for future authentication attempts, thus preventing replay at-

tacks. As a consequence, these protocols should have a wide range challenge-

response pairs to be used.

One major security characteristic of these protocols, is that responses to

a challenge cannot be calculated, even if the attacker has other challenge-

response pairs recorded. This property is given by the nonlinearity of the

specific protocol implementation, and is studied in detail in the original

papers.

The following parts of this section introduce background information for

the specific authentication methods analysed in this paper, which will be

described later with more details.

2.1 Electrical muscle stimulation (EMS)

ElectricAuth [3] is an system that authenticates the users by analysing

their fingertip movements after applying electrical impulses to their fore-

arm. The fingertip movements are unique due to the human body physi-

ology, this enables the model to be a valid authentication method.

Although the protocol is not restricted to a single measurement method,

we will consider the version of the case study presented in the original

paper, which uses a VR-headset to measure the fingertip movements.

2.2 Reflexive eye movements

The system by Sluganovic et al. [8] records the users eye-reflexes to cer-

tain image inputs when the user registers. As these reflexes are unique

due to the physiological eye characteristic, the system later repeats the

visual stimuli and authenticates the user. This reflexes are the used with

fresh images to identify the user disabling possible replay attacks. Only

involuntarily eye movements are analyzed, as the voluntarily ones can

enable impersonation attacks.

2.3 Hand-surface vibration response

Velody [5] is a system based on people hands vibrating differently to the

same vibration input. This uniqueness is due to the hand’s physiological

characteristics. Moreover, the human hand is a nonlinear medium for

acoustic propagation due to its geometry and composition, which makes

the vibration responses difficult to predict.

The case study presented in the original paper uses speakers to produce

the vibration and a microphone to record the resulting ones.

3 Threat model

This section introduces a threat model, which is used to analyse the se-

curity of all three methods presented in this paper. This threat model

is produced by combining the threat models of each specific method and

serves to compare the security properties between them. The threats are:

• Impersonation: the attacker imitates what the authentic user would do

to authenticate.

• Replay attack: the attacker acquires a previously-used response of the

authentic user and replays it to the system.

• Synthesis attack: the attacker calculates a response of a challenge based

on previously observed challenge-response pairs.

In addition, some generic security concepts are used to evaluate all three

methods. False-negative rate is the rate of mistakenly rejecting a legiti-

mate user. False-positive is a rate which represents how many illegiti-

mate samples are accepted.

Out of those two measures, the equal error rate (EER) can be calculated.

Although there is no universal consensus on what a good EER value is,

it will be used to compare the security level of the systems. Considering

that the lower the value is, the more secure that the protocol is.

4 ElectricAuth

The ElectricAuth [3] system is composed by an array of electrodes and a

fingertip movement sensor. The electrodes are attached to the users fore-

arm and give electric impulses to the muscles in the region. Due to such

stimulation, the fingers of the user move involuntarily, these movements

are captured by the sensor. This involuntary fingertip movements are

unique due to the individual properties of human physiology. The wide

variety of available sensors to measure the fingertip movements include

virtual reality glasses, depth cameras and accelerometers.

This method by Chen et al. [3] sends six impulses to four muscles in

seven time gaps, and as the response of the muscle varies depending on

the previous state of contraction, it enables 68 million possible challenges

to be executed in 1.2 seconds.

Based on a prototype using virtual reality glasses as a movement sensor,

studies concluded that it prevents replay attacks completely, synthesis

attacks in a 99.75% of the (advanced) tests, and impersonation attacks

with an impressive 1.31% EER.

5 Reflexive eye movements

Sluganovic et al. [8] state that eye tracking devices have been massively

produced, but little effort has been done to achieve a high level of security.

Given that reflexive eye movements can be triggered by visual stimulus,

they have developed a challenge-response authentication system based

on such property. This system relies on eye-reflexes being unique in each

person due its physiology.

The proposed implementation uses a gaze-tracking device to capture the

eye movements and a screen to show the visual stimuli. Both of this com-

ponents can be found in mobile phones, as the frontal camera of such can

be used for gaze-tracking.

Studies on the prototype developed in the paper [8] showed a perfect

protection against replay and synthesis attacks, but disappointing results

against impersonation attacks. Depending on the time spent on authen-

ticating, the EER changes drastically. With a 0.5 stimuli, the EER is

above 12%, which is a lower value than in other authentication methods.

The EER value drops to 7% when using four seconds of stimuli, which

a competitive value against other methods but the usability is strongly

deteriorated.

Nevertheless, the paper by Sluganovic et al. [8] is fairly old (2016) for a

rapid-evolving industry, and the negative results might be improved with

current technology advances on the input devices.

6 Velody

Velody [5] is a system that enables user to authenticate using vibrations

on their hands and analysing their responses. Its implementation consists

of three main components: the vibration speaker, the vibrating surface

and the vibration receiver. The vibration speaker is a simple vibration

output like the ones found in mobile devices. The vibrating surface is

where the vibration from the speaker flows. It can be of almost any ma-

terial, as the only requirement is that it must vibrate linearly according

to the emitted vibration, which is the case for all regular surfaces without

intrinsic movement. The receiver is any device which can read the vibra-

tions on the surface, which could be a simple accelerometer that can be

found in the majority of modern mobile phones (built in 2015 or later).

These components work together to read vibration responses in the fol-

lowing way: The vibration speaker emits a vibration challenge, which

is transmitted to the user hand by the linearly-vibrating surface. After

reaching the hand which is a nonlinear-vibrating medium, the vibration

flows modified through the surface until it reaches the receiver.

As explained in previous sections, the vibration after passing through

the hand is unique due to the human physiology, and the specific hand

geometry and composition.

The received signal is then analysed by a complex pipeline-process which

in summary: Normalizes the signal, extracts features, scales those fea-

tures and uses a classification algorithm to conclude if it is the supposed

user or not.

The challenges are designed to be distinguishable among all users and

unpredicted from previously used challenges. These security considera-

tions for the challenge design contribute preventing impersonation and

synthesis attacks.

Studies based on a prototype of the system produced, conclude that it

prevents replay and synthesis attacks completely, and has an EER for

impersonation attacks of 5.8%, which is considered low.

7 Security comparison

This paper will use the previously introduced threat model to compare the

security properties of the authentication methods. Such model considers

impersonation attacks, replay attacks and synthesis attacks.

All three methods protect 100% of replay attacks because they are challenge-

response protocols and discard their challenge-response pairs after one

usage. This strongly protects users in the case of a data leak, which is

one of the major problems of traditional biometric authentication meth-

ods, because the leaked challenge-responses can be disabled and new ones

can be registered with ease.

Although synthesis attacks are not analysed in the reflexive eye move-

ments paper, we can assume that they are ignored because the own na-

ture of the analysed reflexes are impossible to synthesise. Given such

assumption, we end up having two methods, reflexive eye movements

and hand-surface vibration, which completely block synthesis attacks.

However, electrical muscle stimulation enables them, but its protection

against them is really high, as the studies concluded that it protects

99.75% of the attacks using cutting edge synthesis technology.

All three methods show great protection against replay and synthe-

sis attacks; therefore, we will distinguish them using impersonation at-

tacks. The reflexive eye movements method is the one that performs

worst, with an unacceptable EER of 12% in 0.5s of stimuli duration or

a barely-acceptable EER of 7% in 4s of stimuli, which makes the method

unusable for many applications. Better does the hand-surface vibration

method perform against impersonation attacks, as it gets an EER of 5.8%

in stimuli of only 200ms. The electrical muscle stimulation system per-

form best here, with an EER as low as 1.31% in 1.2s of stimuli duration.

8 Usability and deployability comparison

Usability and deployability are critical to biometric authentication pro-

tocols, it is the main reason for multiple of them to have been deployed

ignoring their issues with replay attacks. To enumerate a few, fingerprint

and face-recognition authentication systems are deployed in all modern

devices because of usability, although they are not as secure as other

methods.

One important aspect to consider is which hardware components are

used and how accessible they are. The EMS solution has complex hard-

ware (electrodes, and VR-headset or fingertip-accelerometers) which are

not to be found in any day-to-day devices. Moreover, the device should

have a sleeve to place correctly the electrodes in the forearm, which is

difficult to conceive in any widely spread device. The vibration speaker

and accelerometers used in the hand-surface vibration solution can be

found in every mobile device or tablet. However, as the vibration surface

should be at least the size of the hand, it can only be used in large devices,

leaving mobile devices out of the scope. The best of the methods regard-

ing these aspects is the reflexive eye movement authentication, as any

medium-quality mobile device frontal camera can be used to track the eye

movements.

The second aspect that this paper will consider is the time that the au-

thentication process takes. We will consider for this analysis only the

time of the challenge stimulation, as the previous and next steps of the

authentication process depend highly on the processing power of the de-

vice used for the implementation. The reflexive eye movement solution

stimuli lasts four seconds for acceptable security properties, this time is

considered to be long for devices we are authenticating to constantly, such

as mobile phones, but it can be an acceptable time for devices people au-

thenticate to just a couple of times a day. ElictricAuth’s stimuli lasts 1.2s

and Velody’s one just 200ms, both of them can be considered to be used in

any authentication scenario.

9 Conclusions

All three analysed challenge-response systems have similar security prop-

erties, the differences between them could be ignored in the majority of

the access control scenarios, as they perform sufficiently well in this as-

pect. However, they have very different usability and deployability prop-

erties, which would be decisive upon implementation.

Although ElectricAuth has the best security properties, it is complex to

deploy, as the authenticating device should have a sleeve to position the

electrodes in the forearm correctly.

Velody has the second best security properties, but it can only be used

in devices at least as large as a person’s hand.

On the contrary, the reflexive eye movement authentication system could

be applied in any device with a medium-quality camera, which makes it

easy to deploy, but it is the least secure system of all three.

It is worth to highlight once more that all these methods protect against

replay and synthesis attacks, which are attacks that are not even consid-

ered in the majority of presently deployed biometric authentication sys-

tems. Thus, making them very appealing for further investigation and

development for security experts.

References

[1] A. Bianchi and I. Oakley, “Wearable authentication: Trends and opportuni-
ties,” it - Information Technology, vol. 58, 01 2016.

[2] F. Capela, “Self-sovereign identity for the internet of things: A case study
on verifiable electric vehicle charging,” Ph.D. dissertation, University of
Groningen, 2021.

[3] Y. Chen, Z. Yang, R. Abbou, P. Lopes, B. Y. Zhao, and H. Zheng, “User au-
thentication via electrical muscle stimulation,” in Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems, ser. CHI ’21.
New York, NY, USA: Association for Computing Machinery, 2021.

[4] K. W. Ching and M. M. Singh, “Wearable technology devices security and
privacy vulnerability analysis,” International Journal of Network Security
& Its Applications, vol. 8, no. 3, pp. 19–30, 2016.

[5] J. Li, K. Fawaz, and Y. Kim, “Velody: Nonlinear vibration challenge-
response for resilient user authentication,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS
’19. New York, NY, USA: Association for Computing Machinery, 2019, p.
1201–1213.

[6] Z. Rui and Z. Yan, “A survey on biometric authentication: Toward secure
and privacy-preserving identification,” IEEE Access, vol. 7, pp. 5994–6009,
2019.

[7] S. Shunmugam and R. K. Selvakumar, “Electronic transaction authentica-
tion — a survey on multimodal biometrics,” in 2014 IEEE International
Conference on Computational Intelligence and Computing Research, 2014,
pp. 1–4.

[8] I. Sluganovic, M. Roeschlin, K. B. Rasmussen, and I. Martinovic, “Using re-
flexive eye movements for fast challenge-response authentication,” in Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, ser. CCS ’16. New York, NY, USA: Association for Com-
puting Machinery, 2016, p. 1056–1067.

[9] D. F. Smith, A. Wiliem, and B. C. Lovell, “Face recognition on consumer
devices: Reflections on replay attacks,” IEEE Transactions on Information
Forensics and Security, vol. 10, no. 4, pp. 736–745, 2015.

[10] J. Wayman, A. Jain, D. Maltoni, and D. Maio, An Introduction to Biometric
Authentication Systems. London: Springer London, 2005, pp. 1–20.

Multiagent Deep Reinforcement Learning
for Video Game Playing

Zixuan Liu
zixuan.liu@aalto.fi

Tutor: Debner Anton

Abstract

Deep reinforcement learning has shown promising performance in many

research fields. One of its recent successes is in the area of video-game play-

ing. Recent works have focused on learning beyond single agent settings

and explored multiagent scenarios in complex video-game environments,

such as StarCraft. The primary motivation of this report is to review the

state-of-art multiagent deep reinforcement learning for video-game play-

ing. We review the recent works related to this emerging area, compare

the fundamental difference between learning multiagent and single-agent,

explore the open challenges as well as point out some possible future direc-

tions. We hope this work can give a broad overview of existing literature

and resources available for future research.

KEYWORDS: Reinforcement Learning, Deep Learning, Multiagnent Deep

Reinforcement Learning, Game AI

1 Introduction

Deep Reinforcement Learning (DRL) has been widely used for control-

ling agents in complex environments and shown promising performance

in various research fields. Among all of them, a considerable amount

of existing DRL methods has been applied in video-game playing. DRL

has been successfully adopted to play single agent games (one agent ver-

sus another) and a human-level agent can even beat human professionals

[27]. However, multiple agents are needed to control and cooperate with

each other in a more complex game environment, especially in real-time

strategy games, such as StarCraft and GTA. Multiagent Deep Reinforce-

ment Learning (MARL) has recently been used to address the problem

but still faces various challenges, include the non-stationary problem [26]

and over-generalization [4].

The primary motivation of this report is to review the state-of-art mul-

tiagent deep reinforcement learning for video-game playing. We review

the recent works related to this emerging area, compare the fundamen-

tal difference between learning multiagent and single-agent, explore the

open challenges as well as point out some possible future directions. It

is important to note that there are many surveys and critiques on MARL

[6]. However, this report works in an effort to apply MARL techniques in

video-game playing.

The report is structured as follows. Section 2 introduces some basic DRL

algorithms used in video-game playing, such as DQN and REINFORCE.

Section 3 reviews the DRL methods for multiagent setting and overviews

recent research related to this field. Section 4 explores the application of

MARL in StarCraft. Section 5 concludes the report.

2 Deep Reinforcement Learning Approaches

Reinforcement learning formalizes the problem of an agent interacting

with the environment, which is usually described by a Markov Decision

Process (MDP) [22]. In general, reinforcement learning mainly consists

of five elements: S denotes the states of the environment, A denotes the

actions of the agent, T represents the transition probability from one state

S to another state S
′ , R(s, a) defines the immediate reward given to the

agent when it performs action a in state s, and γ determines the discount

factor that balances between the immediate rewards and future rewards.

Thus, an MDP can be denoted by ⟨S,A, T,R, γ⟩.
Q-learning [34] is one of the most famous algorithms for reinforcement

learning. A Q-learning agent updates Q-value as follows:

Q(S,A)← Q(S,A) + α[R+ γmax
a

Q(S
′
, a)−Q(S,A)] (1)

where α is the learning rate. During the iteration, a Q-learning agent

which starts in state S, takes an action A as Q(S,A), receives the re-

ward R, and transfers to next state S
′ . The best future state-action pair

maxaQ(S
′
, a) is selected as the optimal Q function. Q-learning has been

proven to be flexible and efficient in solving small reinforce learning cases.

However, Q-learning algorithm needs to maintain a Q-table internally. In

the case of a large state spaces, the Q-table can be extremely large and

the lookup efficiency is prohibitively slow, which limits the application

scenarios of Q-learning. In recent years, with the rise of neural networks,

reinforcement learning based on deep learning has solved the above prob-

lems and become the mainstream, namely, Deep Reinforcement Learning

(DRL). Below we review two types of DRL methods: value-based methods

and policy gradient methods.

2.1 Value-based Methods

Q-learning can use a deep neural network as a function approximation

for the large Q-table [23]. This combination generates one major break-

through algorithm called Deep Q-Network (DQN) [17]. The Q-Network

used in DQN consists of several layers. The input layer receives the last

four stacked frames an agent encountered in the game. Then, several con-

volution layers capture the features from the input frames. At last, the

learned features go through some fully-connected layers and the network

output the actions that the agent can take. To improve the stability of the

learning process, DQN keeps an experience replay (ER) buffer [11], which

stores batches of ⟨S,A,R, S
′⟩ tuples. During the training process, random

mini-batches of ⟨S,A,R, S
′⟩ tuples are sampled from the ER buffer and fed

into the Q-Network. In addition to the Q-Network, DQN maintains an-

other copy of the parameters of the Q-Network as the target network. The

parameters of the target network are updated according to Q-Network pe-

riodically to stabilize the training.

DQN has been improved in many ways. For example, the input of the

Q-Network is four consecutive frames because DQN assumes full state

observations. Therefore, the performance of DQN declines when given in-

complete state observations, such as using only one frame as input. Deep

Recurrent Q-Network (DRQN) [5] was proposed to address the partially

observations problem. In practice, the penultimate layer of the Deep Re-

current Q-Network is replaced with a Long Short-Term Memory (LSTM)

layer [7]. In this setting, DRQN maintains a memory capacity to work

with one input frame. Other improvements include using double estima-

tors with Double DQN [33] and finite state controllers [16].

2.2 Policy Gradient Methods

Value-based methods have been successfully applied in many fields. How-

ever, it comes with some disadvantages, such as not being able to deal

with continuous action space and stochastic policy problems. While Pol-

icy Gradient Methods estimate the probability that one action A is taken

at a certain state S given the parameter of the network θ. REINFORCE

[35] is one of the basic policy gradient algorithms for such domains. It

first samples several possible actions based on the policy and updates the

parameter θ using the following equation:

∇θ

∑

A

πθ(S,A)R(S) (2)

where R(S) is the discounted cumulative rewards. This equation maxi-

mizes the likelihood that the most successful actions should be taken in

the future. However, REINFORCE algorithm assumes sampling a com-

plete episode to update the parameters, which is not efficient. Actor-Critic

is an algorithm [30] using temporal difference (TD) learning to update

the parameter periodically. The Actor-Critic Policy Gradient is composed

of two parts: an actor learns policy πθ(S,A) and a critic estimates the

rewards R using Q(S,A) value. The loss function is given by:

∇θlogπθ(S,A)Q(S,A) (3)

In conclusion, we have reviewed some of the famous algorithms about

reinforcement learning. However, the list is not exhaustive and more

state-of-art techniques can be found in [1].

3 Multiagent Deep Reinforcement Learning (MARL)

In this section, we review the framework of Multiagent Deep Reinforce-

ment Learning (MARL) and the recent research.

Multiagent learning to the same level of performance as a single agent

is inherently complex. Because agents not only interact with the envi-

ronment, they interact with each other at the same time [2]. In general,

consider a simple Markov game ⟨S,N,A, T,R⟩ as the extension of MDP to

multiple agents [12]. Compared to the MDP discussed in Section 2, the

transition T and the reward function R in multiagent settings depend on

the actions of all N agents A = A1×...×AN , which means, R = R1×...×RN

and T = S × A1 × ... × AN . Let i denote the i-th agent, and −i = N \ {i}
represents the rest of the agents, then the value function V π

i (S) is defined

as follows:

V π
i (S) =

∑

A

π(S,A)
∑

S′
T (S,Ai, A−i, S

′
)[Ri(S,Ai, A−i, S

′
) + γVi(S

′
)] (4)

where π(S,A) =
∏

j πj(S,Aj). The optimal policy is the one that maximize

the V function, which depends on the policy of other agents.

π∗
i (S,Ai, π−i) = argmax

πi

V
πi,π−i

i (S)

= argmax
πi

∑

A

π(S,A)
∑

S

T (S,Ai, A−i, S
′
)[Ri(S,Ai, A−i, S

′
)

+ γV
(πi,π−i)
i (S

′
)]

(5)

where π(S,A) = πi(S,Ai)π−i(S,A−i). The equation above shows that the

environment is no longer stationary in the multiagent setting since the

policy of other agents π−i(S,A−i) changes over time [10], which leads to

some convergence problems of MARL. As described by Littman [13], the

convergence can only be guaranteed in adversarial environments, where

an optimal policy can be found against a random opponent by minimizing

Q-learning [12]. In cooperative environments where all agents coordinate

with each other and share the same reward function, special assumptions

should be made to obtain optimal convergence. While in other environ-

ments, no value-based MARL methods guarantee convergence.

Recent work on MARL has mainly focused on learning communication

and cooperation. In practice, agents need to cooperate in a partial obser-

vation environment by maximizing their collective utility function. For

better cooperation, agents usually share information by sending messages

directly through communication protocols [3] or via a shared memory [21].

Reinforced Inter-Agent Learning (RIAL) [3] is an algorithm that uses deep

neural networks as a discrete communication channel. The neural net-

work outputs the same Q-value as in other DRL methods. Moreover, it

outputs a message used to communicate with other agents. RIAL main-

tains another network to share parameters with all the agents. In a simi-

lar algorithm called Differentiable Inter-Agent Learning (DIAL) [3], mes-

sages are discretized and transformed into several communication actions

that need to be executed. Instead of using a discrete communication chan-

nel, CommNet [29] used a communication channel with a continuous vec-

tor, where each agent receives the summed transmissions of other agents.

Since the communication vectors are continuous, it is differentiable and

can be trained via back-propagation, which makes the model simple and

versatile.

Another technique in learning communication is Memory-driven (MD).

Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [15] is an al-

gorithm that uses shared memory for communication. During execution,

each agent has access to a specific memory and writes information. In

this case, the agent can learn policies that only depend on local informa-

tion and own observations.

In conclusion, learning communication and cooperation still faces major

challenges in MARL field. More discussions can be found in [14].

4 MARL Methods for StarCraft

StarCraft is one of the most popular games in the Real-Time Strategy

(RTS) genre. StarCraft consists of several competitions that require com-

plex strategies and multi-agent control techniques, thus providing an ideal

platform for multi-agent study and control with different difficulty levels

[9]. The goal of StarCraft AI is to solve numerous challenges, including

multi-agent collaboration, opponent modeling and adversarial planning

[19]. Currently, researches about improving StarCraft AI have made im-

pressive progress and many API and libraries have been developed to sup-

port the study, such as Brood War API (BWAPI), TorchCraft [31], µRTS

[18] and ELF [32]. However, building an intelligent game AI for the com-

plete StarCraft is still out of reach and many researchers regard multi-

agent management as the first step to develop StarCraft AI [24].

Particularly, in this paper, we focus on StarCraft micromanagement

tasks [31], which is considered to be one of the most complex games be-

cause of the large possible states space. In this task, each agent controls

their role to destroy the army of enemies with different terrain conditions.

One major challenge of the task is that the parameter spaces grow expo-

nentially when controlling more agents and we cannot tackle the dynamic

change in the number of agents.

Multiagent Bidirectionally-Coordinated Network (BiCNet, 2017) [20] for-

malizes the StarCraft micromanagement tasks as a zero-sum (adversarial

environment) Stochastic Game, where the agents collaborate within their

teams and compete between teams. The paper considers that both con-

trolled agents and enemy agents have the same continuous action spaces

A and B, which reduces the redundancy in large discrete action spaces. In

terms of the reward function, the agents within the same team share the

same reward and a time-variant reward based on the difference between

two time steps is introduced as the global reward:

r(S,A,B) =
1

M

M∑

j=N+1

∆Rj(S,A,B)− 1

N

N∑

i=1

∆Ri(S,A,B) (6)

However, the above reward function comes with potential drawbacks, such

as it ignores that each agent has its own goal to drive cooperation. To ex-

tend this behaviour, each agent maintains a top-K list that records the

attribution of other agents currently being interacted:

ri(S,A,B) =
1

|j|
M∑

j=N+1∩top−K(i)

∆Rj(S,A,B)− 1

|i′ |

N∑

i′=1∩top−K(i)

∆Ri′ (S,A,B)

(7)

A bidirectionally-coordinated net (BiCNet) is proposed to provide commu-

nication between different agents. The architecture of the network is il-

lustrated in Figure 1. It is based on bi-directional RNN and consists of

two parts: a policy network and a Q-Network.

Figure 1. The architecture of Bidirectionally-Coordinated Net (BiCNet).

The bi-directional recurrent mechanism is used as a communication

middleware between agents. Experiments were performed with differ-

ent settings of the StarCraft combats. The results highlighted the fact of

Inputs CoolDown HitPoint OwnSumInfo OwnMaxInfo

Type ∈ R ∈ R ∈ R ∈ R

Dimension 1 1 8 8

Inputs EnemySumInfo EnemyMaxInfo TerrainInfo Action

Type ∈ R ∈ R ∈ R ∈ cat.

Dimension 8 8 8 9

Table 1. State representation of StarCraft. R denotes real value and cat. denotes the type
of input is categorical and one-hot encoded.

a strong correlation between specific rewards and policies, which can be

further investigated to learn how policies are shared over the networks.

To further solve the problem of large parameter spaces, Parameter Shar-

ing Multi-agent Gradient Descent Sarsa (PS-MAGDS, 2018) [25] algo-

rithm constructs a special state representation of the input of StarCraft,

which is composed of eight parts, as depicted in Table 1. This special rep-

resentation is independent of the changes in the number of agents, thus

is efficient and can be generalized to other combat games. Moreover, the

input is further divided into three components: the current step state in-

formation, the last step state information and the last step cation. The

architecture of the learning model of one agent in StarCraft is shown in

Figure 2. The three parts of state representation are the input of the neu-

ral network. Then the network outputs the probabilities of turning to 8

directions with a fixed distance, including Up, Down, Left, Right, Upper-

left, Upper-right, Lower-left and Lower-right, and whether attacking. If

choosing to attack, the agent will fire on the enemy agents.

To train the model, PS-MAGDS algorithm extends the traditional SARSA

methods to multiple agent settings. The proposed method shares the pa-

rameters of the policy network among all the agents and uses eligibility

traces [28] to tackle the delayed rewards. The method updates the policy

network using gradient-based method as follows:

δt = Rt+1 + γQ(St+1, At+1; θt)−Q(St, At; θt) (8)

θt+1 = θt + αδtet (9)

et = γλet−1 +∆θtQ(St, At; θt), e0 = 0 (10)

where et refers to the eligibility traces at time t and λ is a factor that

determines the weight of each backup in et.

Figure 2. The architecture of the learning model of one agent in StarCraft.

Experiments have been conducted in both small and large scale micro-

management scenarios in StarCraft and have shown better performance

over other baseline algorithms. The cooperative behaviors between dif-

ferent agents can be successfully learned by sharing the parameters of

the policy network and the proposed method defeats the built-in AI with

100% win rates in small scale scenarios. However, exist some coordination

strategies can not be effectively learned by the agents and more intelligent

algorithms should be considered. Moreover, it is not sufficient to solve the

delayed reward only using eligibility traces. Advanced methods, such as

hierarchical reinforcement learning [8], should be further explored.

5 Conclusion

Deep reinforcement learning has shown promising performance in many

research fields. One of its recent successes is in the area of video-game

playing. A natural next step is to investigate multiagent deep reinforce-

ment learning scenarios in complex strategy game environments, such as

StarCraft. However, learning in multiagent settings can be intrinsically

difficult since the environment is non-stationary, which leads to various

convergent issues.

This paper provided an overview of multiagent deep reinforcement learn-

ing algorithms applied in video-game playing. First, we reviewed the ba-

sic concepts and classical methods of deep reinforcement learning. Then,

we focused on the recent works of multiagent deep reinforcement learn-

ing. We provided the general terms of MARL, exemplified the reason that

MARL is intrinsically complex and pointed out some techniques for agents

learning communication and cooperation in multiagent settings. In ad-

dition, we explored the performance of two specific algorithms applied

in StarCraft: Multiagent Bidirectionally-Coordinated Network (BiCNet)

and Parameter Sharing Multi-agent Gradient Descent Sarsa (PS-MAGDS).

We also reflected on the potential challenges in each of the algorithms.

Recent work demonstrates that some practical problems hinder us to

build MARL methods in complex video-game environments. However,

some reviewed methods can achieve notable performance and we hope

this work can give a broad overview of existing literature and resources

available for future research.

References

[1] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil An-
thony Bharath. Deep reinforcement learning: A brief survey. IEEE Signal
Processing Magazine, 34(6):26–38, 2017.

[2] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive
survey of multiagent reinforcement learning. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C (Applications and Reviews), 38(2):156–
172, 2008.

[3] Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon
Whiteson. Learning to communicate with deep multi-agent reinforcement
learning. Advances in neural information processing systems, 29, 2016.

[4] Nancy Fulda and D. Ventura. Predicting and preventing coordination prob-
lems in cooperative q-learning systems. In IJCAI, 2007.

[5] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for par-
tially observable mdps. In 2015 aaai fall symposium series, 2015.

[6] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. A survey and
critique of multiagent deep reinforcement learning. Autonomous Agents
and Multi-Agent Systems, 33:750 – 797, 2019.

[7] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral computation, 9(8):1735–1780, 1997.

[8] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenen-
baum. Hierarchical deep reinforcement learning: Integrating temporal ab-
straction and intrinsic motivation. Advances in neural information process-
ing systems, 29, 2016.

[9] Raúl Lara-Cabrera, Carlos Cotta, and Antonio J Fernández-Leiva. A review
of computational intelligence in rts games. In 2013 IEEE Symposium on

Foundations of Computational Intelligence (FOCI), pages 114–121. IEEE,
2013.

[10] Guillaume J Laurent, Laëtitia Matignon, Le Fort-Piat, et al. The world of
independent learners is not markovian. International Journal of Knowledge-
based and Intelligent Engineering Systems, 15(1):55–64, 2011.

[11] Long Ji Lin. Programming robots using reinforcement learning and teach-
ing. In AAAI, pages 781–786, 1991.

[12] Michael L Littman. Markov games as a framework for multi-agent rein-
forcement learning. In Machine learning proceedings 1994, pages 157–163.
Elsevier, 1994.

[13] Michael L Littman. Value-function reinforcement learning in markov games.
Cognitive systems research, 2(1):55–66, 2001.

[14] Ryan Lowe, Jakob Foerster, Y-Lan Boureau, Joelle Pineau, and Yann Dauphin.
On the pitfalls of measuring emergent communication. arXiv preprint
arXiv:1903.05168, 2019.

[15] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and
Igor Mordatch. Multi-agent actor-critic for mixed cooperative-competitive
environments. Advances in neural information processing systems, 30,
2017.

[16] Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and Leslie Pack Kael-
bling. Learning finite-state controllers for partially observable environ-
ments. arXiv preprint arXiv:1301.6721, 2013.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fid-
jeland, Georg Ostrovski, et al. Human-level control through deep reinforce-
ment learning. nature, 518(7540):529–533, 2015.

[18] Santiago Ontanón. The combinatorial multi-armed bandit problem and its
application to real-time strategy games. In Ninth Artificial Intelligence and
Interactive Digital Entertainment Conference, 2013.

[19] Santiago Ontanón, Gabriel Synnaeve, Alberto Uriarte, Florian Richoux,
David Churchill, and Mike Preuss. A survey of real-time strategy game
ai research and competition in starcraft. IEEE Transactions on Computa-
tional Intelligence and AI in games, 5(4):293–311, 2013.

[20] Peng Peng, Ying Wen, Yaodong Yang, Quan Yuan, Zhenkun Tang, Haitao
Long, and Jun Wang. Multiagent bidirectionally-coordinated nets: Emer-
gence of human-level coordination in learning to play starcraft combat games.
arXiv preprint arXiv:1703.10069, 2017.

[21] Emanuele Pesce and Giovanni Montana. Improving coordination in small-
scale multi-agent deep reinforcement learning through memory-driven com-
munication. Machine Learning, 109(9):1727–1747, 2020.

[22] Martin L. Puterman. Markov decision processes: Discrete stochastic dy-
namic programming. In Wiley Series in Probability and Statistics, 1994.

[23] Martin Riedmiller. Neural fitted q iteration–first experiences with a data
efficient neural reinforcement learning method. In European conference on
machine learning, pages 317–328. Springer, 2005.

[24] Kun Shao, Yuanheng Zhu, and Dongbin Zhao. Cooperative reinforcement
learning for multiple units combat in starcraft. In 2017 IEEE Symposium
Series on Computational Intelligence (SSCI), pages 1–6. IEEE, 2017.

[25] Kun Shao, Yuanheng Zhu, and Dongbin Zhao. Starcraft micromanage-
ment with reinforcement learning and curriculum transfer learning. IEEE
Transactions on Emerging Topics in Computational Intelligence, 3(1):73–84,
2018.

[26] Yoav Shoham, Rob Powers, and Trond Grenager. If multi-agent learning is
the answer, what is the question? Artif. Intell., 171:365–377, 2007.

[27] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,
Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human knowledge. nature,
550(7676):354–359, 2017.

[28] Satinder P Singh and Richard S Sutton. Reinforcement learning with re-
placing eligibility traces. Machine learning, 22(1):123–158, 1996.

[29] Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communi-
cation with backpropagation. Advances in neural information processing
systems, 29, 2016.

[30] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour.
Policy gradient methods for reinforcement learning with function approxi-
mation. Advances in neural information processing systems, 12, 1999.

[31] Gabriel Synnaeve, Nantas Nardelli, Alex Auvolat, Soumith Chintala, Timo-
thée Lacroix, Zeming Lin, Florian Richoux, and Nicolas Usunier. Torchcraft:
a library for machine learning research on real-time strategy games. arXiv
preprint arXiv:1611.00625, 2016.

[32] Yuandong Tian, Qucheng Gong, Wenling Shang, Yuxin Wu, and C Lawrence
Zitnick. Elf: An extensive, lightweight and flexible research platform for
real-time strategy games. Advances in Neural Information Processing Sys-
tems, 30, 2017.

[33] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 30, 2016.

[34] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learn-
ing, 8:279–292, 2004.

[35] Ronald J Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine learning, 8(3):229–256, 1992.

The Design, Architecture and Scalability
of Microservices

Jayshree Rathi
jayshree.rathi@aalto.fi

Tutor: Antti Ylä-Jääski

Abstract

Microservices architecture, which emerged from service-oriented architec-

ture, has become a leading design approach to developing applications for

large-scale systems. Microservices are getting increasingly widespread in

these systems owing to the many benefits it provides, such as shorter de-

ployment cycles, increased scalability, and effective separation of services.

This article provides a generalized introduction of microservices architec-

ture, compares it with traditional architectures, and evaluates microser-

vices from a technological and architectural standpoint.

KEYWORDS: microservices, monolithic, scalability, service-oriented-architecture

(SOA)

1 Introduction

In recent years, the demand for domain-driven design, continuous deliv-

ery, scalability, and automation has given rise to the development and

advancement of microservices [1]. Microservices are small, autonomous

services that interact with each other through standard interfaces. Each

of these services is developed, deployed, and maintained independently.

The microservices approach enables flexibility in the use of programming

languages and databases. The microservices do not exchange data but

communicate with each other using the Representational State Transfer

(REST) protocol [2]. The main goal of microservices is to isolate a business

functionality into its service, allowing the services to run independently

of each other and perform their associated tasks.

Microservices offer several advantages, including increased scalabil-

ity, fault isolation, and agility. Microservices also fits well with DevOps,

which streamlines the process of moving software from development to

production by removing barriers between software development and IT

operations [3]. These benefits have prompted software giants to leverage

microservices patterns and deploy large applications in the cloud as a col-

lection of small services that can be developed, tested, deployed, scaled,

operated, and upgraded independently. As a result, microservices archi-

tecture has been instrumental in increasing their agility, reducing com-

plexity, and scaling their cloud applications more efficiently [2]. This pa-

per focuses on some of the critical benefits of microservices over monolithic

architecture. It reviews its design and architecture approaches, empha-

sizing microservices for scalability.

This paper is organized in the following manner. Section 2 compares

microservices and monolithic architecture; Section 3 discusses the funda-

mental concepts of building and modeling microservices; Section 4 dis-

cusses one of the key features of microservices: scalability; Section 5

presents a generic idea of integration, communication and deployment

in microservices, and Section 6 explores a case study that compares mi-

croservices over monoliths.

2 Key Benefits of Microservices Architecture

The microservices design provides numerous advantages over monolithic

and service-oriented architectures, including technological heterogeneity,

replaceability, scalability, simplicity of deployment, and resilience [4].

Monolithic applications consist of a single codebase on which all the ap-

plication logic and services are developed. This codebase is shared across

developers, and any change in a monolithic codebase impacts a sizable

portion of the system. The updated code should ensure that all other ser-

vices continue to work. Thus, the changes stack up between releases with

a monolithic program, increasing the deployment risk. More importantly,

this presents a single point of failure. Multiple machines can be used in

the monolithic system to reduce the possibility of this failure, but this

increases cost and adds redundancy.

Some enterprises have used Service-Oriented Architecture (SOA) to re-

solve some of the issues associated with monolithic systems. In the SOA,

an application is divided into a set of business functionalities, and it of-

fers services through different protocols. The protocols include SOAP and

routing mechanisms, such as ESB (Enterprise Service Bus) [2]. However,

SOA implementations can be time-expensive and sophisticated, adding

a layer of undesirable overhead. Furthermore, ESBs require a complex

configuration on a large scale and can generate high latency, providing a

single point of failure.

Microservices enable building resilient systems that handle the total

failure of services [1]. With microservices, a single service can be changed

and deployed independently. It allows a feature to deploy the code faster,

hence providing continuous delivery. The continuous delivery method en-

ables companies, such as Amazon and Netflix [5], [6] to use microservices

architecture and get their latest functionality out to customers as fast as

possible. In addition, being a system composed of multiple services, mi-

croservices allows the use of heterogeneous technology stack based on the

use case and suitability for a particular service. Microservices adopt SOA

concepts with a focus on agility and simplicity.

UI

Business Logic

Monolith

DB

UI

Enterprise SVC
Bus

Service

DB

Service

UI

MS MS MS MS

DB DB DB DB

Monolithic Service - Oriented Microservices

Figure 1. Monolithic, Service-Oriented and Microservices Architecture

Adapted from [7]

3 Building and Modeling Microservices

As discussed in Section 2, microservices architecture offers numerous

advantages over conventional monolithic architecture. However, imple-

menting a system based on Microservice Architecture (MSA) approach

may increase the development cost and complexity of the system [8]. There-

fore, while designing microservices, the boundaries of microservices must

be defined. Instead of quantifying the “micro” of the microservice to a nu-

merical value, companies define the “quality,” the use case of the service

to be used, and the functionality it fulfills [9].

Evans [10] presents a model-centric approach to software design and

discusses bounded contexts and domain-driven philosophy that associates

with the challenges of designing and building microservices. Model-driven

development provides an efficient way to design a microservices-based

system and helps define the scope of the system. The key concepts to

consider while modeling microservices are discussed below [11].

• Single Responsibility Principle: Each microservice should be re-

sponsible for a single task. When it comes to developing microservices,

this is one of the most crucial design principles. For optimal agility, it

aids in defining the scope and boundary of the service. Moving away

from this idea may result in creating a new monolithic system.

• High Cohesion: A microservice that is highly cohesive has a single

responsibility and completes it. It should not share responsibilities with

other components, delegate responsibilities to other services, or attempt

to complete tasks that are not related to it.

• Loose Coupling: The entire concept of a microservice is that it en-

ables updating one service and deploying it without affecting the rest

of the system. Loose coupling of the services ensures that modification

to one service should not necessitate a change to other services. This is

contingent on a variety of factors. Certain software development prac-

tices should be avoided or minimized to ensure loose couplings, such

as shared libraries, database sharing, over-exposure of a service, syn-

chronous communication, and implementation sharing.

The discussions above do not reach any significant conclusions on the

modeling language better suited for the Model-driven Development (MDD)

of MSAs. Mike [9] compares the effectiveness of two different approaches

to microservices modeling, namely the domain-specific modeling language

- Language Ecosystem for Modeling Microservice Architecture (LEMMA)

and the Unified Modeling Language (UML). The UML is a common (stan-

dard) modeling approach for service-based software systems that is also

applicable to MSA-based systems [12]. However, being a general-purpose

language, the UML lacks specialized ideas for microservices, which may

lead to misleading models. This is because the generic modeling parts of

UML must be modified to represent the specific functionalities that the

MSA is trying to encapsulate. On the contrary, LEMMA is a textual-

modeling language where each modeling language is aligned with a spe-

cific MSA to fulfill a particular business purpose. LEMMA-based model-

ing serves domain experts, service developers, and operators, also allow-

ing to customize the deployment [13], [14].

4 Scalability

Scalability is the ability of a system to manage an increasing quantity of

work by increasing resources simultaneously [15]. Building scalable soft-

ware allows planning for future growth while also producing a leaner solu-

tion that meets present demands without adding unnecessary complexity.

Scalability is one of the most important factors when designing software

systems, as they help deal with failure and increase performance.

Generally, when discussing scaling in monolithic applications, the en-

tire application is scaled in one piece. Although a single component expe-

riences high demand, the entire monoliths need to be scaled, increasing

the cost and demand of a powerful hardware [16]. Microservices architec-

ture overcomes this limitation of monoliths. Microservices are designed

according to business functionalities and require a full-stack software de-

ployment for each business sector. Furthermore, since microservices are

independent and autonomous, only those services experiencing a growing

load can be scaled. Some of the common scaling techniques are discussed

below:

• Splitting Services: Microservices are self-contained processes that

communicate over the network, allowing to migrate them to their hosts

to boost performance and scale. This can also improve the robustness of

the system because a single host outage will affect a smaller number of

microservices.

• Risk Distribution: One strategy to scale for resilience is to avoid oper-

ating several services on the same host. Several virtualization solutions

ensure that the hosts are distributed across multiple separate physical

boxes to mitigate this risk. Another approach could be to ensure that

services are not all running on a single rack in the data center or scat-

tered over multiple data centers.

• Load Balancing: Load balancing is the technique of spreading incom-

ing network traffic amongst servers server pools at a concurrent or dis-

crete period. The simplest method to accomplish resilience and scalabil-

ity with a microservice that exposes a synchronous HTTP endpoint is to

run a microservice instance on numerous hosts behind a load balancer.

Load balancers enable transparent scaling of microservices to any ser-

vice customers. This increases the capacity to manage load and also

mitigates the impact of a single host failure.

Clients Load

Balancer

Requests

Instance 1

Instance 2

Instance 3

Figure 2. Server-side load balancing approach for scaling

Adapted from [17]

A microservice that is architected to be scalable still faces some chal-

lenges. With microservices, scaling may include managing many distinct

components and services. This means that either all components must

be upscaled simultaneously, or there must be a technique for determining

which components should upscale and guaranteeing that they continue to

integrate with the rest of the system [18]. Since every microservice is a

part of intricate dependency chains, if any dependency of microservices

does not scale with it, this creates a bottleneck for its clients [19]. In

addition, scaling microservices should not compromise the end-user expe-

rience. The speed and reliability of the system should be intact with the

implementation of a scalability solution.

While scalability and performance are distinct measures, they are in-

extricably linked. Concurrency and partitioning are two critical features

of designing a microsystem that will affect its scaling performance [18].

Concurrency is a term that refers to the process of breaking down each

particular task into smaller components. Meanwhile, partitioning will

decide how efficiently these smaller bits may be processed in parallel.

Scalability is determined by the efficiency with which jobs are divided

and decomposed, whereas performance measures the capacity of the sys-

tem to process these tasks efficiently. Over time, a popular and successful

microservice system can anticipate a consistent increase in traffic and re-

source demands. Each microservice must scale independently and as part

of a more extensive system to scale successfully. This necessitates that

each dependency of the microsystem scales in lockstep with it.

5 Communication, Integration and Deployment

Microservices communicate with one another via messaging, a lightweight

and straightforward mechanism. Microservices can communicate using

synchronous or asynchronous messaging techniques and a variety of mes-

sage formats, depending on their purpose and requirements. REST is

one of the most frequently used synchronous messaging techniques in mi-

croservices, where an HTTP request-response defines constraints based

on the resource- Application Programming Interface (API) [20]. Asyn-

chronous messaging, such as AMQP, STOMP, or MQTT, can be used in

situations where an immediate response is not required [20]. Advanced

Queue Messaging Protocol (AMQP) is an open standard application layer

protocol for reliable and secure asynchronous messaging. AMQP is a bi-

nary, flow-controlled, encryption-enabled communication protocol [20].

As microservices perform distinct tasks within their scope, implement-

ing a business use case requires coordination and delivery of the desired

result by multiple Microservices. Thus, inter-service communication must

occur via a lightweight message bus or gateway with minimal routing

and no business logic to avoid architectural complexity. There are vari-

ous ways to perform inter-service communication, such as point-to-point

inter-service communication and API Gateway Inter-services Communi-

cation, depending on the requirements and frequency of communication

[20].

Deployment is one of the most complex tasks in microservices. Mi-

croservices should be deployed independently to ensure agility and mini-

mize the impact on the application. Microservices can be deployed using

Docker [20]. This further allows the liberty to break down a microservice

into different processes, and each process can be run in a separate docker

container. Provisioning tools, such as Kubernetes, can also manage and

orchestrate the docker containers.

6 Microservice Case Study

Microservices design patterns have enabled businesses to move applica-

tions to the cloud and gain agility and scalability using cloud technolo-

gies, such as Infrastructure as a Service (IaaS), and Platform as a Ser-

vice(PaaS). Companies can increase efficiency in their operations by tran-

sitioning to IaaS/PaaS solutions, which offer scalability on-demand and

handle peak periods [2]. Microservice architecture is a good fit for itera-

tive development processes, such as agile, and DevOps [21]. Mario and

Oscar [2] present a case study in which they developed and deployed a

cloud-based enterprise application utilising both a monolithic approach

and a microservice architecture that is based on the Play-web framework.

The case study uses the Play web framework with Java to implement

both architectures. The embedded server Netty, optimized for rapid startup

and low resource consumption, is utilized to execute the play application.

Two distinct applications were used to implement the monolithic architec-

ture: a web and a front-end application. Four independent applications

were used to implement the microservice architecture: service 1, service 2,

gateway application, and front-end application. Both architectures were

deployed using Amazon Web Services (AWS). In the monolithic architec-

ture deployment, a single instance of the web server was used, whereas,

in the microservice architecture deployment, three instances were used:

one for each microservice and one for the gateway [2].

In the case study, aspects of the monolithic vs. microservice architec-

ture have been analyzed at different levels, including performance, devel-

opment methodology, deployment and operation, and the business adop-

tion process. The implementation of microservice architecture on AWS re-

quired the deployment of numerous independent applications (microser-

vices and gateways). Each microservice or gateway required unique ap-

plication configurations and AWS services; when new versions of the gate-

way or microservice were published, it was very easy to break externally

dependent services; thus, it is critical to maintaining service versioning in

microservices architectures. Additionally, they validate that microservice

architectures enable more granular instance type selection (per microser-

vice and gateway), which helps to reduce costs [2].

7 Discussion

Microservices design also has a few drawbacks, alongside providing more

benefits than monolithic systems. Firstly, in the model-driven design of

microservices, the enterprise/software architect needs to be able to spec-

ify the appropriate constrained contexts for service because of its focus

on domain awareness. Any misunderstanding at this stage will result

in incoherent services. Secondly, the principle of resilience for each mi-

croservice places additional resource demands on the concept of scalabil-

ity. While a microservices architecture, compared to an equivalent SOA

and monolithic architecture, is conceptually more scalable, the overhead

of monitoring each service necessitates more processing cycles and data

storage. As businesses shift towards cloud computing, the additional over-

head can be observed using elastic compute resources [22].

Furthermore, the future of microservices also involves integrating a

wide range of microservices with server-less functions, reducing the over-

head associated with traditional microservice implementations. Server-

less architecture provides a foundation to support the agility of microser-

vices in a way that traditional servers are incapable of [23]. In addition,

more research should also be focused on the adoption of solutions already

implemented in service-oriented and monolithic architecture to the mi-

croservices environment in a cost and time-efficient manner.

8 Conclusion

Microservices architecture is a distributed design approach that attempts

to solve the problems of conventional monolithic systems, specifically by

enabling businesses and applications to scale while reducing cycle times.

It provides numerous benefits over monolithic and service-oriented archi-

tecture, such as better scalability, technical heterogeneity, easier manage-

ability, and ease of deployment. The case study in Section 6 highlights

that microservices architecture enables more granular instance selection,

which results in increased efficiency and reduced costs. Thus, the mi-

croservices architecture is the preferable solution for a large, dynamic

application with well-defined domains. It, however, comes with a few

drawbacks, such as increased architectural complexity, and operational

strain.

Nevertheless, microservices are currently the most effective architec-

ture available for large-scale applications despite the few drawbacks. It

is the only practical option available for large enterprises that build com-

plex software solutions to deal with complexities and remain competitive.

They are thus rapidly becoming the preferred way of building applications

in a wide range of industries.

References

[1] Sam Newman. Building microservices: Designing fine-grained systems.
O’Reilly Media, 2021.

[2] Mario Villamizar, Oscar Garcés, Harold Castro, Mauricio Verano, Lorena
Salamanca, Rubby Casallas, and Santiago Gil. Evaluating the monolithic
and the microservice architecture pattern to deploy web applications in the
cloud. In 2015 10th Computing Colombian Conference (10CCC), pages 583–
590, 2015.

[3] Microservice architectures: What they are and why you should use them.
https://newrelic.com/blog/best-practices/microservices-what-they-are-

why-to-use-them.

[4] Sara Hassan and Rami Bahsoon. In Microservices and Their Design Trade-
Offs: A Self-Adaptive Roadmap, pages 813–818, 2016.

[5] The biggest thing amazon got right: The platform. https://gigaom.com/
2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/.

[6] Microservices at netflix: Lessons for architectural design. www.nginx.com/
blog/microservices-at-netflix-architectural-best-practices/, Aug 2021.

[7] Best architecture for an mvp: Monolith, soa, microservices, or serverless.
https://rubygarage.org/blog/monolith-soa-microservices-serverless.

[8] Jonas Sorgalla, Florian Rademacher, Sabine Sachweh, and Albert Zündorf.
Modeling microservice architecture: a comparative experiment towards the
effectiveness of two approaches. pages 1506–1509, 03 2020.

[9] Mike Amundsen. Microservice Architecture. O’Reilly, 2016.

[10] Eric Evans. Domain Driven Design: Tackling Complexity in the Heart of
Business Software. 09 2002.

[11] Modeling microservices. https://medium.com/geekculture/modeling-microservices-
df0aaa89ddf9, 2021.

[12] Nenad Medvidovic, David Rosenblum, David Redmiles, and Jason Robbins.
Modeling software architectures in the unified modeling language. In ACM
Transactions on Software Engineering and Methodology, volume 11, 01 2002.

[13] Florian Rademacher, Sabine Sachweh, and Albert Zundorf. Aspect-oriented
modeling of technology heterogeneity in microservice architecture. In 2019
IEEE International Conference on Software Architecture (ICSA), 2019.

[14] Florian Rademacher, Jonas Sorgalla, Sabine Sachweh, and Albert Zundorf.
Viewpoint-specific model-driven microservice development with interlinked
modeling languages. In 2019 IEEE International Conference on Service-
Oriented System Engineering (SOSE), 2019.

[15] André Bondi. Characteristics of scalability and their impact on perfor-
mance. In Proceedings Second International Workshop on Software and
Performance WOSP 2000, pages 195–203, 01 2000.

[16] Nicola Dragoni, Ivan Lanese, Stephan Thordal Larsen, Manuel Mazzara,
Ruslan Mustafin, and Larisa Safina. Microservices: How to make your
application scale. CoRR, abs/1702.07149, 2017.

[17] Load balancing in microservices. https://mesutyakut.medium.com/load-

balancing-in-microservices-474ad84b847d/.

[18] Scaling microservices: The challenges and solutions. www.dzone.com/articles/
scaling-microservices-the-challenges-and-solutions.

[19] Susan J. Fowler. Production-ready microservices: Building Standardized
Systems across an engineering organization. O’Reilly, 2017.

[20] Microservices in practice: From architecture to deployment. www.cuelogic.com/
blog/microservices-in-practice-from-architecture-to-deployment.

[21] Muhammad Waseem and Peng Liang. Microservices architecture in de-
vops. In 2017 24th Asia-Pacific Software Engineering Conference Workshops
(APSECW), pages 13–14, 2017.

[22] Dharmendra Shadija, Mo Rezai, and Richard Hill. Towards an understand-
ing of microservices. In 2017 23rd International Conference on Automation
and Computing (ICAC), pages 1–6, 2017.

[23] The future of microservices. https://www.goodworklabs.com/future-of-

microservices/.

Formal Methods for Security Analysis of
Smart Contracts: A Survey

Ádám Balassa
adam.balassa@aalto.fi

Tutor: Lachlan Gunn

Abstract

Smart contracts are public, immutable, and executable programs, deployed

on a blockchain, typically handling cryptocurrency transactions. As such,

their security properties and overall correctness are highly critical. In re-

cent years, numerous tools have emerged that aim to verify smart contracts

with high certainty by utilizing formal techniques. While their results are

reliable, the usability of these tools is commonly limited by their level of

automation. Vulnerability detection is often not the main focus of their de-

sign, thus assessing their capabilities for security analysis is challenging.

This survey gives an overview of existing formal tools for the Ethereum

platform while focusing on their usability and limitations for vulnerabil-

ity detection. It analyzes typical vulnerabilities in smart contracts and

defines the challenges that formal techniques have to overcome for their

verification.

KEYWORDS: Formal verification, smart contacts, blockchain, Ethereum,

Solidity

1 Introduction

Blockchain technology provides an append-only distributed ledger of trans-

actions, which are recorded based on a consensus of miners. The technol-

ogy has far exceeded its initial purpose, cryptocurrency transactions, pio-

neered by Bitcoin [14]; a new trend has emerged leveraging blockchains

as a distributed computing platform for smart contracts.

Smart contracts are self-executed agreements between multiple parties,

typically handling financial transactions. Conditions and terms are de-

fined by lines of code, which are then deployed to a blockchain, by mak-

ing them immutable. Ethereum is a blockchain platform for a cryptocur-

rency, called Ether, that is the most well known for supporting runs smart

contracts. These decentralized applications are executed by nodes of the

blockchain in the Ethereum Virtual Machine (EVM) and are stored in a

form of EVM bytecode [5]. Ethereum smart contracts are usually devel-

oped in a high-level, object-oriented language, Solidity, which is syntac-

tically similar to JavaScript and C but is very different in its underlying

semantics. Writing Solidity code, therefore, requires a very deep under-

standing of the technology from the programmer.

At the point of writing this paper, the Ethereum platform handles around

$300B worth of Ether, which makes it a tempting target for attackers. In

2016, an attack has managed to steal $60M from a smart contract for De-

centralized Autonomous Organization (DAO), which had to be reverted

by a hard-fork in the Ethereum blockchain [3]. In the also infamous Par-

ity Wallet hack, an attacker drained $30M from an Ethereum contract in

2017 [17]. These attacks were all possible due to simple application bugs,

and have drawn a lot of attention to the verification of smart contracts [6].

In the past years, many tools have emerged to support the development

of secure smart contracts. As Ethereum smart contracts are generally

simple, deterministically terminating Turing-complete programs, that’s

soundness is critical, they are suitable targets of formal verification [2].

This paper will present, summarize, and compare the existing methods

and tools for smart contract verification, which are based on formal tech-

niques, with a major focus on their capabilities of vulnerability detection.

The study focuses on the Ethereum platform, which is by far the most

popular and well-researched smart contract platform.

The paper is organized as follows. It introduces some of the most com-

mon vulnerabilities of smart contracts in Section 2. Section 3 systemati-

cally categorizes formal methods and describes the existing related tools,

alongside their capabilities for vulnerability detection.

2 Smart contract vulnerabilities

There are various of techniques to carry out attacks against smart con-

tracts, out of which this paper focuses on application bugs. Such bugs

most usually occur due to the lack of understanding of the unique prop-

erties of the blockchain platform or the programming language. Table 1

summarizes the vulnerabilities that this paper discusses, while organiz-

ing them into major classes.

Non-trivial smart contract

properties

Reentrancy

Delegatecall

Uninitialized pointers

Private function exposure

Insufficient exception

handling

Limited stack size

Out of gas

Unchecked send

Non-trivial blockchain

platform properties

Transaction order dependence (TOD)

Timestamp dependence (TSD)

Entropy illusion

Unexpected ether

Arithmetic errors

Overflow

Underflow

Truncation

Signedness

Table 1. Classification of some of the most common smart contract vulnerabilities

Reentrancy: Reentrancy has become a very well-known, non-trivial

property since it was the cause of the vulnerability in the DAO contract.

When a smart contract sends money to an unknown address (for exam-

ple in a withdrawal method) and does not count on that such an action

will make a callback to the fallback function of that contract, it can lead

to a vulnerability. An attacker can override the default fallback function

to call the vulnerable contract again, which results in multiple recursive

invocations of that contract, while possibly draining money from it. If, for

example, such a withdraw method would perform operations in the follow-

ing order: check balance, send, decrease balance, the whole contract

can be drained, since the recursive withdraw calls would always pass the

check stage, as the balance has not yet been decreased [3].

Delegatecall: The Solidity language, compiler, and the EVM have mul-

tiple properties that are not typical for other languages and execution en-

vironments. The examples include reentrancy, and the mechanisms of the

delegatecall function, which can be used to invoke external contracts,

for example as a way of modularizing the contract logic into "libraries".

delegatecall enables the user to invoke a contract with the caller’s con-

text, meaning that when it accesses the storage, it will actually access

the caller’s storage.

Storage variables in a Solidity contract are stored in slots, in the order

of their declaration. A programmer may think that variables are bound

by their names during delegating a call, while they are frankly bound by

their position in the slots. If they made the mistake of declaring variables

in a different order in the caller contract than in the called contract, it

results in undesirable behavior that can be exploited [1].

Uninitialized pointers: The same phenomenon influences uninitial-

ized pointers in the Solidity code, which by default, are initialized to point

to slot[0]. Writes to such a pointer will override the first storage variable

with whatever value it is assigned, possibly with a parameter that can be

controlled by an attacker.

Private function exposure: The most commonly exploited vulnera-

bility is failing to declare a private function as private, thus allowing at-

tackers to control the state of the contract in a way that was unintended

by the programmer [1].

Limited stack size: Programmers of a smart contract must be pre-

pared to handle errors during calls to other contracts. The EVM limits

the stack depth to 1024 frames, after which a stack overflow exception is

thrown.

Out of gas: [5] Ethereum invented the term gas, which is a small

price paid for miners, proportional to the computational resources used

by the execution of a smart contract method. When a method is called,

an amount of gas is sent with it, that can run out between any 2 EVM

statements. This is especially likely if the contract’s code includes a costly

loop [17].

Unchecked send: In the Ethereum platform, failed calls (due to an

exception in the fallback function, out of gas failure, reaching the upper

limit of stack frames, etc.) do not throw an exception, but return false.

Not checking the return value of a call can cause a vulnerability, if the

contract state is modified while naively assuming the success of the call.

Transaction order dependence (TOD): Properties of the execution

environment of a blockchain platform can also be easily neglected. The

order in which transactions are appended to the blockchain is controlled

by the miners. Contracts that do not take this into account can be ex-

ploited by malicious miners.

Timestamp dependency (TSD): Smart contract programmers must

not build logic on the timestamp value of the execution, as it is also in

the miners’ control. If Ether transfer depends on the timestamp of the

execution, miners can mine the transaction just when it is ideal for them.

Entropy illusion: Similarly, random number generation cannot be

trusted, since a malicious miner can perform rejection sampling on the

executions’ results, by repeatedly discarding and creating new transac-

tions until the generated number favors her interest [17]. It is also com-

mon that random number generation is seeded by the current time, which

relates this vulnerability to TSD.

Unexpected ether: Smart contract programmers should not trust the

value of balance either. Even though it seems it is only controlled by

public method invocations, it can actually be modified by, for example,

’self-destructing’ another contract that will send its balance to a chosen

address [1].

Arithmetic errors: Although Solidity looks like a high-level language,

similar to JavaScript, the underlying representation of numbers is strict

(as it also appears in the Solidity source code). Programmers can make er-

rors by not accounting for overflows, or numerical-precision-related issues

when designing a contract [18].

3 Formal methods and tools

While informal techniques, like linting and testing, are widely used in the

industry, they do not provide a high level of certainty in the correctness

and security of a smart contract, therefore the academic community has

turned towards formal methods [6].

Formal techniques require the smart contract to be transformed into a

formal model, thus enabling tools to reason about their correctness with

regards to some criteria or a full formal specification. These methods

are capable of proving soundness with high certainty. Such techniques

include theorem proving, model-checking and symbolic execution [6].

The following section overviews 11 of the most successful formal tools

that fall into these classes of verification techniques. The paper lists their

special measures and limitations in detecting some of the vulnerabilities

listed in Section 2, namely, Reentrancy, Integer overflow, TSD, TOD, and

Delegatecall. This set of vulnerabilities was chosen to be representative

in a way that they cover all typical challenges that such tools have to

overcome. Reentrancy can be verified by all the discussed methods, as

their motivation partly originated from the attacks, of which the DAO

is the most infamous. To be able to check integer overflows, the used

abstraction must be able to correctly model EVM’s type-system. TSD and

TOD can be easily checked by over-approximations, but are difficult to

precisely check without modeling the blockchain execution environment.

This paper introduces two properties for verifying delegatecall: properly

modeling the communication of multiple contracts, and either a low-level

representation on EVM’s memory model or possessing the information of

state-variables’ declaration order in Solidity.

3.1 Symbolic execution

Symbolic execution is described as a practical approach between informal

and formal techniques. Instead of testing correct behavior for single in-

puts, it verifies correctness for an entire class of inputs. This method,

however, is not suitable to provide full formal proof of correctness. The

technique requires the program to be executed while having input vari-

ables represented as symbols. The execution, therefore, does not yield

numeric results, but symbolic formulae. The programmer interacts with

the execution engine by defining predicates for the input variables (which

yields a class of expected inputs) and for the correct output. Symbolic ex-

ecution can be used to prove whether the output predicates hold with all

inputs that satisfy the input predicate.

Oyente: The first successful step towards formal verification of smart

contracts was realized by Luu et al., in 2016, by introducing a smart con-

tract verification tool based on symbolic execution, called Oyente [12]. It

is a fully automated, bug-finding tool for the Ethereum platform, that

takes the global Ethereum network state and a single smart contract’s

EVM bytecode as input, and reasons about its correctness with regards to

pre-defined properties. It only works on simplified EVM semantics, which

they named EtherLite. The tool is capable of identifying the bug in the

DAO contract, along with many other security vulnerabilities like trans-

action order dependence. Oyente leverages a formal tool, Z3, to reason

about reachability logic, so that it can cut down infeasible symbolic paths,

yielding fewer false-positive bug reports.

Although the tool does not aim to provide formal proof of the soundness

of a contract, additional properties can be added in the form of plugins. It

is able to detect reentrancy and TOD-related vulnerabilities by an over-

approximation, which results in a larger number of false positives. It has

a more sophisticated way of checking TSD, by only marking execution

flows as vulnerable, if Ether depends on the timestamp value. Another

crucial limitation of Oyente is that it can only work with integer inputs of

arbitrary magnitude, which limits its capabilities for detecting overflows

or truncation issues [11].

Osiris: Osiris is a fully automated tool that focuses on a subset of

arithmetic errors, namely, integer bugs [18]. It utilizes symbolic model-

checking and taint-analysis for verification. Taint-analysis is applied to

improve the tool’s accuracy, it is suitable for distinguishing between harm-

less and exploitable overflows. The authors claimed that Osiris is more

accurate than any other tool in detecting integer bugs, but it is limited to

this single category of security vulnerabilities.

3.2 Model checking

These approaches have the system modeled as a state machine and prove

properties by exploring the state-space of the model. The complexity of

the state machine can span from finite automata to a complete Turing

machine [16]. The prover can often find concrete counter-examples to

given properties, making correction of both the code and the model easier.

Model-checking techniques are challenged by the combinatorial explosion

of states to explore, which gives a strong limitation on their applicabil-

ity [15]. To overcome this issue, multiple alternative model-checking ap-

proaches have emerged, like symbolic model checking, which relies on

a more efficient representation of the state-space [10]. Symbolic model

checking is often complemented by abstraction techniques or SMT/SAT

solving techniques.

The applicability of such an approach is also constrained by the level

of automation it provides: models often have to be created manually. It

is also usual that these models do not represent low-level EVM mecha-

nisms properly, thus they are not able to reason about arithmetic errors

or delegatecall. They are, however, suitable for detecting non-trivial

platform properties, as it is generally easy to model the execution envi-

ronment by this formalism.

Nehai’s NuSMV model: Nehai et al. propose an approach using a

symbolic model checking tool based on Binary Decision Diagrams, called

NuSMV [16]. Their method requires the designer of the smart contract to

model program logic in NuSMV’s modeling language, which is suitable for

describing finite automata on which an engine can perform formal reason-

ing. Verification is based on temporal logic properties, that can be defined

by employing classical logic operators and temporal operators. Reasoning

about platform-level properties requires the modeling of the execution en-

vironment. Nehai et al.’s solution models clients and transactions, but

leaves several concepts and mechanisms, like blocks, mining, or gas con-

sumption, for later work.

The Solidity NuSMV translation remains manual, the writers claim

that it could be automated, but they only define rules and heuristics for

modeling and do not formally prove either completeness or soundness of

the abstraction. Even though NuSMV relies on symbolic model-checking,

it suffers from the combinatorial explosion of states [15].

The solution in the paper is only capable of verifying reentrancy (and

over-approximating timestamp dependency), but the approach would gen-

erally be able to properly verify the non-trivial platform properties.

Zeus: Zeus is a symbolic model checking tool, that can automatically

reason about safety properties (fairness and correctness) [10]. The tool

translates Solidity contracts into an intermediate representation (IR) with

a formal specification (LLVM IR). It inserts assertions into the bitcode

based on policies that are automatically extracted from the Solidity syn-

tax tree and based on fairness properties, which users can define in a

static template. With the inserted assertions, verification reduces to a

state-reachability problem, for which Zeus leverages SMT solvers. Auto-

matically verified correctness properties include checking for reentrancy,

TOD, TSD, or arithmetic errors.

Even though the user of the tool can add as many policies to ensure

safety properties, liveness properties require Zeus to be extended with

support for linear temporal logic. It only supports a majority of Solidity

features, it is limited in verifying cross-function reentrancy, and its arith-

metic error detection is not sound [18].

FSolidM: Mavridou et al. proposed a graphical tool to create smart

contracts in the form of Finite State Machines (FSM) [13]. Their tool,

FSolidM, comes with complete automation to translate the formal model

into Solidity. FSolidM is extensible with plugins to ensure security prop-

erties, the authors created plugins for reentrancy and TOD. Even though

the authors emphasize that FSMs are formal models, FSolidM’s Solidity

translator is not verified formally. The tool does not verify security prop-

erties via formal analysis but ensures them by generating dynamic checks

into the Solidity source code.

3.3 Theorem proving

Such methods require the program logic to be modeled mathematically

and can reason about properties defined by the same mathematical for-

malism. While these methods verify properties with high certainty, their

level of automation is rather limited, as the programmer has to interact

with the prover to define properties [6]. Today, multiple formal semantics

of the EVM have been defined, which all fall into this category of formal

methods.

The vulnerability detection capabilities of these formal definitions rely

on their completeness, on how well does the new semantics resemble the

respective EVM instructions. The novel approach is creating small-step

semantics for EVM bytecode, where the formal definition models all single

atomic operations. This way the proof assistants can reason about the

exact same execution as what EVM would perform [7]. Theorem proving

methods can also be limited in reasoning about, for example, TOD, as it

would either require a formal model of the execution environment (like

the process of transaction mining) or an imprecise over-approximation.

Hirai’s Lem definition: Yoichi Hirai was the first to create a complete

formal specification of the EVM [9]. The definition was written in Lem,

which can be translated into both an executable format in OCaml, mak-

ing it possible to cross-check the definition against existing test-suites,

and also into multiple interactive theorem provers, such as Isabelle/HOL,

Coq, or HOL4. The work of Hirai was not meant to be used as a standalone

tool, but more as a base for further formal specifications. The executable

OCaml translation was successfully tested on the EVM test suite. Invari-

ants and safety properties were manually defined by Hirai for an example

contract and proved by Isabelle/HOL.

Proving safety properties is excessively inefficient, the proof of a single

property on a simple contract took 3 hours. Even though the definition

of EVM contains all instructions, some mechanisms, like gas consump-

tion and interactions with other contracts, are modeled completely non-

deterministically. This makes the method capable of verifying all the se-

curity properties, but delegatecall.

Amani’s Isabelle/HOL framework: Hirai’s EVM definition is cumber-

some to include in the development process of smart contracts, since with-

out any frameworks or automation, formally defining soundness proper-

ties is immensely challenging [2]. Amani et al. aim to overcome this issue

by building a sound program logic at the bytecode level atop Hirai’s def-

inition, which serves as a framework for formal verification, making it

possible to create a formal specification of an example contract in 30-40

lines. The framework introduces a hierarchical concept for program logic,

which makes reasoning possible on the level of instructions, blocks (se-

quential instructions with no JUMPs), and the entire program. Amani et

al. demonstrate how Isabelle/HOL tactics can introduce some automation

to generating verification logic. This provides assistance for manually

writing formal specifications in a precondition-postcondition style. The

program logic could not restore key control structures of Solidity, such as

loops and function calls, which is a strong limitation on its applicability.

Solidity* and EVM*: Bhargavan et al. proposed transpilers from both

Solidity and EVM bytecode to F*, in the paper referred to as Solidity* and

EVM*, respectively [4]. F* is a functional programming language that

is suitable for formal verification based on SMT solving. Solidity* and

EVM* were not implemented in F*, but in OCaml, thus other theorem

provers could also be utilized, however, they do not take advantage of it.

Their work was the first in formal verification of smart contracts, it only

serves as a proof of concept that demonstrates the suitability of relying

on F* to reason about the correctness of smart contracts. Their transpiler

did not include all language features of the source languages, and they

do not mention verifying the correctness of the transpilation against the

EVM test suite.

Grischenko’s F* formalization: Grischenko et al. were the first to

create small-step semantics for EVM bytecode, their model maps every

EVM instruction individually [7]. A large proportion of their seman-

tics was formalized in F*, the executable OCaml translation was tested

against the EVM test suite. They have applied special measures to model

inter-contract communication properly, which was a key limitation of mul-

tiple earlier formal definitions. They were also the first to create a formal

definition for key security properties, like call integrity and independence

from miner-controlled parameters. This introduces significant automa-

tion for verifying reentrancy, TSD, TOD, entropy illusion, and many oth-

ers in a highly sophisticated manner. Arithmetic errors can be properly

verified by utilizing such small-step semantics, and the formalization’s

model for communication of multiple contracts makes it suitable for veri-

fying delegatecall too, according to the requirements in 3.

Nehai’s Why3-based approach: Following the work with NuSMV, Ne-

hai et al. proposed a theorem proving method, utilizing Why3, a deductive

program verification tool, that uses Hoare-logic [15]. Why3 provides a

rich language for specification, WhyML, and relies on well-tested theo-

rem provers for reachability logic, like Alt-ergo or Z3. The method is also

only a proof-of-concept, the writers demonstrate how an example contract,

with fair complexity, can be modeled in WhyML and propose a proof-of-

concept compiler from Why3 to EVM bytecode. Their modeling makes use

of oracles, defined as links between the real world and the system, which

are essentially ports for public methods of a smart contract. Such an ap-

proach enables them to specify private methods’ correctness in a simple,

pre-condition/post-condition style, and leave only public methods for the

subject of proving correctness with any given input values. They also

propose a gas model, based on Why3 ghost functions, which gives an over-

approximation of the execution’s gas consumption. The authors demon-

strate Why3’s flexibility in modeling algebraic data types, thus making

the framework suitable for arithmetic error detection. Since the frame-

work could allow creating correct-by-construction contracts, sound verifi-

cation of reentrancy, TSD and TOD should be possible.

KEVM: The second complete formal semantic definition for EVM was

released by Hildenbrandt et al. in 2018, in a language-independent frame-

work: K [8]. The K definition allows the user to automatically derive

correct-by-definition tools, such as a parser, interpreter, symbolic exe-

cution tools, debugger, and formal tools, which can be used for model

checking and deductive verification. The deductive verifier uses reach-

ability logic reasoning, employing Z3, to formally prove properties defined

in a pre-condition post-condition Hoare-triple style. In contrast to Hi-

rai’s work, KEVM’s executable specification is extended with a formal gas

analysis tool and can be run with the whole VM test suite. It is more than

8 times more performant than the Lem specification’s executable code. It

makes it possible to reason about the execution of any ordering of multiple

transactions, making it capable of verifying all examined vulnerabilities.

FEther: FEther introduces a high level of automation into formally

verifying smart contracts [19]. It extends the authors’ previous work of

creating a Formal Process Virtual Machine for the Ethereum platform, by

including a formal proof engine. They developed a formal memory model

in Coq, called GERM, which supports specifications at the code level, and

simulates a low-level formal memory space. They utilize a hybrid ap-

proach by symbolically executing contracts on the GERM framework and

they use the Coq assistant to formally verify them. Contracts must be

developed in Lolisa, a large subset of Solidity, for which they provide au-

tomatic translation. FEther is supported by Coq tactics that introduce a

high level of automation into the verification process. FEther’s correct-

ness is certified by Coq, thus reasoning about any of the security proper-

ties is sound. GERM’s number representation is the same as Coq’s, which

is suitable for modeling EVM data types properly. As modeling inter-

contract communication was not clearly claimed, verifying delegatecall

might be a limitation.

4 Conclusion

Formal techniques for smart contract verification have gained a lot of at-

tention since the DAO attack from both the industry and the academic

community. This paper gave an overview of the most typical vulnera-

bilities caused by application bugs, originating from special properties of

smart contracts and blockchain platforms.

Table 2 summarizes the capabilities of the discussed methods. In addi-

tion to the vulnerabilities they are able to detect, the table shows whether

they’re suitable for gas analysis, and their level of automation. This sum-

mary assumes that capabilities that were not specifically claimed by the

related papers (like modeling multiple contracts, or gas analysis) are not

possessed by the tools. Methods that are not capable of verifying prop-

erties without user interaction but introduce assistance automation are

marked with a half-circle; while methods that require minimal or no in-

teraction are marked with a full circle.

This paper showed that while numerous techniques exist for formal ver-

ification, there are still steps yet to be taken for them to become a rou-

tine in smart contract development. A tool that utilizes a formalism of

Method RE Int TSD TOD DC Gas Aut

Symbolic execution

Oyente [12] ◗ ❍ ● ◗ ❍ ● ●

Osiris [18] ❍ ● ❍ ❍ ❍ ❍ ●

Model-checking

Nehai’s NuSMV model [16] ● ❍ ● ◗ ❍ ❍ ❍

Zeus [10] ● ● ● ● ❍ ❍ ●

FSolidM [13] ● ❍ ❍ ● ❍ ❍ ◗

Theorem proving

Hirai’s Lem definition [9] ● ● ● ● ❍ ❍ ❍

Amani’s Isabelle/HOL framework [2] ● ● ● ● ❍ ❍ ◗

Solidity*, EVM* [4] ◗ ● ◗ ◗ ❍ ● ◗

Grischenko’s F* formalization [7] ● ● ● ● ● ● ◗

Nehai’s Why3-based approach [15] ◗ ● ◗ ◗ ❍ ● ❍

KEVM [8] ● ● ● ● ● ● ❍

FEther [19] ● ● ● ● ❍ ● ◗

Table 2. Capabilities of the discussed formal methods. Abbreviations: reentrancy (RE),
integer overflow (Int), timestamp dependence (TSD), transaction-order

dependence (TOD), delegatecall (DC), analysis of gas conumption (Gas), level of
automation (Aut)

small-step semantics for EVM, (like Grischenko’s F* formalization [7])

could overcome all challenges by performing automatic checks for all well-

known security properties. Such a tool should also be capable of formally

verifying custom properties provided by the user in the form of a static

template, as seen in Zeus [10].

References

[1] Solidity Security: Comprehensive list of known attack vectors and common
anti-patterns. https://blog.sigmaprime.io/solidity-security.html. Au-
thor: Dr. Adrian Manning, Accessed: 2022-02-28.

[2] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. Towards
verifying Wthereum smart contract bytecode in Isabelle/HOL. In Proceed-
ings of the 7th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, pages 66–77, 2018.

[3] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks
on Ethereum smart contracts (SOK). In International conference on princi-
ples of security and trust, pages 164–186. Springer, 2017.

[4] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha
Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem
Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, et al. Formal verification of
smart contracts: Short paper. In Proceedings of the 2016 ACM workshop on
programming languages and analysis for security, pages 91–96, 2016.

[5] Vitalik Buterin et al. Ethereum white paper. GitHub repository, 1:22–23,
2013.

[6] Ikram Garfatta, Kais Klai, Walid Gaaloul, and Mohamed Graiet. A Survey
on Formal Verification for Solidity Smart Contracts. In 2021 Australasian
Computer Science Week Multiconference, pages 1–10, 2021.

[7] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A semantic
framework for the security analysis of Ethereum smart contracts. In In-
ternational Conference on Principles of Security and Trust, pages 243–269.
Springer, 2018.

[8] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu,
Philip Daian, Dwight Guth, Brandon Moore, Daejun Park, Yi Zhang, An-
drei Stefanescu, et al. Kevm: A complete formal semantics of the Ethereum
virtual machine. In 2018 IEEE 31st Computer Security Foundations Sym-
posium (CSF), pages 204–217. IEEE, 2018.

[9] Yoichi Hirai. Defining the Ethereum Virtual Machine for interactive theo-
rem provers. In International Conference on Financial Cryptography and
Data Security, pages 520–535. Springer, 2017.

[10] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus: ana-
lyzing safety of smart contracts. In Ndss, pages 1–12, 2018.

[11] James C King. Symbolic execution and program testing. Communications
of the ACM, 19(7):385–394, 1976.

[12] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Ho-
bor. Making smart contracts smarter. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages 254–
269, 2016.

[13] Anastasia Mavridou and Aron Laszka. Designing secure Ethereum smart
contracts: A finite state machine based approach. In International Confer-
ence on Financial Cryptography and Data Security, pages 523–540. Springer,
2018.

[14] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review, page 21260, 2008.

[15] Zeinab Nehai and François Bobot. Deductive proof of Ethereum smart
contracts using Why3. arXiv preprint arXiv:1904.11281, 2019.

[16] Zeinab Nehai, Pierre-Yves Piriou, and Frederic Daumas. Model-checking
of smart contracts. In 2018 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (Green-
Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), pages 980–987. IEEE, 2018.

[17] Sarwar Sayeed, Hector Marco-Gisbert, and Tom Caira. Smart contract:
Attacks and protections. IEEE Access, 8:24416–24427, 2020.

[18] Christof Ferreira Torres, Julian Schütte, and Radu State. Osiris: Hunting
for integer bugs in Ethereum smart contracts. In Proceedings of the 34th
Annual Computer Security Applications Conference, pages 664–676, 2018.

[19] Zheng Yang and Hang Lei. Fether: An extensible definitional interpreter
for smart-contract verifications in Coq. IEEE Access, 7:37770–37791, 2019.

Sim-to-Real transfer learning using Deep
Reinforcement Learning (DRL)

Jeyhun Yagublu
jeyhun.yagublu@aalto.fi

Tutor: Anton Debner

Abstract

In recent years, Reinforcement Learning and Deep Learning techniques

have been brought together by many researchers to solve complex tasks,

including navigation, motion and exploration. Due to time inefficiency and

complexity of training models in real life increasing number of research

projects has been conducted on Sim-to-Real Transfer learning using Deep

Reinforcement Learning. This paper provides an overview on some of Sim-

to-Real techniques and problems surrounding it, and discusses some of the

recent projects by main research entities in the field.

KEYWORDS: sim-to-real, deep reinforcement learning (DRL)

1 Introduction

Over the last several years, the robotics community has increasingly uti-

lized reinforcement learning (RL) algorithms to manage complicated robotic

systems, or to give end-to-end policies from observation to operation [16].

These algorithms are based on the principle of trial and error that indi-

viduals use to acquire new skills, and they draw their knowledge from the

rewards that agents obtain for responding in certain ways to a range of

circumstances. Considering how limited time and experience diversity are

in real-world circumstances, this necessitates a high number of training

sessions. Furthermore, while working with actual robots, it is necessary

to consider the possibility of possibly harmful or unexpected behaviors

in security sensitive applications [3]. In simulation contexts, deep rein-

forcement learning (DRL) algorithms have proved successful, but their

performance outside of simulated worlds has been restricted [16].

Recent advances in the sim-to-real sector, however, have proved that

DRL is a very effective technique. Previously, intractable actions, includ-

ing managing limb motion and exploring an unknown area, have become

accessible due to these new technologies [8]. Although simulation-based

training is a low-cost method of gathering data, it has inherent incon-

sistencies when compared to real-world conditions [16]. To close the gap

between simulation and reality, first and foremost, methodologies must

be developed that can account for mismatches in both sensing and actua-

tion, among other things [16]. The sensing mismatches has received great

attention in the deep learning industry in recent years, for example, with

adversarial assaults on computer vision systems [1]. The actuation errors

may be mitigated by conducting more accurate simulations. In each of

these circumstances, some of the current techniques involve work that in-

troduces environmental perturbations [17] or focuses on domain random-

ization [7]. Another important consideration is that an agent deployed in

the real world may be exposed to unique experiences that have not been

considered in the simulation models, but also the possibility of having to

modify their rules in order to cover a broader range of tasks that have not

been previously considered in the models [17].

This paper analyses current state and results of research and exper-

iments in sim-to-real domain and organized as follows. In Section 2, we

briefly introduce RL/DRL. In Section 3, we introduce sim to real and prob-

lems surrounding it. Section 4 discusses recent significant Sim To Real

Experiments . Finally, Section 5 presents some concluding remarks.

2 Brief Introduction to RL/DRL

2.1 Reinforcement Learning and Deep Reinforcement Learning

Reinforcement Learning (RL) [12] is a process in which an agent interacts

with its surroundings to obtain the most optimal policy via trial and error.

In the context of Markov Decision Process (MDP) M = (S,A, P, r, P0), the

RL task may be stated as the state space S, the action space A, the state

transition probability P (st+1|st, at), the reward function r and lastly the

probability distribution P0 of the initial state s0 ∈ S [12]. The objective of

the reinforcement learning agent is to discover a strategy that maximizes

the expected return; at time t it is generally defined as

Rt =
∑T

t rt + γrt+1 + · · ·+ γT−trtT

where T is the terminal time step and γ is the discount factor [2].

Deep neural networks may be adopted to approximate any of the key

components of reinforcement learning, such as value functions, policies,

and models (state transition function and reward function), resulting in

deep reinforcement learning [6]. One example of this combination is Deep

Q-learning which brings together one of widely used RL algorithms - Q-

learning and Convolutional Neural Networks (CNN). Q-learning tries to

maximize the Q-value of the curret states’s action where Q(S,A) is defined

as

Q(S,A)← Q(S,A) + α[R+ γmaxQ(S′, A′)−Q(S,A)]

and the algorithm is repeated several times until the value converging

to Q-table value is obtained by the algorithm [4]. Hester et al. 2017

has developed Deep Q-learning and demonstrated that it over-performs

conventional reinforcement learning algorithms.

3 Introduction to Sim-To-Real and Problems Surrounding it

It is very costly and time-consuming to train a model in real environments

even using most modern technologies. First of all, creating environment

suitable for training the model is harder in real-life situations and in some

cases related to robot locomotion, model should be protected to not break

the expensive equipment. Additionally, making the suitable environment

and training process of the model takes considerably amount of time since

most parts of training is manual. The simplest example of it would be

resetting the real training environment to restart the learning process

or advance to a new state which happens almost instantly with simu-

lated environments. Thus, many methodologies have been developed for

training the model in simulated environments and then implementing the

policy to real-world tasks. The main challenge of sim-to-real is that the

simulation is almost never a perfect model of the real-world environment.

Therefore, an agent trained in a simulation will probably not behave op-

timally in the real-world environment, which is often more complex than

the simulated environment.

There are multiple ways of transferring the policy from simulation to

real-world implementation.

Zero-shot Transfer

A zero-shot transfer is the most basic method of transferring policy from

simulation to reality [16]. It involves developing a realistic simulator or

testing the policy sufficient amount of time in simulation in order to im-

plement the policy immediately in real-world scenarios which is consid-

ered as Zero-Shot Transfer. However, realistic simulator is not easy to

implement, but some techniques have been developed to create it, referred

as System Identification and Domain Randomization.

System Identification

Notably, simulators do not provide a realistic depiction of the actual world

in all circumstances. System identification [5] is the process of developing

an accurate mathematical model of a physical system, and thorough cal-

ibration is required to make the simulator more realistic. Nevertheless,

most of techniques for system identification are for models that are linear

in the parameters, while real environment has many physical parameters

that vary in non-linear way, such as smoothness of a road, air thickness.

All this variety adds up to difficulty and complexity of environment, thus

making it extremely difficult to simulate.

Domain Randomization

Domain Randomization [14] is method that, rather than meticulously

modeling all of the parameters of the real world, simulation could be

highly randomized in order to cover the true distribution of the real-world

data despite the difference between what is predicted by the model and

what actually happens in the real world. Figure 1 depicts domain ran-

domization technique:

Domain randomization can be categorized into types: visual random-

ization and dynamics randomization, which are distinguished by the el-

ements of the simulator that are randomly selected. The training data

for some robotic vision activities comes from a simulator, which always

has different textures, lighting, and camera angles than the real-world

Figure 1. Through proper randomization of parameters, Simulated distribution can be
made to cover true real world distribution.

situations in which they are performed. As a result, visual domain ran-

domization seeks to offer sufficient simulated diversity of the visual char-

acteristics during training in order to be able to generalize the model to

real-world data during testing [13] (Figure 2).In addition to introducing

randomness to the visual input, dynamics randomization may also aid in

the acquisition of a strong policy through randomizing several physical

features in simulation environment including respective dimension and

sizes, physical parameter coefficients and overall physics, which is par-

ticularly important when the resulting policy will act as a controller for

various robotic tasks.

Figure 2. Randomized images are created through visual randomization on which model
is trained to be able to transfer to real non-randomized images[15].

Domain Adaptation Methods

Domain adaptation (DA) [16] is a collection of transfer learning approaches

for updating the data distribution in simulation to match the real world

distribution via a mapping or regularization imposed by the task model

(Figure 3). Because there are typically a variety of feature spaces be-

tween the source domain and the target domain, differently from the do-

main randomization which uses pure randomization, the DA technique

attempts to unify these two feature spaces through mathematical regu-

larization and mapping, in order to improve the transfer of knowledge

from source data to the target domain [16].

Simulation Environments

The selection of a simulation environment is an important consideration

in the simulation-to-real transfer process. Regardless of the methodolo-

gies employed for effectively transferring information to actual robots, the

more realistic a simulation is, the better the outcomes that may be ex-

pected in the long run [16].

Mujoco and Bullet, two popular robotic simulators, are known for their

fast multi-body dynamics implementations and their greater interaction

with DL and RL libraries. However, they were designed to run on CPUs

with a limited level of parallelism [11]. Gazebo, on the other hand, has the

benefit of being deeply connected with the Robot Operating System (ROS)

Figure 3. Domain adaptation [16]

middleware; as a result, it can be used in conjunction with a portion of

the robotics stack that is present in real robots, which is a significant ad-

vantage [16]. However, NVIDIA’s Isaac Gym is a simulation environment

which uses the GPU to handle both simulation and training and is capa-

ble of simulating hundreds of robots in parallel, which makes it possible

to train successful policies in as much as 20 minutes opposed to 120 hours

[11].

4 Sim To Real Experiments

In recent years, many developments have been made in this domain by

companies such as OpenAI, Google, and NVIDIA. While they have used

similar techniques in their approaches, they have also focused in their

own aspects. For example, NVIDIA’s project has focused more on training

policy using massively parallel deep reinforcement learning on a single

GPU. This section discusses some of the main projects .

4.1 Google

RL-CycleGAN

The ability to learn visual representations from beginning to end while

working with a task controller comes at a high cost in terms of sample

complexity [10]. In addition, since the data required for RL is often task

Figure 4. RL-CycleGAN trains a CycleGAN that maps a picture from the simulator (on
the left) to a realistic image (in the middle), and a concurrently trained RL task
guarantees that these images are usable for the specific task being taught on
the right hand side. The RL model may be transferred to a real robot during
testing (right)[10]

.

Sim-to-real model Robot 1 Grasp Success

Sim-Only 21%

Randomized Sim 37%

RL-CycleGAN 70%

Table 1. Success rates of Grasp robot

and policy relevant, gathering this data while still in the loop with pol-

icy training may be extremely challenging [10]. The use of RL to train

policies in simulation and then transferring these policies to real-world

systems is an attractive suggestion. RL-CycleGan project uses Cycle-

GAN to adapt the pixels of simulated images to real environment pictures

and then training the RL model on these images (Figure 4). The results

showed that this method has improved success rates of grasp robot from

21% when trained Sim-only to 70% while training with RL-CycleGan (Ta-

ble 1).

4.2 OpenAI

Solving Rubik’s Cube with a Robot Hand

Rubik’s Cube is common challenge among robotics thus it is not surpris-

ing that OpenAI in 2019 has trained a five-fingered humanoid hand to

handle the cube and solve the task successfully [9]. This robotic hand has

been trained on simulations only, first to handle the cube using their own

algorithm referred as automatic domain randomization (ADR), in order

to be able to handle the cube even when there are disturbances in the en-

Figure 5. A five-fingered humanoid hand solved a Rubik’s cube after being taught using
reinforcement learning and automated domain randomization [9]

.

vironment, such as pushing the cube or adding alien objects, or tying its

fingers (Figure 5). Three Camera feeds from different angles have been

used to calculate the position and pose of the cube and relative fingertip

positions. The policy have been trained for several months which includes

also developing the algorithm and tuning its parameters and features.

Distributed training method have been used which overall consists of 96

NVIDIA V100 GPUs and 1320 worker machine with 32 CPU cores each

. Those several months of distributed training would convert to 13 000

years of cumulative non-distributed training time.

4.3 NVIDIA

Training Robots to Walk in Minutes

DRL has been used to solve tasks involving walking and self-navigation in

not only humanoid robots but also multiple legged robots. However, this

task usually takes much time which includes creating the training model

and tuning hyperparameters for several months and actually training the

model for several days. In 2021 Rudin et al. at NVIDIA have focused on

decreasing the time it takes to train such robots using Massively Parallel

Deep Reinforcement Learning in NVIDIA’s Isaac Gym simulation envi-

ronment [11]. Their results are astonishing comparing to the immensity

of the task, as they have achieved to train ANYbotics ANYmal C robot to

walk in under 20 minutes on a single GPU workstation. 4096 robots have

been trained for 1500 policy updates using step size of 25 on NVIDIA RTX

A6000 GPU for 20 minutes which obtained close to 100% of success rate

for walking up and down the stairs and on uneven terrain when trans-

ferred to the robot in real environment.

Figure 6. ANYbotics ANYmal C robots training simultaneously in NVIDIA’s Isaac Gym
[11]

.

5 Conclusion

Sim-to-Real transfer learning gets used increasingly more in variety of

research projects as many new techniques are tested and results obtained

prove them to be successful. However, there are still many drawbacks

as although simulation environments can be made close to reality, they

still can’t resemble real environment with all of its features and dynam-

ics. Nevertheless, combining it with DRL techniques have proved to be

suitable for many complex tasks since in essence RL is similar to how hu-

mans learn anything, including walking, dancing and driving.

Many of the research projects in the field have been carried out only in

recent years, due to access to more computational power and discovery

of new techniques. As a consequnce, there are still many challenges to

address and much of field remains unexplored.

References

[1] Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep
learning in computer vision: A survey. IEEE Access, 6:14410–14430, 2018.

[2] Alessandro Capasso, Giulio Bacchiani, and Alberto Broggi. From simula-
tion to real world maneuver execution using deep reinforcement learning.
05 2020.

[3] Javier García, Fern, and o Fernández. A comprehensive survey on safe re-
inforcement learning. Journal of Machine Learning Research, 16(42):1437–
1480, 2015.

[4] Beakcheol Jang, Myeonghwi Kim, Gaspard Harerimana, and Jong Wook
Kim. Q-learning algorithms: A comprehensive classification and applica-
tions. IEEE Access, 7:133653–133667, 2019.

[5] Kristinn Kristinsson and Guy Albert Dumont. System identification and

control using genetic algorithms. IEEE Trans. Syst. Man Cybern., 22:1033–
1046, 1992.

[6] Yuxi Li. Deep reinforcement learning: An overview. CoRR, abs/1701.07274,
2017.

[7] Fabio Muratore, Christian Eilers, Michael Gienger, and Jan Peters. Bayesian
domain randomization for sim-to-real transfer. CoRR, abs/2003.02471,
2020.

[8] Philipp Reist Marco Hutter Nikita Rudin, David Hoeller. Learning to Walk
in Minutes Using Massively Parallel Deep Reinforcement Learning. Tech-
nical report, NVIDIA, October 2021. https://arxiv.org/pdf/2109.11978.pdf.

[9] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin,
Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell,
Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welin-
der, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving
rubik’s cube with a robot hand. CoRR, abs/1910.07113, 2019.

[10] Kanishka Rao, Chris Harris, Alex Irpan, Sergey Levine, Julian Ibarz, and
Mohi Khansari. Rl-cyclegan: Reinforcement learning aware simulation-to-
real. CoRR, abs/2006.09001, 2020.

[11] Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter. Learning
to walk in minutes using massively parallel deep reinforcement learning.
CoRR, abs/2109.11978, 2021.

[12] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction.
IEEE Transactions on Neural Networks, 9(5):1054–1054, 1998.

[13] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. Domain randomization for transferring deep neural net-
works from simulation to the real world. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 23–30, 2017.

[14] Joshua Tobin. Real-world robotic perception and control using synthetic
data. 2019.

[15] Joshua Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba,
and Pieter Abbeel. Domain randomization for transferring deep neural
networks from simulation to the real world. CoRR, abs/1703.06907, 2017.

[16] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real
transfer in deep reinforcement learning for robotics: a survey. CoRR,
abs/2009.13303, 2020.

[17] Wenshuai Zhao, Jorge Peña Queralta, Li Qingqing, and Tomi Westerlund.
Towards closing the sim-to-real gap in collaborative multi-robot deep rein-
forcement learning. In 2020 5th International Conference on Robotics and
Automation Engineering (ICRAE), pages 7–12, 2020.

Theoretical Framework for Cloud
Computing Network Measurements

Bipin Khatiwada
bipin.khatiwada@aalto.fi

Tutor: Lorenzo Corneo

Abstract

Numerous experiments and researches are conducted to measure the inter-

net and network parameters, such as latency, patterns in bandwidth con-

sumption, and network traffic analysis. These experiments are done with

different methodologies, tools and platforms, data captured and analyzed,

time, intervals and length. This paper compares some of these papers and

articles to identify the similarities and dissimilarities between them. It

then presents insight in terms of the methodologies, results, target and sev-

eral other parameters employed for the network measurement.

KEYWORDS: Network measurement, Speed test, network throughput, RIPE

Atlas

1 Introduction

As most of the applications and day-to-day tasks are shifting towards vir-

tual over the internet, the use of cloud applications has skyrocketed in

recent years. This growth is further pushed with most people working

from home after the COVID19 pandemic started [26]. Video conferencing,

social media, streaming services, and distance learning are a few of the

major areas for which the internet is used for. These services are served

from different data centers and cloud providers. Therefore, it is crucial to

measure the internet and cloud computing networks, as the measured re-

sult can provide insights on the current status, problems, and bottlenecks

of the infrastructure. This allows cloud providers to identify problems and

propose new solutions to fix them. The result also improves the experi-

ence of the end-user, saving cost and energy by effectively setting up the

network components to best serve the contents.

Researchers use different approaches to measure the network metrics.

Frameworks, such as RIPE Atlas[9], BISmark[2], and SamKnows[6] use

different devices scattered in different regions to measure in different

ways and for a different purpose [17]. Furthermore, researchers employ

several techniques that include using various source-destination pairs,

targets, duration of experiments, and interval between adjacent measure-

ments. Such varieties are difficult to track and decide which results to

follow for different use cases. Services, such as Amazon Web Service

(AWS)[3], Google Cloud Platform (GCP)[4] and Microsoft Azure[5], which

contribute a major role in delivering online services add options to the

end-users making it even more difficult with the decision [22]. This paper

aims to provide a holistic view of network measurement techniques for

cloud computing, as well as data, facts and a comparison of them.

We focus on three major aspects: (i) understanding the current cloud

system infrastructure, (ii) comparative analysis of performance metrics,

and (iii) analysis of different cloud service providers. All of these provide

an overview of the cloud computing infrastructure, understand the factors

that affect the performance, and how the service delivery is optimized by

major content providers.

The paper is organized as follows. Section 2 provides background and

theory of related topics. Section 3 provides the literature review of dif-

ferent papers focusing on the comparison and presentation on different

metrics. Section 4 discusses the findings and speculation of the data. Fi-

nally, Section 4 provides concluding remarks.

2 Background

Network Basics

A network is a collection of two or more computers, servers, peripherals

or other devices to allow data and resource sharing. The internet is the

network of different networks spread across the different geographic lo-

cations. An Autonomous System (AS) is a collection of such networks (or

routers) which are controlled by one or more network operators managed

by a single administrative entity [7]. The administrative entity deter-

mines the routing policy of those addresses over the internet. Each of

such ASes is identified by a unique number called an Autonomous System

Number (ASN). ASN is a unique number that is mainly used for inter-

network communication and used by routing protocols, including Border

Gateway Protocol (BGP). Each router in the network is identified by a

unique identifier called Internet Protocol (IP) Address. The most popular

IP addressing schemes are IPv4 and IPv6. IPv4 uses a 32-bit address for-

mat using dotted-decimal notation allowing the total of 232 = 4.19 billion

addresses. IPv6 is developed to overcome the shortage of IPv4 addresses

with a 128-bit address format supporting up to 2128 internet addresses in

total [14]. Multiple programs, services, processes, protocols and devices

can access the network using a single router. In order to do so, each entity

is labeled by a unique number called Port Number. Using port, any re-

quests sent and received to an IP address is correctly passed to the origin

of the request.

Border Gateway Protocol

A Border Gateway Protocol (BGP) is a protocol that governs the flow of

traffic between different ASes. BGP records the routing policy of the ASes,

IP addresses they control and other ASes that they can connect to. Based

on this information, it forms a routing table to determine the fastest route

between any two ASes. Public Wide Area Network (WAN) uses this record

and determines the next hop for the data packets to reach the destination

faster. Once the data packet enters AS, it is routed according to its routing

policy. Any changes within ASes, such as change in the addresses they

control, is constantly updated. Many cloud service providers implement

their private WAN to replace or run alongside BGP to make routing faster.

Cloud Infrastructure and its elements

The major elements of cloud infrastructures are networking equipment,

servers, and data storage. Servers provide the computing resources needed

to process the data and produce the needed output while data storage

serves as a means to store any media, files and databases associated

with the service. Networking equipments include the Autonomous Sys-

tem (AS), Internet Service Provider (ISP), Internet Exchange Point (IXP),

Private and Public Wide Area Network (WAN), Border Gateway Protocol

(BGP), Domain Name System (DNS), Router, Point of Presence (PoPs).

They employ virtualization of resources providing hardware abstraction

layer, which will reduce the cost of operation and help to scale of the ser-

vices [12].

A Content Provider (CP) is the service or entity which serves the con-

tent to the internet users. For example, Youtube serves videos, Spotify

serves music and Wikipedia serves text information. A Content Delivery

Network (CDN) has distributed infrastructures that enable to serve the

content from regions close to the user. The major advantages of CDN in-

clude latency reduction, throughput maximization, shortening of packet

routes and therefore reduce network congestion [19]. CP uses CDN to

distribute the information. They either have their own CDN networks or

rents it from big CPs.

3 Literature Review

3.1 Round Trip Time

Experiments measure RTT from the user’s local machines, virtual ma-

chines deployed in the cloud and also from analyzing the traffic data in

different points, such as, PoP point, AS, ISP and router. Performing sev-

eral experiments at different times and from different locations can pro-

vide a more accurate idea of the actual latency.

An experiment by Arnold et al. used Facebook’s load balancers data

from all across the world and found that the latency improvement of using

private WAN is not significantly better than using public WAN that uses

BGP [15]. Another analysis of Facebook PoPs traffic data for over 10 days

shows that the majority of Facebook users have less than 40ms median

RTT and achieve goodput for streaming High-Definition (HD) video [28].

There are several measures employed by cloud service providers to mini-

mize latency. Content providers have PoPs in several geographic locations

connected with their private WAN across the internet to provide a faster

response. Study shows that faster RTT provides better client’s Quality of

Experience (QoE) [25].

3.2 Core-internet traffic

The term "core" refers to a subset of ASes which are deeply connected.

Data analysis by Labovitz et al. shows that the number of ASes responsi-

ble for generating most of the traffic has shrunk from thousands of ASes

to only tens of ASes in recent years [23]. The top seven players respon-

sible for generating internet content are Akamai, Amazon, Facebook, Ap-

ple, Google, Microsoft and Netflix. Akamai has output traffic of over 10

Tbps, while Facebook and Netflix each have 1 Tbps. During the peak pe-

riod, the highest amount of traffic in North America is used by Netflix

(35%), Youtube (17%) and Amazon Video (4%). Similarly, the largest data

transfers are carried out by Amazon (42%), Microsoft (15%) and Google

(7%) [19]. Figure 1 shows the evolution of the traffic by CPs based on

the publicly available database. All of these CPs have their CDNs, most

of which are offloaded from the Akamai CDNs. The strategic placement

of CDNs across different continents and large userbases worldwide have

boosted this traffic generation from these CPs. Currently, a large number

of smaller CPs also use or rent the CDNs of these top CPs, which is also

the major reason for them to rule the internet traffic.

3.3 Network performance of AWS, Azure and GCP

Amazon’s AWS, Google’s GCP and Microsoft’s Azure are the major cloud

service providers. The network performance combined with the pricing

and services is crucial in deciding which service to take. The 160 million

data points taken over 30 days at the 10-minute interval show some in-

teresting insights on their performance [22]. The inter-Availability Zone

(AZ) performance is best in GCP (0.79 ms) and AWS (0.82 ms), followed

by Azure (1.05 ms). However, based on the user location, these providers

have varying performance. When comparing bi-directional latencies from

Australia and Asia, it shows that Tokyo has the lowest latencies in any

platform, while locations, including Singapore and Mumbai have the worst

performance using AWS and GCP.

Based on the hosting region, the end-user experience varies. For in-

stance, hosting in the UK provide less than 25ms bi-directional latencies

in all platforms for European users, while it is 250ms average for Asia,

120 ms average for North America and 200 ms average for South America.

Changing the host region to Virginia has average bi-directional latencies

of 48 ms in North America, 95 ms for Europe, 210 ms for Asia and 130 ms

for South America.

The performance of AWS in Asia is less predictable with the latency

variation higher than GCP and Azure. This is mainly due to its architec-

tural design of it: the traffic traverses longer on AWS deployments.

All of these 3 providers peer with each other well. The packet loss in

multi-cloud is 0.01% in all of them, while jitter is less in Azure-GCP (0.29

ms) compared to AWS-Azure (0.43ms) and GCP-AWS (0.5 ms).

3.4 BGP and Private WAN

BGP is the internet’s intern-domain routing protocol that forwards the

requests choosing the effective path to reach the destination. It is de-

signed to make efficient routing. However, some large companies, such

as, Amazon, Google and Facebook also implement their own WAN net-

work for routing and use it alongside BGP to reduce the latency. Different

researches [15, 17] show that the private WAN provides little benefits for

replacing BGP. BGP, which uses anycast, performs as well as the best uni-

cast, implemented by private WAN, for 70% of the traffic. In comparison,

the best unicast is faster than anycast by a minimum of 100ms for 10% of

requests. A little less than 50% of the observations showed improvement

on using private WAN of cloud provider’s private WAN while observing

the measurements from ASes that hosts 91% of world users [16]. These

analyses show that private WAN could be a benefit for the companies with

billions or trillions of requests every day. However, there is no more ad-

vantage of replacing BGP for the normal cloud services.

3.5 Tools and platforms

Different tools and software can be used to measure different attributes of

a network. The trend shows that "traceroute", "netflow[8]" and "yarp[18]"

seem to be a popular choice to measure the latency [17, 21, 24]. The

tools provide easy to implement and evaluate data while analyzing the

response time and different hops of the requests. For speed measurement,

tools such as "Speedchecker[11]" and "ping" are the popular ones [16, 17].

These are employed to measure the speed from the end-users location as

well as the virtual machines in the cloud. "zmap[13]" and "zmap6" are

used to find responsive addresses in IPv4 and IPv6 respectively [24]. An-

other useful platforms used is the RIPE Atlas. With different devices and

anchors deployed worldwide, RIPE Atlas allows measuring the custom

measurements using its API [10]. The most common measurement types

are the ping and traceroute. Other popular techniques researchers em-

ploy are the sniffing of packets using tools, such as, Wireshark, log files

from ISPs and IXPs, DNS redirection, logs of the cloud provider’s PoPs,

private WAN and other logs that are made available by the companies

[24, 27, 28, 21, 16].

3.6 Length and interval

The result and inference largely differ by the length of the experiment

and the interval on which they are repeated. Most of the studies related

to traceroute, ping and DNS are repeated for several days to weeks [17].

A study related to Port 0 traffic [24] measured the IXP data of 1 week.

Similarly, facebook’s performance measurement study [28] gathered the

results based on 10 days of data.

Based on the data, time and interval, it seems that in case the data being

measured are not affected by time and day, then it is usually good enough

to work on data collected over 1 or 2 weeks. However, more intervals

and longer length of the experiment is always more reliable and provide

accurate insights.

3.7 IPv4 and IPv6 addresses

The study by Prehn et al. [27] spotlights on the market of IPv4 and IPv6

addresses. Since the IPv4 addresses are limited, most of the Regional In-

ternet Registry (RIR) already have their IPv4 exhausted. The study per-

formed using 2 databases: information observed by BGP collectors and

RDAP databases operated by RIR shows that the market for leasing and

buying IPv4 addresses is gaining more popularity. The study sheds light

on some interesting business models: ISP buy larger blocks of IPv4 and

lease the potential customer, young businesses start their domain by leas-

ing, and VPN services rotate the leased IP addresses to prevent blocking.

3.8 Other Traffic analysis

Some of the popular insights we gathered are:

• Maghsoudlou et al. [24] analyzed 73 GB of port 0 traffic and 1 week

of IXP traffic to find out that few hosts generate port 0 traffic, most of

which do not have payload and the ones with payload are of BitTorrent.

The response rate is high in TCP port 0 probes in IPv4.

• The RIPE Atlas probe distribution is skewed with 45% of the probes

falling within AS rank less than 102. The rest of the ASes contain less

than 10 probes. COMCAST has the highest number of probes [17].

• Not all RIPE Atlas probes reveal their public IP or AS origin. The origin

of such probes can be obtained by using a traceroute.

• The study of TCP and HTTP layers from Facebook’s PoPs [28] shows

that almost half of the requests have less than 2 KB of response payload.

• Number of networks hosting HyperGiant(HG) off-nets has increased

thrice from 2013 to 2021, and that 5 major HGs have 50% of the in-

ternet traffic [20].

4 Discussion

4.1 Trends in network measurement experiments

We evaluated 14 papers published in different journals to see the different

type of data they measured to evaluate the network performance. The

figure 3, shown below presents the insight of popularity of data that the

researches consider for. Each paper has one or more data considered.

Figure 1. Percentage of papers and data used for network measurement experiments

Server logs seem to be the most popular option followed by RTT and

Network Speed / Throughput. The reason for logs being most popular is

because it provides more information about different variables that re-

searcher considers. Similarly, RTT and network speed are the major im-

portant metric that companies and CDN aim to get the best result in.

Table 1 shows the different popular methods, tools and platforms used,

along with the data collection period they use to measure the data.

4.2 Logs from PoPs and CDNs are more popular

Logs of Facebook’s PoPs and CDNs are the most popular data source to

analyze traffic [28, 15, 16, 22]. Facebook has billions of users world wide

spread across all regions of the globe, so, the collected sample would be

more representative of the real population. Also, they process very high

number of requests within short amount of time, which is enough to de-

duce patterns of use in research [28]. However, normal people have lim-

ited access to the Facebook’s logs and other popular CDN’s traffic. Thus

the researchers have challenge of having access to the platform and data.

Most of the researches that use this Facebook’s logs are either the com-

pany’s employees or are supported by the company for the research.

T
re

nd
s

in
ne

tw
or

k
m

ea
su

re
m

en
t

ex
pe

ri
m

en
ts

M
ea

su
re

d
da

ta
M

et
ho

ds
U

se
d

To
ol

s
/P

la
tf

or
m

s
D

C
P

R
T

T
E

nd
us

er
de

vi
ce

to
se

rv
er

,V
M

de
pl

oy
ed

in
cl

ou
d

to

se
rv

er

T
ra

ce
ro

ut
ea ,

ya
rp

[1
8]

,
ne

tfl
ow

b ,
H

T
T

P
se

ss
io

n

lo
gs

fr
om

C
P

Po
P

s,
R

IP
E

A
tl

as
c

1d
-1

0d

T
hr

ou
gh

pu
t

C
D

N
pl

ac
em

en
t

si
m

ul
at

io
n,

tr
ac

in
g

pa
ck

et
ro

ut
e

fr
om

di
ff

er
en

t
so

ur
ce

s

Sp
ee

dc
he

ck
er

d
,p

in
g

N
A

C
us

to
m

m
ea

su
re

m
en

ts
R

IP
E

A
tl

as
’s

A
P

I,
L

og
an

al
ys

is
an

d
ca

te
go

ri
za

ti
on

R
IP

E
A

tl
as

,N
et

w
or

k
lo

gs
3d

-1
m

So
ur

ce
/D

es
ti

na
ti

on
pa

ck
et

sn
if

fin
g,

ro
ut

er
m

on
it

or
in

g,
D

N
S

re
di

re
ct

io
n

zm
ap

e ,
zm

ap
6,

L
og

s
fr

om
IS

P
s

an
d

IX
P

s,
W

ir
e-

sh
ar

kf ,
L

og
s

of
C

P
Po

P
s,

B
G

P
da

ta
ba

se

1d
-7

m

C
P

Pe
rf

or
m

ac
e

pr
ic

e
vs

pe
rf

or
m

an
ce

,
en

d
us

er
to

se
rv

er
,

in
te

r-
A

Z

pe
rf

or
m

en
ce

,e
nd

us
er

to
A

S

L
og

s
of

C
P

Po
P

s,
B

G
P

da
ta

ba
se

7d
-3

0d

Pa
ck

et
ro

ut
e

ho
p

co
un

t,
co

m
pa

ri
ng

op
ti

m
al

vs
re

al
pa

th
B

G
P

da
ta

ba
se

,t
ra

ce
ro

ut
e

10
d

to
4m

Ta
bl

e
1:

T
re

nd
s

in
ne

tw
or

k
m

ea
su

re
m

en
t

ex
pe

ri
m

en
ts

In
de

x:
D

C
P

=
D

at
a

C
ol

le
ct

io
n

Pe
ri

od
d

=
da

ys
,m

=
m

on
th

s
a h

tt
ps

://
lin

ux
.d

ie
.n

et
/m

an
/8

/t
ra

ce
ro

ut
e

b h
tt

ps
://

w
w

w
.ie

tf
.o

rg
/r

fc
/r

fc
39

54
.t

xt
c h

tt
ps

://
at

la
s.

ri
pe

.n
et

d
ht

tp
s:

//w
w

w
.s

pe
ed

ch
ec

ke
r.c

om
/

e h
tt

ps
://

zm
ap

.io
f h

tt
ps

://
w

w
w

.w
ir

es
ha

rk
.o

rg
/

4.3 Big CPs upgrade to their own infrastructure

Small businesses and CPs rely on few big CPs for providing their contents

faster and from closer to the request points. Most big CPs today that has

sheer large number of users worldwide, for instance over 1 billion, they

relied on Akamai during the initial days and offloaded their service later

[22, 14]. It makes more economical sense to own private WAN and CDNs

for such huge user base. This way the businesses can have more control

over the infrastructure, reduce costs in long term and dedicated lines of

connections based on the requirements of different geographic locations.

4.4 Choosing CPs should depend on own necessity

The 3 major CPs (Azure, Google and AWS) have competitive service in

terms of latency and throughput. They have a very good architecture

and physical inter-region connections [19, 22]. Also, they peer with each

other well. The decision to choose CP should primarily rely on the prox-

imity of the server and location of majority of the users. Then the "best"

and "worst" region pairs should be decided based on the experiment data.

Marketed nternet data should be trusted yet verified as the performance

may affect by a lot of variables not considered during the research period.

Also, "data gravity" pricing, a term used by Stoica and Shenker [29],

should be considered while choosing CP. Essentially, data gravity refers

to the cost that CPs charge for transferring data out of their service to

some other CP. Most CPs, including AWS, have free model for ingesting

data but impose 0.05-0.09$/GB for transfer, which is the cost of storing a

GB of data for a couple of months [1]. Therefore, it is wise for businesses to

choose CP that provide lower data gravity with other backup CP options,

or at least not migrate to the CP without enough trial and validations.

5 Conclusion

This paper reviewed different network measurement experiments, ana-

lyzed them, and derived several insights. First, RTT is the most popu-

lar metric, and log analysis is the preferred methodology of many experi-

ments. Second, Most CPs grow their businesses using the infrastructure

of big CPs and establish their own infrastructure only when they have

at least a billion users. Third, Recent researches prefer log analysis from

PoPs and CDNs of big CPs, such as Facebook, but these data are not avail-

able to everyone all the time.

References

[1] Amazon s3 pricing. https://aws.amazon.com/s3/pricing/, last accessed on:
04.04.2022.

[2] Bismark-m-lab. https://www.measurementlab.net/tests/bismark/, last ac-
cessed on: 04.04.2022.

[3] Cloud computing services - amazon web services (aws). https://aws.amazon.com/,
last accessed on: 04.04.2022.

[4] Cloud computing services | google cloud. https://cloud.google.com/, last
accessed on: 04.04.2022.

[5] Cloud computing services | microsoft azure. https://azure.microsoft.com/en-
gb/, last accessed on: 04.04.2022.

[6] Homepage | samknows. https://www.samknows.com/, last accessed on:
04.04.2022.

[7] Rfc 1930 - guidelines for creation, selection, and registration of an autonomous
system (as). https://datatracker.ietf.org/doc/html/rfc1930, last accessed on:
27.03.2022.

[8] Rfc 3914. https://www.ietf.org/rfc/rfc3954.txt, last accessed on: 04.04.2022.

[9] Ripe atlas. https://atlas.ripe.net/, last accessed on: 04.04.2022.

[10] Ripe atlas api reference. https://atlas.ripe.net/docs/api/v2/reference/, last
accessed on: 04.04.2022.

[11] Speedchecker | crowdsourcing for telecoms regulators. https://www.speedchecker.com/,
last accessed on: 04.04.2022.

[12] What is cloud infrastructure? https://www.sumologic.com/glossary/cloud-
infrastructure, last accessed on: 26.02.2022.

[13] The zmap project. https://zmap.io/, last accessed on: 04.04.2022.

[14] Ipv4 vs ipv6, what is ipv4, what is ipv6, ipv6 to ipv4 basis - fs.com, Mar
2022. https://community.fs.com/blog/ipv4-vs-ipv6-whats-the-difference.html,
last accessed on: 03.03.2022.

[15] Todd Arnold, Matt Calder, Italo Cunha, Arpit Gupta, Harsha V Madhyastha,
Michael Schapira, and Ethan Katz-Bassett. Beating bgp is harder than we
thought. In Proceedings of the 18th ACM Workshop on Hot Topics in Net-
works, pages 9–16, 2019.

[16] Todd Arnold, Ege Gürmeriçliler, Georgia Essig, Arpit Gupta, Matt Calder,
Vasileios Giotsas, and Ethan Katz-Bassett. (how much) does a private wan
improve cloud performance? In IEEE INFOCOM 2020-IEEE Conference on
Computer Communications, pages 79–88. IEEE, 2020.

[17] Vaibhav Bajpai, Steffie Jacob Eravuchira, and Jürgen Schönwälder. Lessons
learned from using the ripe atlas platform for measurement research. ACM
SIGCOMM Computer Communication Review, 45(3):35–42, 2015.

[18] Robert Beverly. Yarrp’ing the internet: Randomized high-speed active
topology discovery. In Proceedings of the 2016 Internet Measurement Con-
ference, pages 413–420, 2016.

[19] Esteban Carisimo, Carlos Selmo, J Ignacio Alvarez-Hamelin, and Amogh
Dhamdhere. Studying the evolution of content providers in the internet
core. In 2018 Network Traffic Measurement and Analysis Conference (TMA),
pages 1–8. IEEE, 2018.

[20] Petros Gigis, Matt Calder, Lefteris Manassakis, George Nomikos, Vasileios
Kotronis, Xenofontas Dimitropoulos, Ethan Katz-Bassett, and Georgios Smarag-
dakis. Seven years in the life of hypergiants’ off-nets. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, pages 516–533, 2021.

[21] Said Jawad Saidi, Anna Maria Mandalari, Roman Kolcun, Hamed Had-
dadi, Daniel J Dubois, David Choffnes, Georgios Smaragdakis, and Anja
Feldmann. A haystack full of needles: Scalable detection of iot devices in
the wild. arXiv e-prints, pages arXiv–2009, 2020.

[22] Archana Kesavan. Nanog homepage. https://pc.nanog.org/static/published/-
meetings/NANOG75/1909/20190218_Kesavan_Comparing_The_Network_v-
1.pdf.

[23] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide,
and Farnam Jahanian. Internet inter-domain traffic. ACM SIGCOMM
Computer Communication Review, 40(4):75–86, 2010.

[24] Aniss Maghsoudlou, Oliver Gasser, and Anja Feldmann. Zeroing in on port
0 traffic in the wild. In International Conference on Passive and Active
Network Measurement, pages 547–563. Springer, 2021.

[25] Ciamac C Moallemi and Mehmet Saglam. The cost of latency. SSRN
eLibrary, 2010.

[26] Ricky KP Mok, Hongyu Zou, Rui Yang, Tom Koch, Ethan Katz-Bassett, and
KC Claffy. Measuring the network performance of google cloud platform.
In Proceedings of the 21st ACM Internet Measurement Conference, pages
54–61, 2021.

[27] Lars Prehn, Franziska Lichtblau, and Anja Feldmann. When wells run
dry: the 2020 ipv4 address market. In Proceedings of the 16th International
Conference on emerging Networking EXperiments and Technologies, pages
46–54, 2020.

[28] Brandon Schlinker, Italo Cunha, Yi-Ching Chiu, Srikanth Sundaresan, and
Ethan Katz-Bassett. Internet performance from facebook’s edge. In Pro-
ceedings of the Internet Measurement Conference, pages 179–194, 2019.

[29] Ion Stoica and Scott Shenker. From cloud computing to sky computing.
In Proceedings of the Workshop on Hot Topics in Operating Systems, pages
26–32, 2021.

Layer-2 Integrity Protection

Kun Ren
kun.ren@aalto.fi

Tutor: Tuomas Aura

Abstract

The majority of security protocols are based on IP protocol. However, the

link layer based on MAC has not been protected carefully. In this paper, we

will introduce recent research on link layer security. This paper discussed

the known attacks on link layer. Then Mainly analyze and compare MAC-

sec and SecOC, to show their solutions to different tricky problems, such

as the trade-off of security and overhead. Finally, The purpose of this pa-

per is to review recent research on link layer security and suggest suitable

approaches to implement in real-world networks.

KEYWORDS: Secure Communication, MacSec, SecOC, Link Layer

1 Introduction

Many known protocols have been developed to ensure the integrity and

confidentiality of data, such as IPsec, TLS, and SSH. These methods pro-

vide security at network, transport, and application layers. However,

when the information is transmitted at the link layer, it is not be protected

carefully. In addition, WPA, WPA2, and WPA3 were developed to secure

the entire frame in the wireless network [11]. However, some weaknesses

remain in the wired Ethernet networks.

It is necessary to increase security at the link layer. There are some so-

lutions that try to address the security problems at the link layer such as

MACsec, SecOC, Cryptographic Link Layer (CLL) [9] and Packet Security

Protocol (PSP) [11]. The main idea is to add encryption and cryptographic

integrity check to each Ethernet frame to protect its contents. Although

different solutions have their own features, for example, MACsec requires

new hardware support, SecOC is a in-vehicle network protocol, CLL did

not provide a way to protect ARP and DHCP pakects. the encryption of

each frame causes considerable computational overhead.

This paper reviews the latest approaches used for protecting the link

layer. Based on standard protocols, we analyze the solutions used to pre-

vent different threats. We also do some comparisons of different link-layer

security solutions to find their advantages and disadvantages.

This paper is structured as follows. The next section describes the threats

at the link layer. Section 3 analyzes the packet format of MACsec and

SecOC and how those protocol works. Section 4 shows the security prop-

erties are provided to protect against those threats, Section 5 draws con-

clusions and suggestions for future work.

2 Threat model

2.1 Attacks

There are some known threats to the link layer, such as MAC flooding at-

tack, DHCP attack, and ARP attacks [8]. Here are their potential threats:

MAC flooding attack

The Content Addressable Memory (CAM) table maps MAC addresses to

physical interfaces. However, CAM table is limited in size. Attackers can

flood the switch using a number of fake MAC addresses [13]. Then the

CAM table is full, and it is unable to save new MAC addresses. As a result,

the switch will broadcast the traffic that CAM table does not contain. The

attacker can easily receive all the frames on the local network.

DHCP starvation attack

In the Dynamic Host Configuration Protocol (DHCP) starvation attack,

an attacker sends a large number of requests to consume all the available

DHCP addresses in the DHCP server. Then the attacker established a

fake DHCP server to provide fake addresses to the clients. When clients

send their data frames to the fake destination address, the attacker can

intercept all frames.

ARP attacks

The Address Resolution Protocol (ARP) maps IP addresses to MAC ad-

dresses on the local network. Each host machine on network maintains

a table. When someone is changing the ARP table without authorization.

Hackers can spoof and intercept data frames, modify or stop them. then

launch other attacks, such as Man-In-The-Middle and Denial of Service.

In addition, there are other attacks at link layer, such as MAC cloning

and Layer 2-based broadcasting.

2.2 Threats analysis

In this paper, we assume that an active attacker uses several methods

to attack our security. An active attacker means can get access to the

network locally, and may also inject malicious frames into the network.

Therefore, the attacker can easily exploit known weaknesses of the link

layer.

In reality, the attacker may inject and modify frames that are used to

run a specific functionality. For example, injecting a number of packets

with different MAC addresses and building fake ARP messages. The at-

tacker in general aims to mount the following attacks [5]:

Replay: reuse old valid frames with malicious purposes.

Tampering: spoil content of frames, so receiver cannot under-

stand the original meaning.

Forging: generate a valid frame to activate a specific functionality

with malicious purpose.

A Denial-of-Service (DoS): flooding the target with traffic, or send-

ing it information that triggers a network crash.

2.3 Security properties

In order to mitigate those threats, a secure protocol should satisfy at least

the following security properties:

Freshness: Time information of a related message. The order of

a frame can be detected.

Integrity: The data is not modified when transferring. Integrity

ensures data cannot be altered by unauthorized people.

Authentication: The sender of a frame can be verified and the

data source is reliable.

Confidentiality: Only authorized receiver can get the content of a

frame.

3 Protocol

3.1 MACsec protocol

The IEEE has proposed their solution to protect the link layer, IEEE

802.1AE. This standard is an extension of the Ethernet specification that

appends a header and tail to all Ethernet frames [2]. MAC security (MAC-

sec) provides data integrity, data confidentiality, and data origin authen-

tication at the link layer. However, its implementation can represent a

large investment in new hardware. Key management is a considerable

obstacle limiting the usage of this protocol.

Packet format

Based on the standard Ethernet frame format, MACsec appends SecTAG

and ICV (Integrity Check Value). When receiving MACsec frames, MAC-

sec service will check the information in the SecTAG and the ICV to deter-

mine whether to drop or accept the frame [7]. The whole MACsec packet

format is shown in Figure 1.

The length of ICV used to ensure the integrity of data is between 8 to

16 bytes depending on Cipher Suite. The SecTAG field is 16 bytes long,

defined as follows:

EtherType: The length of Ethertype is 2 bytes, the value of Ether-

type is 0x88e5 to indicate this frame is a MACsec frame.

Figure 1. MACsec packect format [6]

TCI/AN: The third byte is the TAG Control Information contains

several pieces of information. Version number (V), End Station

(ES), SCI present (SC), Single Copy Broadcast (SCB), Encrypted

payload (E), Changed Text (C) and Association Number (AN).

SL: SL means short length, which is used to indicate the length

of the encrypted data.

PN: Packet Number (4 bytes) is used for replay protection and

used as Initial Value (IV) for the Cipher Suite. In each MACsec

frame the PN is unique, usually is an increasing number.

SCI: The secure channel identifier is 8 bytes. SCI is used to indi-

cate to which security association (SA) the frame belongs.

How MACsec Works

MACsec implements the MACsec Key Agreement (MKA), which is a part

of the IEEE 802.1XREV-2010 Port-Based Network Access Control Stan-

dard [1]. MKA provides a method to discover other MACsec stations and

negotiate the security keys needed to create the link between stations.

In more detail, MACsec defines the MAC Security Entity (SecY) to op-

erate with the MAC Security Key Agreement Entity (KaY). KaY can dis-

cover and authenticate other stations on the local network, then creates

and maintains the secure relationships between stations that are used by

the SecYs to transmit and receive frames [4].

The Connectivity Association (CA) created by MKA is used to connect

stations. Each SecY can only participate in one CA at any one time. There

are several Secure Channels (SCs) in CA that it uses to send traffic to

other MACsec participants. Each channel is one-directional, as shown in

Figure 2.

In the figure, station A, B and C are in the CA, and CA excludes sta-

tion D. The three SCs provide secure communication among the stations.

Figure 2. Secure Communication between three stations [8]

Each SC has an 8-byte secure channel identifier (SCI). The first 6 bytes

of SCI match the MAC address of the device transmitting through that

channel. The remaining 2 bytes are port number used to distinguish be-

tween multiple channels from the same device. Each SC may maintain

Secure Associations (SA) at any point in time. Each SA contains Secure

Association Key (SAK) and Counters related to packet numbers. An SA is

identified through a combination of the channel’s SCI and an Association

Number (AN). Then the Secure Association Identifier (SAI) is created,

which allows the receiving SecY to identify the SA, and the session key to

be used to decrypt and authenticate the received frame [4].

3.2 SecOC protocol

In the AUTomotive Open System ARchitecture (AUTOSAR) specification

for automotive networks, SecOC module is designed to minimize the over-

head of the integrity protection in terms of the number of bits per frame

[10]. The SecOC module provides freshness, integrity and authentica-

tion of the protocol data units (PDUs) between electronic control units

(ECUs). This method requires both sender and receiver to implement a

SecOC module.

The SecOC module gets freshness from an external Freshness Manager

for each uniquely identifiable Secured I-PDU [3]. The packet format is

shown in Figure 3:

The payload of a Secured I-PDU consists of the header, the authentic

Figure 3. Secured I-PDU packet format [3]

I-PDU, Freshness value and an Authenticator. Authenticator refers to

a unique string generated by a key, identifier of the I-PDU, Authentic

payload, and Freshness value. It is necessary to minimize Authenticator

length when the message payload is limited in length. If truncation is

possible, the Freshness and the Authenticator should only be truncated

down to the most significant bits of the resulting generated by the au-

thentication algorithm. Figure 4 shows an example:

Figure 4. Secured I-PDU with truncated Freshness and truncated Authenticator [3]

In case a Message Authentication Code (MAC) is used, it is possible to

transmit and compare only parts of the MAC. This is known as MAC trun-

cation. However, this approach will decrease the secure level of Secured

I-PDU. In general, MAC sizes of 64 bit and above are considered to provide

sufficient protection [12].

4 Protocol analysis

4.1 MACsec protocol Analysis

Freshness: Every MACsec frame has a unique PN, which is usu-

ally increased by one for each frame. The peer receiving a frame

compares its number with its acceptable PN and drops any frames

with lower numbers.

Integrity: Integrity Check Value (ICV), which is generated by ci-

pher suite, guarantees packets have not been modified on the way.

Authentication and Confidentiality: MKA provides a method for

discovering MACsec peers and establishing secure tunnels. MAC-

sec uses SCs to transmit keys and identifiers. Finally, MACsec

will derive a session key used to decrypt and authenticate re-

ceived frames.

Latency: MACsec adds about 40 bytes of extra content in each

frame and may cause a little latency. Switch needs time to en-

crypt and decrypt the payload for integrity. So it is necessary

to implement MACsec in new hardware that can accelerate the

chipper suite operation.

4.2 SecOC protocol Analysis

Similar to Macsec, SecOC Freshness Value Manager provides Freshness

value to protect against replay attack. Authenticator use MAC to provide

Authentication and Integrity. For latency, SecOC provides a way to mini-

mize the size of each frame. The packets are truncated down to small part

of the MAC. However, in SecOC protocol, the Key Exchange part has not

been standardized.

4.3 Comparison

For similarity, Macsec and SecOC support several security perporties,

such as Freshness, Authentication and Integrity. For difference, MACsec

follows hop-by-hop encryption but SecOC supports end-to-end protection.

Macsec can provide Multicast Broadcast and Confidentiality, because of

the implementation of MKA. However, the Key Exchange of SecOC has

not been standardized. So SecOC have massive numbers of keys. All

in all, SecOC is Very flexible for new applications, but there are no open-

source implementations. Macsec is standardized very well and can protect

all traffic but it requires new hardware support.

5 Conclusion

This paper reviewed recent research about the link layer security, mainly

discussing MacSec for normal wired network and SecOC for in-vehicle

networks.

Firstly, this paper analyzed the main attacks of the link layer and estab-

lished the threat model. Then illustrated packet format of MACsec and

explained how the MACsec protocol provides serveral security perporties,

such as Freshness, Integrity and Authentication. However, bigger packet

size and frequent encryption would cause a visible latency. Then this

paper explained how SecOC minimizes the packet size using truncation.

Finally did some comparisons between Macsec and SecOC to find their

advantage and disadvantages.

References

[1] Ieee standard for local and metropolitan area networks–port-based network
access control. IEEE Std 802.1X-2010 (Revision of IEEE Std 802.1X-2004),
pages 1–205, 2010.

[2] IEEE Standard for Local and metropolitan area networks-Media Access
Control (MAC) Security. IEEE Std 802.1AE-2018 (Revision of IEEE Std
802.1AE-2006), pages 1–239, 2018.

[3] Specification of secure onboard communication protocol. 2020.

[4] Hayriye Celebi Altunbasak. Layer 2 security inter-layering in networks.
PhD thesis, Georgia Institute of Technology, 2006.

[5] Giampaolo Bella, Pietro Biondi, Gianpiero Costantino, and Ilaria Matteucci.
CINNAMON: A Module for AUTOSAR Secure Onboard Communication.
In 2020 16th European Dependable Computing Conference (EDCC), pages
103–110. IEEE, 2020.

[6] Stephen Orr Craig Hill. Innovations in Ethernet Encryption (802.1AE -
MACsec) for Securing High Speed (1-100GE) WAN Deployments. Cisco.

[7] Sabrina Dubroca. Macsec: Encryption for the wired lan. In netdev 1.1. Red
Hat, 2016.

[8] Narayana Raju Indukuri. Layer 2 security for smart grid networks. In
2012 IEEE International Conference on Advanced Networks and Telecom-
munciations Systems (ANTS), pages 99–104, 2012.

[9] Yves Igor Jerschow, Christian Lochert, Björn Scheuermann, and Martin
Mauve. Cll: A cryptographic link layer for local area networks. In Interna-
tional conference on Security and Cryptography for Networks, pages 21–38.
Springer, 2008.

[10] Timm Lauser, Daniel Zelle, and Christoph Krauß. Security analysis of
automotive protocols. In Computer Science in Cars Symposium. Association
for Computing Machinery, 2020.

[11] Reiner Augusto Campillo Terrero. A layer 2 protocol to protect the ip com-
munication in a wired ethernet network. Rochester Institute of Technology,
2014.

[12] Jo Van Bulck, Jan Tobias Mühlberg, and Frank Piessens. Vulcan: Efficient
component authentication and software isolation for automotive control net-
works. ACSAC 2017, page 225–237. Association for Computing Machinery,
2017.

[13] Angus Wong and Alan Yeung. Protecting network infrastructure–a new
approach. In Network Infrastructure Security, pages 219–262. Springer,
2009.

Cryptographic privacy: an overview of
identity hiding and one-sided
authenticated key-exchange protocols

Alessandro Chiarelli
alessandro.chiarelli@aalto.fi

Tutor: Prof. Chris Brzuska

Abstract

Key-exchange protocols are the foundations on which secure communica-

tions are built upon. Thus, it is imperative to define and analyse secure

protocols in order to protect the communications that happen every day. In

order to do so, this paper defines two security properties (identity-hiding

and one-way authentication) that allow us to analyse a number of differ-

ent key-exchange protocols. These properties focus on different, yet similar

goals on the topics of anonymity, privacy and authentication for protocols

used on the network layers.

KEYWORDS: cryptography, key-exchange protocol, one-sided authentica-

tion, identity hiding

1 Introduction

The expression online privacy can be defined as the set of protocols, con-

cepts and technologies that focus on protecting the identity and the infor-

mation of the users of the Internet, be it individuals or organizations. A

number of issues concerning privacy have been identified, such as data

collection by companies to track the behavior of their users, one example

being the Cambridge Analytica scandal [3], a political consulting company

that managed to get access to personal data of Facebook users and used it

in its political campaigns.

Cryptographic primitives, such as message authentication codes (MAC)

and encryption, are the foundations of digital security. They serve differ-

ent purposes: encryption is used to conceal data to eavesdroppers (data

confidentiality), and MACs are used to preserve data integrity. The two

properties rely on keys to operate; for this reason all parties involved in

a communication need to share secret keys. The goal of key-exchange

protocols is to perform this operation in an efficient and secure manner.

Two security properties addressing online privacy at the network layer

for key-exchange protocols [8, 4] are commonly referred to as identity hid-

ing and one-sided authentication. In this paper, we is define these two

properties and analyse exemplary key-exchange protocols with respect to

these definitions. We then compare them to examine the way they sat-

isfy either property. This paper focuses on the cryptographic properties

on a conceptual level, and considers practical implementations only when

necessary for contextualising their original use case.

Organization This paper is organised as follows. Section 2 clarifies the

meaning of key-exchange protocol and defines the two security properties

which are the focus of our work, i.e., identity hiding and one-sided authen-

tication. Section 3 describes the key-exchange protocols: SKEME, Noise,

OPACITY, AAKE-R, and Ntor. Finally, Section 4 presents concluding re-

marks.

2 Definitions

2.1 Key-exchange protocol

Cryptography can rely on symmetric keys or asymmetric keys. Symmetric

keys need to be agreed upon by both parties involved prior to the commu-

nication. Asymmetric keys instead are unique for each party and consists

of a pair of two keys, one private (secret) and one public. The two keys are

related through mathematical operations that allow one to encrypt a mes-

sage using the public key and decrypt it using the private key. Symmetric

key cryptographic systems are usually faster and more computationally

efficient, but asymmetric key cryptographic systems solve the problem of

generating and distributing a shared key between all possible communi-

cation parties on the internet.

The Diffie-Hellman key-exchange protocol (DH) [5] is a default

component in many current key-exchange protocols. It is based on expo-

nentiation and modular arithmetics. The two parties involved in the com-

munication, Alice and Bob, agree on a common generator g and a group,

generate a key pair of private keys (a for Alice and b for Bob) and public

keys (ga for Alice and gb for Bob). They now exchange the public shares

and compute the session key gab. Both parties can compute the key thanks

to the arithmetic properties of exponentiation. The session key can now be

used as a symmetric key to encrypt and decrypt messages. The DH proto-

col is believed to be secure against passive adversaries, as it is considered

extremely difficult and time consuming to compute the exponent given

the result of an exponentiation and due to the Decisional Diffie-Hellman

problem [1].

The original DH protocol does not support authentication as was al-

ready noted by Diffie and Hellman [5] in their original work. Thus, it is

useful to additionally use a signature scheme to digitally sign the trans-

mitted data using the private key. The obtained signature can then be

verified using the respective public key. In addition to signing protocol

messages, digital signatures can be used to generate certificates that bind

the identity of the owner to their specific public key. Certificates are cur-

rently widely used, and we refer to the work by Canetti [2] for an in-depth

discussion about digital signatures and certificates.

Finally, we remark that it is desirable that entities involved in a DH

protocol use ephemeral keys whenever possible to guarantee Perfect for-

ward secrecy (PFS). PFS is security property which assures that session

keys will not be compromised in case long-term secrets are compromised.

PFS is not the focus of this work, but we recommend the SKEME [9] or

Noise [6, 10] specifications and analysis for a discussion about it, or also

the work by which the concept was originally introduced [7].

2.2 Identity hiding

If a system relies on certificates, then eavesdroppers can use them to au-

thenticate the parties involved in the communication if the certificates

are sent in plaintext. For this reason, it is desirable use an identity hid-

ing key-exchange protocol. Dagdelen et al. [4] define identity hiding as

the property that allows the two parties A and B to mutually authen-

ticate each other and protect their identities from eavesdroppers during

the execution of the key-exchange protocol. The two parties can satisfy

this property by sharing an encryption of their certificates rather than

sending them in plain text format.

This technique works against eavesdroppers since the two parties first

perform a key-exchange protocol to generate a shared session key and fi-

nally using it to encrypt the certificates. Once a certificate is received, it is

first decrypted and later used to authenticate the other party. This tech-

nique does not work against active attackers, however, as one attacker

would easily be able to impersonate a legitimate party in the protocol and

obtain the identity of the victim.

It is possible to extend the definition of identity hiding to the concept of

one-sided identity-hiding. In this situation one of the two parties sends

its certificate during the key-exchange phase of the DH protocol and the

other one sends its own certificate only after the the execution of the DH

protocol in order to encrypt it. Thus, an eavesdropper is able to learn the

identity of the first party but not of the second one.

2.3 One-sided authentication

One-sided authentication is a useful security property to be achieved when-

ever the two parties involved in the communication have different au-

thentication needs or abilities. For example, one party requires to be

anonymous and authenticate the other party. Goldberg et al. [8] define

one-sided authentication formally. A protocol provides one-sided authen-

tication if given the communication initiated by party A with B, party A

authenticates the identity of B and keeps its own anonymity.

2.4 Differences between the two properties

Identity-hiding and one-sided authentication are different, as it is possi-

ble to infer from their definitions. As Goldberg et al. [8] showed in their

analysis, one-sided authentication is desirable in a number of situations,

for example whenever a patient wishes to talk to their doctor about their

health without revealing their identity or whenever the responder of a

communication does not need to authenticate the initiator (news sites,

search engines) but the initiator does. Identity-hiding, instead, is de-

sirable whenever both parties need to authenticate each other, such as

in private communications, as in instant messaging or email, or online

banking.

One-sided identity-hiding is useful in situations where the anonymity

needs between the two parties are still asymmetric, but both wish to au-

thenticate each other. An example could be a public message board, where

the message board being public means that it does not need to hide its

identity, but still needs to authenticate its users. Instead, a user accessing

the website may wish to hide their identity in the key-exchange protocol.

3 Exemplary protocols

In this section, we present and analyse the key-exchange SKEME, Noise,

OPACITY, AAKE-R and Ntor and highlight which of the previously intro-

duced security properties they achieve.

3.1 SKEME

SKEME [9] has been designed as a standard protocol for Internet appli-

cations at a time when the IETF was working on IPSEC. Among its many

components, SKEME offers a key-exchange protocol. The protocol con-

sists of three phases named SHARE, Exchange (EXCH) and Authentica-

tion (AUTH). The structure and operation of each phase can be adjusted

according to security and performance requirements.

The SHARE phase establishes a common secret key K0. The basic ver-

sion of the protocol relies on asymmetric encryption. Assuming Alice ini-

tiates the communication, she uses the public key of Bob to encrypt a

fresh random number KA and sends it along with her identity. Bob replies

sending another encrypted fresh random number KB along with his iden-

tity and both parties compute K0 as the hash K0 = H(KA,KB) (where

H is a hash function). If the parties require anonymity, they can also

encrypt their identities under the public key of the recipient of the trans-

mitted message. The SHARE phase can be omitted if a long-term shared

secret K0 already exists between the parties, for example, in case the end

devices where shipped with a shared secret key.

The EXCH phase uses the DH key-exchange to share public DH shares

ga and gb to be used for the symmetric encryption of messages between

the two parties. The EXCH phase can share encrypted nonces noncea and

nonceb in place of DH shares for faster computation, but this compromises

Perfect Forward Secrecy, because the nonces can be recovered once the

adversary learns the long-term secrets.

The AUTH phase authenticates the EXCH phase and reassures both

parties that the protocol has been completed successfully with the in-

tended peer. In order to prove their identities, the two parties A and B

send the following messages that essentially work as MACs:

A→ B : FK0(g
b, ga, idA, idB)

B → A : FK0(g
a, gb, idB, idA)

where FK0 is a pseudorandom function using key K0 and idi is the iden-

tity of party i. In case the EXCH phase used nonces, they replace the DH

shares. Each party A and B verifies the MAC they receive by perform-

ing the same computation and comparing the result to the message they

received.

SKEME requires that both parties involved in the communication share

their identity. If the identities are identified by certificates, then both par-

ties can authenticate the respective peer, thus it does not offer one-sided

authentication. In its basic operation mode, it does not offer identity-

hiding as the identities are sent without encryption. If the identities are

sent encrypted, then the protocol offers identity-hiding as long as the pri-

vate keys of the involved parties are uncompromised and as long as the

pseudorandom function used for authentication in the AUTH phase is se-

cure.

3.2 Noise

Noise [10] is a modern protocol framework which has many different im-

plementations, such as in Slack, Amazon AWS, WhatsApp and Wireguard

[6]. Noise uses static key pairs for authentication and ephemeral key pairs

for forward secrecy. A Noise session is based on messages exchanged

between the two parties and they can either be transport messages

or handshake messages [10]. Handshake messages are used to per-

form the key-exchange and after the completion of the key-exchange pro-

cess transport messages are encrypted and sent between the two parties.

Handshake messages are thus the focus of our discussion.

Noise is a very flexible protocol and it offers a number of patterns, each

identified by a string of two characters [10]. N stands for no static key,

K stands for static key known, I stands for static key immediately trans-

mitted (as soon as the first message is sent) and X stands for static key

transmitted (x-mitted) during the key-exchange, but not in the first mes-

sage. By combining the characters, it is possible to obtain many different

patters, such as NN, KN, NK, KK, XX each with its own security proper-

ties. There are two letters, one for each party. The first letter refers to the

initiator. of the exchange and the second letter refers to the responder.

The simplest pattern is the NN pattern, where the two parties simply

exchange their ephemeral keys with no authentication, thus no inform-

tion about the identities of either of the parties affects the protocol mes-

sages. In the KN or NK case, one of the two parties knows prior to the

communication the static public key of the other party. These variants

are identity-hiding under the assumption that the known static key has

been shared prior to the key-exchange in a secure manner. When static

public keys are transmitted, they are transmitted immediately (I pattern)

before the handshake, thus lacking identity-hiding, or after a successful

completion of an ephemeral key-exchange (X pattern) and thus providing

identity-hiding because they are encrypted. One-sided authentication is

provided in all N- or -N patterns, where - stands for K I or X. We refer to

the official Noise specification [10] for a detailed description of all possible

message patterns.

3.3 OPACITY

OPACITY [4] is a protocol used in contactless environments to create se-

cure channels. OPACITY is a variation of the DH key-exchange and exists

in two versions called Zero-Key Management (O-ZKM) and Full-Secrecy

(O-FS). In both protocols, a terminal T and a card C generate and share

session keys for authentication and encryption, but in O-ZKM there is

no need to store static keys in the devices, which is instead required for

O-FS. We will now focus our discussion on O-FS.

We refer to the two machines involved in an OPACITY session as ter-

minal T and card C. T and C each possess a key pair, a certificate that

includes their static public key, and a public key to verify certificates. T

starts the session by generating an ephemeral key pair and sending its

certificate and its ephemeral public key. C now verifies the certificate

and generates its own ephemeral key pair. C then uses the static and

ephemeral contributions of both parties to compute the session keys, en-

crypts its own certificate and computes a MAC over the message. C finally

sends the message to T, which will verify the MAC and derive the session

keys. Analogously, both parties obtained the same session key and can

use it to encrypt messages.

As it is possible to deduce from the above description, this protocol does

not provide one-sided authentication as both parties send certificates to

each other and it does not hide the identity of the terminal since it is sent

in cleartext. In turn, the identity of the card is hidden, because it encrypts

its certificate.

3.4 AAKE-R

Figure 1. Sequence diagram for AAKE-R protocol

AAKE-R (Anonymous and Authenticated Key Exchange for Roaming Net-

works) [11] is a protocol originally conceived for roaming networks, such

as the cellular network but it can also be adapted to other situations,

such as ATM networks. AAKE-R is a three-party protocol where we iden-

tify three entities: the Customer, the home Server of the Customer and

the foreign server F. In this set up, the Customer C pays a subscription

for the service to their home server H and wishes to access the network

through the foreign server F. The goal of AAKE-R is to allow C to access

the network without revealing their identity to F in order to protect their

privacy; at the same time F needs to be sure that it is interacting with an

actual paying customer.

AAKE-R [11] is designed as follows. All entities have public keys P i

used by a public encryption scheme Enc and make use of three different

hash functions named H1, H2, H3. C initiates the communication and

generates a random number ka and computes m1 = EncPf(IDH||H1(ka)),

where "IDH" denotes the identity of the home server and "||" stands for

string concatenation. We define α = H1(ka). F now decrypts m1 and

contacts H to verify that C has a valid subscription. Now C and H perform

an Anonymous Authenticated Key Exchange (AAKE) using the channel

established by F. The article [11] does not specify how to perform the

AAKE, but it clarifies that both parties authenticate each other but only

the identity of C will be hidden. Thus, AAKE is a protocol that offers one-

sided identity hiding, which is reasonable considering that the identity of

H has been already sent to F. H verifies that C holds a valid subscription

and computes Π = H2(C, IDH, F, c), where C, H and F are the identities

of the three parties involved and c is the session key generated during the

AAKE. Now H and F perform a key exchange using Π as a key to confirm

that the subscription exists. Then, F obtains a fresh random number kb

and sends m2 = kb ⊕ α to C. C now obtains kb = m2 ⊕ α and sends m3 =

H1(kb) ⊕ ka to F. Now F can compute ka from m3 and checks α using H1.

C and F can finally compute the session key as H3(IDH, F, ka, kb,Π) and

they perform three confirmation steps. F sends m4 = H3(IDH, F, α, kb,Π),

C verifies it and then sends m5 = H3(IDH, F, ka, kb,Π). In the end, F

verifies m5 and now the protocol is completed. In the following page a

sequence diagram of AAKE-R is presented.

AAKE-R is a protocol that shows us how the two security definitions

that were defined in the prior sections do not always apply transparently

to all key-exchange protocols. In this case, since AAKE-R is a three party

protocol the definitions defined in Section 2 cannot be applied directly.

Therefore, we can only affirm that the identity of C is known only by H.

The protocol does not offer identity-hiding as the identity H is revealed in

plaintext and it does not provide one-sided authentication as all parties

involved are authenticated by at least an other peer. Nonetheless, the

identity of C can be considered safe since they are only revealed to the

trusted home server and not to the broader network. This protocol shows

that the two security properties we identified do not cover all possible

scenarios.

3.5 Ntor

Ntor [8] is a protocol based on asymmetric cryptography and relies on

certificates. Let us assume that we have a client Alice and a server Bob.

Bob generates a static key pair (b,B) and obtains a certificate; Alice then

retrieves it from a trusted source. Whenever Alice starts a session with

Bob, she creates an ephemeral key pair (e,E) to be used only once. Alice

then sends Bob a message containing the ephemeral public share E, the

identity of Bob and the protocol identifier. Bob follows up with generating

an ephemeral key pair (eb, EB) and with computing both a secret key

and a MAC as follows. The MAC and the secret key are computed as

hashes of the ephemeral keys, the protocol identifier and the identity of

Bob. Bob finally sends the MAC and his ephemeral public key to Alice who

can finally compute the secret key and verify the MAC. If all validations

succeed, then the protocol has been completed, otherwise the session is

aborted.

As it is possible to deduce from the protocol description, ntor is a one-

sided authentication protocol as Alice is aware of the identity of Bob but

not vice-versa, and the protocol relies on ephemeral keys both for forward

secrecy and to protect the identity of Alice. Therefore, Ntor also provides

one-sided identity-hiding.

4 Conclusion

In this paper, we defined two security properties for key-exchange proto-

cols aimed at protecting user privacy in key-exchange protocols with two

parties. Identity-hiding and one-way authentication are not sufficient to

cover all possible scenarios as we have seen when discussing the AAKE-R

protocol, as this protocol is a three-party protocol and the application of

these definitions is not straightforward.

We noticed how some protocols can be adaptable to different situations,

and according to the variant that is currently being used its security prop-

erties differ. Examples are SKEME and Noise, as each comes with its own

set of variants. SKEME in its basic operation mode. does not offer either

one-sided authentication nor identity-hiding, whereas Noise has more va-

riety when it comes to its variants and to their security properties. Other

protocols such as Ntor can satisfy both properties but do not offer much

variety when it comes to protocol variants.

We advocate for some research into new security properties protecting

user privacy that cover scenarios different from the ones dealt by one-

sided authentication and identity-hiding. Furthermore, this paper does

not focus on implementations, and further work is needed to study said

implementations and analyse if the security properties are still satisfied

even in a real world setting, since they may differ from the original stan-

dard.

References

[1] Dan Boneh. The Decision Diffie-Hellman Problem. In IN THIRD ALGO-
RITHMIC NUMBER THEORY SYMPOSIUM, LNCS 1423, pages 48–63.
Springer-Verlag, 1998.

[2] Ran Canetti. Universally composable signatures, certification and authen-
tication. Cryptology ePrint Archive, Report 2003/239, 2003. https://ia.cr/2003/239.

[3] Nicholas Confessore. Cambridge Analytica and Facebook: The Scandal and
the Fallout So Far. The New York Times, April 2018. ISSN 0362-4331.

[4] Özgür Dagdelen, Marc Fischlin, Tommaso Gagliardoni, Giorgia Azzurra
Marson, Arno Mittelbach, and Cristina Onete. A cryptographic analysis
of opacity. In Computer Security – ESORICS 2013, pages 345–362, 2013.

[5] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
In IEEE Transactions on Information Theory, volume 22, number 6, pages
644-654, 1976.

[6] Benjamin Dowling, Paul Rösler, and Jörg Schwenk. Flexible Authenticated
and Confidential Channel Establishment (fACCE): Analyzing the Noise Pro-
tocol Framework. In Public-Key Cryptography – PKC 2020, pages 341–373,
2020.

[7] Christoph G. Günther. An identity-based key-exchange protocol. In Ad-
vances in Cryptology — EUROCRYPT ’89, pages 29–37, Berlin, Heidelberg,
1990. Springer Berlin Heidelberg.

[8] Douglas Stebila Ian Goldberg and Berkant Ustaoglu. Anonymity and one-
way authentication in key exchange protocols, 2012.
https://www.cypherpunks.ca/ iang/pubs/ntor.pdf.

[9] H. Krawczyk. Skeme: a versatile secure key exchange mechanism for in-
ternet. In Proceedings of Internet Society Symposium on Network and Dis-
tributed Systems Security, pages 114–127, 1996.

[10] Trevor Perrin. The Noise Protocol Framework. Noise Protocol, 2018. Revi-
sion 34. https://noiseprotocol.org/noise.pdf.

[11] Guomin Yang, Duncan S. Wong, and Xiaotie Deng. Anonymous and authen-
ticated key exchange for roaming networks, 2007. In IEEE Transactions on
Wireless Communications, volume 6, number 9, pages 3461-3472.

A Survey of Deterministic Networking

Aapo Linjama
aapo.linjama@aalto.fi

Tutor: Miika Komu

Abstract

The need for deterministic network services is growing beyond the classical

cases such as industrial automation and control systems. Deterministic

network services provide boundaries on latency and guarantee ultra-low

packet loss. The Deterministic Networking Working Group was set up to re-

spond to these needs and create standards for implementing such networks

from Layer 3 perspective. The goal of this paper is to provide a survey of

the Deterministic Networking standard family and to give the reader a ba-

sic understanding of the topic. The survey of this standard is organised to

cover the main features of the DetNet network, the security aspect and the

data plane features. Functionalities such as resource allocation, service

protection and explicit routes are covered as well as few security threats

imposed on the DetNet network. It is worth mentioning that the DetNet

standard is still a work in progress and some features covered here might

change in future.

KEYWORDS: deterministic network, time-sensitive networking, determin-

istic networking, real-time application

Terminology

App-flow The native data flow between the source and destination

end systems within a DetNet enabled network.

DetNet flow A sequence of packets that conforms uniquely to a flow

identifier and to which the DetNet service is to be provided.

It includes any DetNet headers added to support the DetNet

service and forwarding sub-layers.

1 Introduction

Over the last 30-40 years, the Internet has not been the only digital net-

work that has experienced soaring growth. Applications that have critical

requirements on timing and reliability such as Industrial Automation and

Control Systems (IACSs) have traditionally used special-purpose fieldbus

technologies to meet the requirements [6]. However, these technologies

are not part of a packet-switched network. Deterministic Networking

(DetNet) [4] aims to enable the migration of these applications to packet-

switched networks and at the same time it aims to support the existing

packet network applications over the same physical network.

This document provides an overview of parts of the DetNet family of

standards. It should help the reader to become familiar with the key Level

3 solutions described in the standards that enable deterministic networks.

The structure of the paper is as follows. Section 2 introduces Open Sys-

tem Interconnection (OSI) model, deterministic networks, Time-Sensitive

Networking (TSN) and presents essential terminology. Section 3 presents

Deterministic Networking (DetNet), a set of standards by the IETF Det-

Net Working Group. Section 3 focuses on describing main features of Det-

Net, some of its security aspects and data plane functionalities. Finally

section 4 presents the conclusion about the features covered and the state

of DetNet standardization.

2 Background

2.1 Open System Interconnection (OSI) model

The Open Systems Interconnection model (OSI model) [9] is a concep-

tual model that characterizes and standardizes a system’s communication

functionalities regardless of its underlying hardware and technology. Its

purpose is to ensure that different communication systems can communi-

cate with each other using standard communication protocols. The OSI

model divides a communication system’s data flow into seven abstraction

layers, each with its own functionalities related to data transportation

and transformation.

Figure 1. Open Systems Interconnection (OSI) model [9]

Figure 1 represents the layers of the OSI model. This paper focuses on

Data Link (Layer 2) and Network (Layer 3) layers as Time-Sensitive Net-

working (TSN) standards define deterministic data paths for networks

operating in Layer 2 and Deterministic Networking (DetNet) focus on de-

terministic data paths in Layer 3. Layer 3 has core functionalities such

as adding routing information to messages, choosing the best transmis-

sion facilities, breaking the messages into packets and reassembling them

back into messages [9]. Layer 2 has core functionalities such as formation

of the message for transmission and handling error control and point-to-

point synchronization over the physical link.

2.2 Deterministic Network

A deterministic network [10] is a network that can reliably and predictably

deliver services between network users. It differs from more traditional

network solutions in that it provides a guaranteed upper and lower limit

for delay. In addition, a deterministic network aims to reduce loss, occur-

ring due to congestion, to zero. Congestion loss refers to a situation where

the buffer of a network resource such as a router is overflown and packets

are dropped for this reason [3]. This paper focuses on the IETF Deter-

ministic Networking standard body which defines the design principles of

deterministic networks from a Layer 3 perspective.

2.3 Time-Sensitive Networking (TSN)

Time-Sensitive Networking (TSN) refers to a set of standards which are

defined in IEEE 802 standard family. TSN Task Group [2] aims to define

deterministic data paths for IEEE 802 networks which operate in Layer 2.

TSN network has guaranteed packet transport, low packet loss, bounded

low latency and low packet delay variation [10]. The TSN Task Group is

part of IEEE 802.1 Working Group.

TSN network has three essential features: time synchronization, con-

tracts between transmitter and the network and coexistence with other

network services [3]. Requirement for time synchronization means that

internal clocks of all network devices and hosts can be synchronized to

an accuracy of 1 µs to 10 ns. Precision Time Protocol is used to achieve

synchronization. Contracts between transmitter and the network are the

second essential feature. It means that every TSN stream, which is de-

fined as a flow of data from a transmitter to a receiver [10], is subject to

a contract between the transmitter and the network. With this contract

TSN network can provide bounded low latency and low packet loss. Part

of the contract is also the possibility for the TNS network to send copies

of the same data frames over multiple paths. This way single equipment

failure does not cause a packet loss. Contracts are also flexible which

means that new ones can be created and old ones terminated for different

TSN streams.

3 Deterministic Networking (DetNet)

As the TSN standard progressed there was also a need for expanding TSN

concepts to cover Layer 3 routed technologies. In 2015, Internet Engi-

neering Task Force (IETF) created a Working Group called Deterministic

Networking (DetNet) [3]. DetNet Working Group is focusing on Layer 3

routed segments and their goal is to create deterministic data paths that

have bounds on latency, packet delay variation and exceedingly low packet

loss. DetNet Working Group and the IEEE 802.1 TSN Task Group have

a tight working relationship in order to define a common architecture for

layers 2 and 3. Initially DetNet Working Group is working on solutions

that cover campus-wide networks and private WANs but providing solu-

tions for larger networks such as the Internet is not in their scope [1].

3.1 Features of DetNet Network

Similar to TSN, DetNet has common characteristics such as time synchro-

nization, bounds on latency, packet loss and high reliability [14]. DetNet

uses three techniques to achieve the QoS defined by those characteristics.

These techniques are: Resource allocation, Service protection and Explicit

routes [5].

Resource allocation

Resource allocation means that a certain amount of resources are allo-

cated to each DetNet flow in the network. These resources are, for ex-

ample, buffer space and link bandwidth. By allocating enough resources,

the congestion loss of packets in the DetNet network is minimized while

enabling the network to define upper boundary for the end-to-end latency.

Service Protection

Equipment failures are an important factor when considering packet loss.

DetNet addresses this factor with a mechanism called Service protec-

tion. The main mechanisms that implement the service protection are

packet replication, elimination and encoding. Packet replication mecha-

nism sends multiple copies of one DetNet flow through different paths in

the network. This way it is ensured that if the DetNet flow loses one path,

caused for example by equipment failure, it does not lead to packet loss.

Elimination of duplicate packets are also handled by DetNet network in

the event that multiple packets arrive via different paths to the desti-

nation. Packet encoding mechanism uses network coding algorithms to

merge multiple DetNet packets into one. The accumulated packet is for-

warded to the destination where the packet is decoded back to its original

packet components. This way DetNet packet can be encoded to be part of

multiple transmission units.

Explicit routes

In networks which are controlled by routing protocols such as Intermedi-

ate System to Intermediate System (IS-IS) or Open Shortest Path First

(OSPF), a network event such as failure or recovery of a node can reflect

and affect other nodes of the network that are far from the original source

of the event. However, a DetNet network employs explicit routes, where

the route will not change even if there are errors or other events on the

network that could affect the routing. When explicit routes are combined

with service protection mechanisms, the DetNet network can provide a

high probability of interrupt free data delivery.

3.2 DetNet Data Plane

The role of the data plane is to carry App flows over the DetNet network

[12]. The data plane functions connected to DetNet are split into two sub-

layers: a service sub-layer and a forwarding sub-layer [5]. These layers

implement the DetNet functionality in the network and provide DetNet

services to other layers in the protocol stack.

Figure 2. DetNet data plane layering model [5]

Figure 2 represents the DetNet data-plane layering model, however

not all layers and functionalities are required for every DetNet node in

the network. The concepts represented in the figure are:

Application

Source and destination represent application end systems capable of orig-

inating and terminating a DetNet flow.

Packet sequencing

Packet sequencing function provides the sequence number for packets.

This functionality enables packet replication and elimination. Duplicate

elimination functionality is the peer of packet sequencing.

Duplicate elimination

Duplicate elimination ensures that replicated packets are eliminated. This

elimination is based on sequence number provided by the packet sequenc-

ing feature and is part of DetNet service protection (Section 3.1).

Flow replication

Flow replication functionality splits DetNet flow into multiple parts and

duplicates these parts. This functionality is part of DetNet service protec-

tion.

Flow merging

Flow merging functionality merges the separated parts of DetNet flow

back to one flow. This functionality is separate from duplicate elimination

but also part of DetNet service protection feature.

Packet encoding

Packet encoding functionality combines the data of multiple packets be-

longing to DetNet flow by using an encoding algorithm. Combined packets

can originate even from different DetNet flows. Packet encoding is part of

DetNet service protection feature.

Packet decoding

Packet decoding functionality takes as an input the packets encoded by

packet encoding functionality and computes the original packets from

them using a decoding algorithm. Packet decoding is the peer of packet

encoding and also part of DetNet service protection feature.

Resource allocation

As described in section 3.1 resource allocation functionality ensures that

enough resources such as bandwidth and buffer space are reserved at each

DetNet node in the network.

Explicit routes

As described in section 3.1 DetNet employs explicit routes, which ensures

with other service protection mechanisms that the probability of continu-

ous connectivity is high in the DetNet network.

3.3 Security considerations of DetNet

As DetNet technologies enable deterministic flows over wider networks,

the attack surface grows wider too. Applications for DetNet include for

example power grid devices, industrial and building control systems [7].

Vulnerabilities in these applications can be very costly and critical, which

is why they are also potential targets for cyber attackers. Therefore se-

curity is also a very important factor when designing a DetNet system or

component. Another important consideration is that the DetNet network

can be built utilizing MPLS [13] and/or IP [11] technologies, and hence

inherits the security features of them.

Examples of security threats

In this section three examples of security threats and their impacts are

discussed. The threats discussed are flow modification or spoofing and

path manipulation.

In DetNet flow modification [7], an attacker manages to modify headers

or body fields of packets in order to cause, for example, incorrect routing

or dropping of packets. Spoofing on the other hand refers to a situation

where an attacker injects traffic to the network which is tailored to look

like part of a legitimate DetNet flow. Successful spoofing of packets can

increase buffer use and processing utilization in routers across the net-

work, resulting in higher resource consumption [7]. This in turn can lead

into increased delay caused by resource exhaustion. In the case that the

attacker successfully creates valid headers for the packets, legitimate Det-

Net flow packets can be dropped as the router resources are exhausted.

Because DetNet relies on an underlying time-synchronization system,

a faulty synchronization mechanism caused by an attacker might lead

DetNet nodes to fail. DetNet flows, in particular, may fail to achieve their

latency and predictable behavior criteria, resulting in denial-of-service

(DoS) to DetNet applications [8].

4 Conclusion

As the need for deterministic data flows, which provide bounded latency

and high reliability, grows in different industries it is certain that DetNet

and other time-sensitive networking standards are important enablers of

networks capable of delivering such services. DetNet aims to provide de-

terministic data paths over Layer 3 and enable time-critical systems such

as industrial control systems to migrate from special purpose technologies

to packet networks.

The three main techniques that DetNet has to achieve its quality of

service were covered in the paper. These techniques are resource alloca-

tion, service protection and explicit routes. Resource allocation allows the

DetNet network to minimize packet congestion loss while allowing the

network to define an upper limit for end-to-end delay. This is possible

with sufficient resource allocation. Service protection aims to minimize

packet losses caused by equipment failures. The main mechanisms that

implement the service protection are packet replication, elimination and

encoding. Explicit routes are static routes for the packets that do not

change in the event of equipment failure.

Paper also described the data plane features of the DetNet. The data

plane covers the aspects that are needed to carry App flows over the Det-

Net network. The DetNet data plane functionalities are split into two

sub-layers: service sub-layer and forwarding sub-layer. These layers im-

plement the features such as resource allocation, service protection and

explicit routes. However, not all nodes in the network need to implement

both layers.

Security aspect of the DetNet was covered in the paper. It is an impor-

tant factor in the DetNet as its use cases involve many critical systems.

Examples of security threats in DetNet network are flow modification and

spoofing in which an attacker modifies packets or injects packets to the

network in order to cause incorrect routing or dropping of packets.

This paper has covered parts of the DetNet standard, such as its main

features, data plane and security aspects. These sections were chosen

because they provide the reader with a basic understanding of the topic,

enabling the reader to explore the subject in more detail. However, it

should be noted that the DetNet standard is still work in progress and

many aspects are still in fairly early stages of development.

References

[1] Deterministic networking (detnet). https://datatracker.ietf.org/wg/detnet/about/.
Accessed: 2022-01-30.

[2] Time-sensitive networking (tsn) task group. https://1.ieee802.org/tsn/. Ac-
cessed: 2022-01-30.

[3] Norman Finn. Introduction to time-sensitive networking. IEEE Communi-
cations Standards Magazine, 2(2):22–28, 2018.

[4] Norman Finn and Pascal Thubert. Deterministic Networking Problem
Statement. RFC 8557, May 2019.

[5] Norman Finn, Pascal Thubert, Balazs Varga, and János Farkas. Determin-
istic Networking Architecture. RFC 8655, October 2019.

[6] Ethan Grossman. Deterministic Networking Use Cases. RFC 8578, May
2019.

[7] Ethan Grossman, Tal Mizrahi, and Andrew J. Hacker. Deterministic Net-
working (DetNet) Security Considerations. RFC 9055, June 2021.

[8] Tal Mizrahi. Security Requirements of Time Protocols in Packet Switched
Networks. RFC 7384, October 2014.

[9] Deborah Russell and G. T. Gangemi. Computer Security Basics. O’Reilly
Associates, Inc., USA, 1991.

[10] B. Varga, J. Farkas, L. Berger D. Fedyk, and D. Brungard. The quick and the
dead: The rise of deterministic networks. https://www.comsoc.org/publications/ctn/quick-
and-dead-rise-deterministic-networks, 2021. Accessed: 2022-01-30.

[11] Balazs Varga, János Farkas, Lou Berger, Don Fedyk, and Stewart Bryant.
Deterministic Networking (DetNet) Data Plane: IP. RFC 8939, November
2020.

[12] Balazs Varga, János Farkas, Lou Berger, Andrew G. Malis, and Stewart
Bryant. Deterministic Networking (DetNet) Data Plane Framework. RFC
8938, November 2020.

[13] Balazs Varga, János Farkas, Lou Berger, Andrew G. Malis, Stewart Bryant,
and Jouni Korhonen. Deterministic Networking (DetNet) Data Plane: MPLS.
RFC 8964, January 2021.

[14] Xiaotian Yang, Dominik Scholz, and Max Helm. Deterministic networking
(detnet) vs time sensitive networking (tsn). 2019.

Detecting Anomalies in Firewall
Configurations

Zetong Zhao
zetong.zhao@aalto.fi

Tutor: Tuomas Aura

Abstract

A firewall is a network security device that monitors incoming and out-

going network traffic and permits or blocks data packets based on a set

of security rules. It is vital to guard the network boundary and defend

against malicious invasion. A firewall plays its role mainly based on the

configuration of the firewall rules, which guide the behaviour of the fire-

wall. Nowdays, the firewall rules grow more and more complicated due

to the development of network environment and attack technologies. In

such cases, unnoticeable flaws usually occur within complex firewall con-

figuration tables, which may degrade the performance of the firewall or

may be exploited by attackers. Facing this situation, this paper discussed

common firewall anomalies and corresponding detection methods. Among

these methods, the paper focuses on a static detection method and presents

a thorough discussion of that.

KEYWORDS: Firewall, access control, policy anomaly management

1 Introduction

With the development of information technology, Internet has already

become an integral part of our lives. While enjoying the convenience it

brings, people also need to bear the corresponding risks and threats. As

a guardian in the information world, the firewall significantly eliminates

the potential dangers by preventing suspicious packets from entering the

private network, namely the intranet. The intranet controls the incom-

ing and outgoing data based on the administrator’s preset security rules.

These rules fundamentally decide the quality of a firewall. Carefully con-

figured rules can enable the firewall to effectively filter malicious packets

to the maximum extent. On the other hand, inappropriate rules may lead

to anomalies and conflicts. These vulnerabilities can be cleverly utilized

to bypass the firewall.

The Internet is known as an extremely complex system. Due to this,

managing security rules is a challenging task. The fast-evolving internet

services and communications further aggravate the difficulties in the pol-

icy configuration. As Al-Shaer [3] stated that all the tested firewall con-

figurations contain a variable amount of anomalies and conflict. The par-

ticipated administrators even included nine experts. Furthermore, Wool’s

study in 2010 [6] confirmed his conclusion since 2004 that the firewalls of

companies are usually poorly configured, and the complexity of the rules

positively influenced the number of errors.

To address this issue, this paper describes and implements a specific

anomaly detection algorithm based on the study of different types of anoma-

lies and common detection methods.

The paper is organized as follows. Section 2 elaborates on the different

kinds of anomalies. Section 3 overviews the common anomaly detection

methods. Sections 4 describe a detection algorithm in detail. Finally, the

paper is concluded in Section 5.

2 The types of anomalies

A firewall policy is in fact a set of firewall rules that specify the target

network packet and corresponding behaviour. The rules are defined in

the form of <condition, action>, in which the condition is a sequence of

fields that describe the target field. It usually contains attributes that

related to the characteristics of network packet, such as protocol, source

IP and destination IP. A typical firewall policy is shown in Table 1, which

demonstrate the vital elements of a firewall policy.

According to studies[2] [7], firewall policy anomalies could be classified

into the following categories.

Rule Source IP Source Port Destination IP Destination Port Action

r1 156.10.2.* * 192.26.1.* 52 deny

r2 156.10.*.* * 192.26.1.* 52 deny

r3 156.10.*.* * 192.167.*.* 26 allow

r4 156.10.1.* * 192.167.1.* 26 deny

r5 156.10.1.* * * * allow

Table 1. An Example of Firewall Rules

2.1 Shadowing

Just like the word "shadow" means, the shadowing anomaly means cer-

tain firewalls rules are shielded by their previous rules. If the all the

packets matched by the rule are also matched by its preceding rules but

with different actions, the rule will be regarded as being shadowed. In

this case, all the packets that should be processed by the rule will be in-

tercepted by its preceding rules, and the rule will never take effect. In

Table 1, rule r4 is shadowed by r3, since r3 allowed packets with source

IP 156.10.1.* and destinations IP 192.167.1.* while these packets are sup-

posed to be denied according to r4.

The shadowing anomaly is usually considered as a severe flaw in fire-

wall construction because it will lead to the block of permitted packets

and vice versa.

2.2 Generalization

For a certain rule, if a subset of the packets matched by this rule is also

matched by the preceding rules but with actions, the rule will be regarded

as a generalization of the preceding rules. In Table 1, the rule r5 is a

generalization of r4, since packets defined in r4 is a subset of the packets

defined in r5 and the action executed by r4 and r5 is different.

2.3 Correlation

A rule is correlated with other rules if the packets defined by these rules

are overlapped. And these rules lead to different actions. In this case, the

intersected packets allowed by one rule may be denied by another rule.

In Table 1, the rule r2 is correlated with r5. Packets from the source IP

156.10.1.* to the port 52 in the destination IP 192.26.1.* that matched

by r2 is also within the range of packets defined in r5. And r2, r5 has

opposite strategies for these packets.

2.4 Redundancy

A rule is regarded as redundant if its job is completely done by another

rule, and the deletion of the rule will cause no difference. In Table 1, the

rule r1 can be considered as redundant since both r1 and r2 will deny the

user datagram protocol (UDP) packets come from IP 156.10.2.* to port 52

on IP 192.26.1.*.

3 Common anomalies detection methods

Over the past few years, the detection methods for the firewall anomalies

have been widely studied. Many kinds of strategies have been proposed

from different aspects. Al-Shaer et al. [1] used a single rooted tree to

model the firewall rules. The tree makes it easier and more straightfor-

ward to show the relationship between rules and helps to discover the

relations and anomalies among the rules. Within the tree, the node is

used to represent each field of the filtering rule, and the branch is used to

represent a possible value of the associated field. Specifically, the proto-

col field of a rule will be represented by the root node, and the action filed

will be represented by the leaf node. Other fields, such as source IP, source

port, destination IP and destination port will be represented by the nodes

between the root node and leaf nodes. In this way, a completed policy rule

can be represented by a tree path beginning from the root node and ter-

minating at a leaf node. If some rules possess the same field value at a

specific node, they will share the same branch representing that value.

Using this approach, the detection of anomalies can be fulfilled on the ba-

sis of pairs of filtering rules. However, if too many rules is recorded in the

configuration file, the process procedure could be very long.

Yuan et al. [7] demonstrated how to utilize static analysis to detect fire-

wall anomalies. Based on this approach, they constructed a tool named

FIREMAN, which can effectively discover the violations of user-specified

security policies and the inconsistencies as well as inefficiency among fire-

wall rules. FIREMAN use a compact representation and translated the

firewall rules into this format according to the operational semantics of

a firewall. In a single firewall, a certain access control list (ACL) will

be translated into a rule graph, while in distributed firewalls, it will be

translated into an ACL-tree with additional information about network

topology. The anomalous configurations can be checked according to the

rule graph and ACL-tree. However, there are also limitations of FIRE-

MAN when detecting anomalies. For each firewall rule, only its preceding

rules will be examined by FIREMAN and all the following rules will not be

checked. Apart from that, when detecting anomaly, FIREMAN can only

demonstrate whether a misconfiguration occurs between one rule and its

preceding rules, and cannot indicate all rules related to the anomaly ac-

curately.

Facing the complexity of policy anomalies and the difficulties in chang-

ing the conflicting rules, Hu et al. argues in [4] that to cope with con-

flicting issues, we should be able to to identify which rule involved in

a conflict situation should take effect preferentially when multiple con-

flicting rules can match a particular network packet simultaneously. In

practice, to cope with this conflict, a firewall primarily adopts the first-

match resolution mechanism based on the order of rules. However, there

are limitations when applying the first-match strategy to cope with policy

conflicts. When a conflict occurs, the first matching rule chosen may not be

the ideal rule that should take precedence to resolve the conflict. There-

fore, it is necessary to find a first-matching mechanism in the firewall to

bridge the gap between conflict detection and conflict resolution. In this

case, Hu et al. proposed a new firewall anomaly management framework

based on rule segmentation technology, which can not only achieve more

accurate anomaly detection, but also achieve effective anomaly parsing.

Based on logic programming, Cengiz et al. proposed a novel firewall pol-

icy anomaly detection (FPAD) module and also developed a corresponding

software tool to define firewall rulesets in [5]. The tool will automati-

cally convert rule sets into logical programming constructs and discover

anomalies inside firewalls by using FPAD implemented in Prolog. The

FPAD module is composed by multiple parts. The firewall administra-

tor can define, update, or import firewall ruleset using a client-side GUI.

The ruleset will be saved in the MySQL database management system for

persistent storage. Then, utilizing the provided ruleset, the Prolog engine

will detect the potential anomalies, and the detected anomalies will be

returned to the base tool and then forwarded to the client-side.

4 The description of the static analysis detection methods

This section discusses a static analysis method to detect the firewall con-

figuration anomalies. The primary idea of this method is to represent the

filtering rules with a tree shaped data structure called Firewall Exception

Tree (FAT) and then supervise the leaves to detect anomalies. The tree

can show if there are overlaps between different rules, and these overlaps

are treated as exceptions.

4.1 Preprocessing firewall rules

It is difficult to construct the FAT directly from the firewall rules. Since

firewall rules and a FAT has very different structure, the former is com-

posed of conditions and action while the latter is composed of nodes and

edges. Therefore, we need to first define some auxiliary structures to help

constructing the FAT from firewall rules.

The normalization of firewall filtering rules

Observing the construction of firewall rules, we can find their condition

part, namely the source IP, source port, destination IP and destination

port attributes can in fact be represented by four categories of value.

1. A bit string, such as IP range like 127.20.0.0/16.

2. A single value, such as a port 80.

3. A set of value, such as a port set {80, 110}

4. A range, such as a destination port domain [80...1024].

Since all the values above are numeric. Therefore we can denote them

in the binary format, and then simplify that to the form (byte,mask)b, in

which the byte represents a value, and the mask represents the number of

fixed bits. For example, (4, 8) represents the value 4 since the value of byte

filed is 4 and all the bits of that byte are fixed. And (8, 5) represents the

range [8...15], since the value of a byte is 8 and only five bits of that byte

are fixed, the rest bits denote the range from zero to seven. Concerning

the above four types of data, they can be represented as follows using the

(byte,mask)b format.

1. For the bit string such as 127.20.0.0/16, it can be represented by a

(byte,mask)b tuple such as (127, 8)b, (20, 8)b, (0, 8)b, (0, 8)b.

2. For a port like 80, it can be represented as (80, 8)b.

3. For a set of value such as [127.20.0.2, 127.20.0.3], it can be transformed

to (127, 8)b, (20, 8)b, (0, 8)b, (2, 7)b.

4. A range such as [32...63] can be represent as (32, 3)b.

In this paper, the data in form of (byte,mask)b is called masked byte.

For a masked byte with a mask equal to 8, it is named as complete byte

since it represents a certain value. For the masked byte with a mask less

than 8, it is named as partial byte since it in fact denotes a range.

The rule paths of firewall filtering

After the normalization process, the firewall filtering rules can be trans-

formed into a series of masked bytes. However, this is not enough, since

different fields of a filtering rule may have the same masked bytes. For

example, if the source IP and the destination IP both begin with 192, then

they will have the same (192, 8)b byte mask. It will disturb the construc-

tion of a FAT. To cope with this issue, we introduced a new pair of integers

called position to denote the position of each field within a firewall rule.

Therefore, to represent a field of a firewall rule precisely, we need both

the byte mask and position. And the combination of them is called an

element.

The position of a masked byte is denoted by two flags. The first one

is called dim, which defines the sequence position of a certain field in

a firewall rule. And the other one is called ord, which represents the

byte order in the field. Therefore, a certain position is represented as

(dim, ord)p, in which the p is a symbol to denote it defines a position, to

distinguish it from the masked byte. For a certain firewall rule, it has four

fields, namely source IP, source port, destination IP and destination port.

They correspond to the dim numbers 1, 2, 3 and 4 respectively. In this

way, for the second element of the rule R1 in Table 1, it can be depicted as

((10, 8)b, (1, 2)p)).

We have defined the structure of an element, however, it is not enough

to just obtain a series of elements. We also need a method to arrange

them in a certain order, which requires defining a rule for comparing these

elements. Such a rule is described as follows:

For two elements e1 = ((v1,m1)b, (d1, o1)o) and e2 = ((v2,m2)b, (d2, o2)o),

we say e1 ≤ e2 if the two elements satisfy one of the following relation-

ships:

1. m2 < m1 && m1 = 8.

2. ((m1 = m2 = 8) || (m1 < 8 && m2 < 8)) && (d1 < d2)

3. ((m1 = m2 = 8) || (m1 < 8 && m2 < 8)) && (d1 = d2) && (o1 < o2)

Using these comparing rules, we can sort the elements of the firewall

rules in a certain order. For example, for the first rule in the Table 1, it can

be represent by ordered elements like [(156, 8)b, (1, 1)p], [(10, 8)b, (1, 2)p],

[(2, 8)b, (1, 3)p], [(192, 8)b, (3, 1)p], [(26, 8)b, (3, 2)p], [(1, 8)b, (3, 3)p], [(0, 8)b, (4, 1)p],

[(52, 8)b, (4, 2)p].

4.2 The Construction of Firewall Anomaly Tree

Using the aforementioned methods, we can represent a firewall rule with

a sequence of ordered elements. These elements can be used to construct

the FAT, this section discussed the data structure of a node and some

essential methods used for building the tree. For the following discussion,

we defined a function named Domain to specify the domain of a filtering

rule.

• Domain(Set RS): RS means a set of rules. The domain of firewall

rules represents the set of all the possible network packets that could be

processed by these rule, representing a range.

The node object

The FAT is composed by nodes and edges. A node represents one position

that exits in the path of one or more filtering rules, it can be defined as an

object which contains the following attributes:

1. id. An identifier to a node.

2. Position. The current position of the node.

3. Type. There are four possible types for a node, which are F, C, P and

PC. F denotes this is a leaf node. C denotes all the labels of the output

edges are complete bytes, P denotes all the labels are partial bytes and

PC denotes the mix of complete bytes and partial bytes.

4. Edge. An array indicates the output edges from N. Its range is from

0 to 256.

5. P refers to primary rules, which in fact is a set of candidate filtering

rules

6. S refers to secondary rules, which in fact is a set of filtering rules such

that Domain(S) ⊊ Domain(P).

7. T refers to tertiary rules, which in fact is a set of filtering rules

that Domain(P) ∩ Domain(T) is not null, Domain(T) ̸⊃ Domain(P) and

Domain(P) ̸⊃ Domain(T).

8. bptr. This field is a pointer, referring to the parent node of N.

9. bval. This is the edge label, between N and its parent node.

According to the above specification, a root node should have the identi-

fier 1, a set P containing all filtering rules, two empty sets S and T, along

with the empty bptr and bval fields.

Construct a child node

Generally, a tree structure should be constructed recursively based on an

initial condition, which refers to the root node in our case. This section

discusses how to construct a child node. To construct a child node, we

have to first create a new node and then assign a new identifier to its id

field. And the fields bptr and bval are also easy to compute if we know

the edge from the parent node to the child node. For the remaining fields,

we defined six functions to calculate the value needed for building a child

node and they are classified into three categories as follows:

Computing the position of nodes

• minpos(Set RS). RS denotes a set of firewall rules, which should have

been converted to a group of elements. This function is used to find out

the smallest element using the predefined comparing rule and return

its position. For example, if the RS corresponds to the rule R1 and R2 in

the Table 1, the function should return (1, 1).

• nextpos(Set RS, Position p). The function takes in a set of firewall

rules and a position. The position is extracted from a certain element

e1. What this function does is to find out the next element of e1 using

the predefined comparing rule and return its position. For example, if

the function takes rule R1 and R2 as the RS parameter, and (1, 1) as the

position. The returned value should be (1, 2).

Calculating the labels of edges and the type of node

• proj(Set TS, Position p) Taken a set of firewall rules and a position p,

this function will find out all the elements that match the position p and

return their byte masks as a set. The return set will be used to define

the type of node. If the set is empty, the type of the node should be F

(Final), indicating that this is a leaf node. If all the returned byte masks

are partial, the node should have the type P (Partial). If all the return

byte masks are completed, then the node has type C (Complete). And if

there are both completed and partial byte masks, then the node should

have the type PC (Partial Complete).

Computing the candidate rules

This section defines three functions used to generate the value for the P, S

and T field in a certain node, which are the candidate, subCandidate and

superCandidate function.

• candidate(Set RS, Element e1): This function requires two-parameter,

the RS denotes a set of rules. And e1 denotes an element within a rule,

in the form ((byte, mask), (dim, ord)). This function will return all the

rules that possess this certain element.

• subCandidate(Set RS, Element e1): The parameter here has the

same meaning as the ones in the candidate function. The function will

find all the rules which possess an element e2, and the IP range denoted

by e2 includes the range denoted in the passed element e1.

• subCandidate(Set RS, Element e1): The parameter here has the

same meaning as the ones in the candidate function. The function will

find all the rules which possess an element e2, and the IP range denoted

by this e2 is included by the range denoted in the passed element e1.

4.3 Construct FAT based on the root node

This section discusses a function named Develop. Based on a given node,

the Develop function can generate all its sub-nodes recursively until fi-

nally reach a leaf node that should not have any offspring. In such a case,

if the passed in node is the root node, the whole FAT can be generated.

The Develop function is described in Figure 1.

The main process of the function can be divided into three phases. First,

the function generates a new node structure and calculates its position.

Then based on the calculated position, the function will use the proj func-

tion to calculate all the byte masks in the rule set that share this position.

The returned byte masks will be used to decide the type of the node in the

third phase. In the last phase, the constructed node will be completed

based on the previously calculated value and call the Develop function

recursively to construct the following nodes.

Figure 1. The develop function

4.4 Firewall anomalies detection

After constructing the FAT, we can detect the firewall anomalies by in-

specting the leaf nodes within the FAT. For redundant rules, if there are

multiple primary candidate rules in a leaf node, then they can be detected.

The set of secondary candidate rules contains filtering rules whose do-

mains include the domain of the primary candidate rules. The order of

rules is vital for deciding the type of anomaly. If there is a secondary

candidate rule whose identifier is lower than the identifier of the pri-

mary rule, it indicates a shadowing or down redundancy depending on

the actions of the rule. However, if a secondary candidate rule comes af-

ter the primary rule, we encounter a generalization or an up redundancy

anomaly. Finally, if the domain of the tertiary candidate rule overlaps

with that of the primary rule, we detect a correlation or a partial redun-

dancy depending on the rule’s actions in that case. A detailed description

of the anomalies detection process is presented in Figure 2.

Figure 2. The detection function

5 Conclusion

After trying out the above algorithms using the Java language with some

wrongly configured firewall rules, the FAT structure can detect the fire-

wall anomalies defined in Section two. However, the algorithm still has

some demerits in practice. The algorithm can only detect the anomalies

in a fixed set of firewall rules. After the construction of FAT, there is no

way to add a new rule or delete an old rule from it. Therefore, once the

firewall rule table changes, the FAT tree also needs to be rebuilt, which

will be very time consuming and inconvenient in practice since real-life

firewall configuration tables always contain lots of filtering rules. Thus,

further research could try to revise the FAT algorithm, making it can be

updated dynamically.

References

[1] Ehab S Al-Shaer and Hazem H Hamed. Firewall policy advisor for anomaly
discovery and rule editing. In International Symposium on Integrated Net-
work Management, pages 17–30. Springer, 2003.

[2] Ehab S Al-Shaer and Hazem H Hamed. Discovery of policy anomalies in
distributed firewalls. In Ieee Infocom 2004, volume 4, pages 2605–2616.
IEEE, 2004.

[3] Ehab S Al-Shaer and Hazem H Hamed. Modeling and management of

firewall policies. IEEE Transactions on network and service management,
1(1):2–10, 2004.

[4] Hongxin Hu, Gail-Joon Ahn, and Ketan Kulkarni. Detecting and resolv-
ing firewall policy anomalies. IEEE Transactions on dependable and secure
computing, 9(3):318–331, 2012.

[5] Cengiz Togay, Ahmet Kasif, Cagatay Catal, and Bedir Tekinerdogan. A fire-
wall policy anomaly detection framework for reliable network security. IEEE
Transactions on Reliability, 2021.

[6] Avishai Wool. Trends in firewall configuration errors: Measuring the holes
in Swiss cheese. IEEE Internet Computing, 14(4):58–65, 2010.

[7] Lihua Yuan, Hao Chen, Jianning Mai, Chen-Nee Chuah, Zhendong Su, and
Prasant Mohapatra. Fireman: A toolkit for firewall modeling and analysis.
In 2006 IEEE Symposium on Security and Privacy (S&P’06), pages 15–pp.
IEEE, 2006.

Vehicular Fog Computing: Vision,
Capacity Planning, and Resource
Allocation

Sinan Sakaoglu
sinan.sakaoglu@aalto.fi

Tutor: Wencan Mao

Abstract

Vehicular Computing Solutions (VCS) has drawn great interest in the

recent years. Applications such as object detection and autonomous driv-

ing required vast amount of computing resources. Traditional cloud com-

puting model cannot satisfy the requirements of time-critical and data-

intensive tasks. Vehicular Fog Computing (VFC) is a technology that pro-

vide multiple viable solutions to this problem. This paper examines capa-

bilities, drawbacks and performance of VFC and analyzes state-of-the-art

algorithms behind latest VCS frameworks.

KEYWORDS: vehicular fog computing, edge computing, task allocation,

v2x, vcs

1 Introduction

Vehicle-to-Everything (V2X) is an emerging concept where vehicles equipped

with networking capabilities are able to exchange information with any

device capable of telecommunication, around the vehicle [3]. It can enable

vehicles to offload data generated by their internal systems to the cloud

for analysis and processing, or receive data relevant to their surround-

ings. This technology is the foundation of Vehicular Computing Solutions

(VCS), which are the key to solving near future challenges in the automo-

tive industry [7].

Advancements in smart vehicles and artificial intelligence have made

a push for promoting automotive applications, such as collaborative au-

tonomous driving, crowd-sensing and cooperative lane change [5]. These

applications require real-time transmission and processing of data, which

makes them computing-expensive. Most vehicles might not be equipped

with the required resources. One solution is to move the computing to

cloud servers. However, due to the round trip times between the vehi-

cle and the cloud, traditional cloud computing model cannot meet ultra-

low latency demands of applications, including auto/assisted driving and

emergency failure management [2, 12].

VCS brings an alternative approach: Vehicular Fog Computing (VFC).

VFC moves computational resources required by the vehicle to nearby fog

servers [12]. These servers could be other vehicles in traffic that have

excess resources or commercial fleets equipped with dedicated computing

power [11]. However, it is challenging to find an optimal way to allocate

units of computing work, i.e. tasks, to vehicular fog servers in a highly

dynamic environment. In traffic, there are multiple moving parts, the

vehicle, fog servers around the vehicle, and pedestrians. Therefore, the

vehicle must maintain stability and continuity of the network connection

while the vehicles with the fog server are also in motion. In addition,

concrete buildings, trees and other obstacles around the traffic may act

as a signal barrier [4]. As a result, communication can malfunction, be

disrupted or interrupted entirely.

In this paper, we review the state-of-the-art methods to address task

allocation problem in VFC. This paper is organized as follows. Section

II introduces vehicular edge computing, fog computing and task alloca-

tion. Section III presents different methods of task allocation. Section IV

analyzes and compares these methods. Section V concludes the paper.

2 Vehicular Computing Solutions

With development of 5G and beyond networks, real-time, high bandwidth

mobile transmission is at reach. Portable devices can transmit large vol-

umes of data to the cloud and communicate with each other rapidly. These

advancements have paved the way for VCS. Vehicles equipped with wire-

less networking devices can communicate with their surroundings. This

Figure 1. Networking demonstration and different applications of VCS.

communication can be between vehicles (V2V), between vehicles and in-

frastructures (V2I) or vehicles and networks (V2N) [3]. There are two

main types of VCS, Vehicular Edge Computing (VEC) and Vehicular Fog

Computing (VFC). While both of them can be deployed standalone, VFC

and VEC are used together for best results [3]. An example of this combi-

nation can be seen on Figure 1.

Networking is only one piece of the VCS puzzle. Next piece is resolving

how to allocate units of computation to nearby servers. We can call one of

these units of computation a task. The content of a task can vary based

on the application, such as encoding of a dash cam video clip, object recog-

nition and pattern recognition. [12, 10]. After a task has been created by

a vehicle, depending on its computational capacity, it can either compute

it on-board. or select a server to allocate the task.

2.1 Vehicular Edge Computing

The computing paradigm where tasks are offloaded to and executed on

statically deployed, near device servers are called Edge Servers [3] . In

the context of VEC, these servers can be placed near cell towers, traffic

lights, street lamps, road decoration and other road side devices. Hav-

Figure 2. Example of a Vehicular Edge Computing schema.

ing stable connection to the internet and constant supply of power, these

edge servers are ideal for jobs, such as power-heavy processing, cloud

backup and communication coordination between nearby fog servers [2].

Due to their stationary nature, they are further away to the clients than

fog nodes. Especially in rural roads, it is increasingly difficult to achieve

ultra-low latency as the nearest server or network could be hours away.

This is one of the important differences between vehicular fog and edge

computing. While edge servers are planted to specific coordinates, vehic-

ular fog servers are mobile and dynamic.

Road side units (RSU) are devices that act as a link between vehicles,

networks or servers. As demonstrated in Figure 2, RSUs are fixed infras-

tructure along the road with some amount of distance between them de-

pending on their signal coverage. Networking technology they utilize may

differ based on the location. Inner city RSUs can use short range, high-

speed wireless protocols while RSUs on highways may prefer long range

signal technologies. During travel, vehicles will need to change the RSU

they are connected to, as they leave coverage of one and enter another.

Depending on the application, this can cause loss of state and progress

of the running process. However, next generation networks, such as 5G,

and networking equipment are able cover larger areas of road with higher

computational power.

One of the great disadvantages of VEC is that compute capacity must

be planned ahead of time. This can require a high amount of capital and

time investment before the system can function, depending on the scale.

Where and how many edge servers to deploy are crucial questions for

system designers to answer. Over provisioning of servers will result in a

waste of resources during non-peak times. On the other hand, stationing

an insufficient amount of servers will cause instability in the system. This

creates an optimization problem where the task is to minimize the amount

of servers while ensuring enough supply of computation. A solution can

be to rent excess resources to third parties, similar to some approaches

based on VFC.

2.2 Vehicular Fog Computing

When it comes to computing resources, modern vehicles are equipped with

computational, storage and networking units on board [8]. These units

are made for the vehicle’s own functions, but depending on the situa-

tion they are under-utilized. In case of under utilization, the vehicle is

wasting a potential income source [7]. By allowing a percentage of their

unused computing power, cars present on the road can be converted to

mobile fog nodes at minimal cost. This raises the question if VCS can be

reliable by depending on partially renting computing power of these ve-

hicles. One solution from state-of-the-art works is to use parked vehicles

[10]. An alternative source for computation would be commercial vehicles,

such as buses, taxis, trolleybus and trams [11]. Public transport vehicles

frequently have predetermined routes. This helps the system designers

create educated plans on where and how much computing resources to

deploy.

VFC is a great candidate for applications that require ultra-low latency

with high mobility [12]. In contrast to VEC, it does not mandate instal-

lation of stationary servers or RSUs, but requires extra compute capacity

built into the vehicles. As a result, there is less upfront capital cost to

building VFC systems. Demonstrated by Figure 3, fog nodes may have

different amount of computation available. Hence, the total amount of

computation at any moment is highly dynamic. The advantage is depend-

ing on the usage data, amount of fog nodes can be increased. This can be

done by either installing servers on commercial vehicles or incentivizing

Figure 3. Overview of Fog Computing. Size of the fog server icon represents computa-
tional power.

other vehicles on the road to join the system [5].

As seen in Figure 3, VFC can be completely flexible. A vehicle cluster

(VC) represents group of active actors in the VFC system. Inside the VC,

there are users, vehicles demanding computation, and fog nodes, vehicles

supplying computation. Depending on the architecture, users can commu-

nicate with other users to relay information and discover nearby vehicles,

with fog nodes to send tasks and receive results, or with a base station

for task distribution coordination [2]. Due to the dynamic nature of the

traffic, vehicles can frequently enter and leave proximity of the user. For

this reason, VFC systems must be designed with fault tolerance and state

recovery capabilities.

3 Computational Task Allocation

When there are large numbers of vehicles and users, an important issue is

to determine how to distribute user computing tasks across vehicles in or-

der to minimize the overall network latency. In VCS, computational task

allocation can be formulated in different ways, including linear program-

ming and Markov decision process (MDP) [2, 11], due to the variety of

challenges. First, potential solutions have an important time constraint

as real-time applications cannot afford long delays between creation of

tasks and their assignment.

In frameworks with information asymmetry assumption, key metrics,

such as available resources and sharing target are information that is

private to the fog servers and are not known initially [9]. As a result, the

system cannot assign tasks and instead must develop a method, such as

task contracts, which allows tasks to be selected by the servers. In ad-

dition, given the option, vehicles will request the most powerful server,

creating conflict. Thus, the solutions should add fairness to the equation

to prevent monopoly, causing users leave the network. Another key chal-

lenge is, in an open framework where fog servers are also actors, it is in

their interest to receive maximum reward for minimal effort. As a re-

sult, solutions should ensure unbiased competition based metrics, such as

amount of available tasks and servers.

3.1 Partially Observable Markov Decision Process

Not all solutions depend on a central controller to allocate tasks. Zhu et

al. [10] formulates the task allocation problem as a Partially Observable

Markov Decision Process (POMDP) where client vehicles create their own

task offloading strategy. POMDP uses probability matrices to describe

workload state transitions of the Markov chain. Authors assumed that

in a given time, workload variation evolved as a Markov chain. They

divide time into time buckets, as during a period of time the traffic den-

sity changes regularly. Time buckets can be further divided into equal

sequence of time slots. Assuming that all clients are running the same

computational application and produce service demand at equal speeds,

fog node workload is directly related to the number of adjacent clients.

During the task offloading strategy process, clients decides whether to

compute locally or offload based on observation of fog node workload and

receives a reward. Depending on the client action and the next workload

state of the fog node, a new observation of fog node workload is sent to the

client. Goal of the overall strategy is to maximize the cumulative reward

in each time bucket.

3.2 Matching-Learning

Contract theory offers a way to solve information asymmetry in a free

labor market [8]. It can be applied to VFC in a similar way, fog nodes are

modeled as independent contractors and vehicles offloading tasks are the

clients. A Base Station (BS) acts as a central agency between the clients

and the contractors. Initially, BS will create contracts based on different

levels of computational power. By signing a contract, vehicles can become

fog nodes. After initial recruitment of fog nodes, matching theory can be

utilized to pair clients with nodes.

First step for the client is to create a server preference list. This list will

be based on task offloading delay of servers in descending order. In the

matching phase, clients will propose to be paired to the top server in their

preference list. Matching will be completed if there is only one proposal

to the server. Otherwise, the contracting server will increase its price,

which in turn requires competing clients to update their preference list

and create new proposal. Stages 1 to 3 will be repeated until only one

client asks to be paired with the server.

Under information uncertainty, plain matching based solution suffers

in performance. Matching-learning addresses this problem using Multi-

armed bandit (MAP), a low-complexity learning methodology. In the first

phase of this approach, the client vehicle tries and measures performance

of every server available. Next, based on the learned performance met-

rics, the client can choose to utilize the current optimal server which is a

greedy action (G). Conversely, it may continue to experiment with other

servers, a non-greedy action (NG). The learning phase will continue un-

til the client is performance satisfaction threshold is reached, finding the

most optimal server to minimize the task offloading delay.

3.3 Deep Reinforcement Learning

In a dynamic system where available computation and network state is

varied over time, making decisions according to the current state would

lead to non-optimal results [5]. Shi et al. formulates this problem as a

Markov decision process, and proposes a model-free reinforcement learn-

ing algorithm (DRL) based on Soft actor-critic (SAC). The algorithm aims

to maximize the mean utility of task offloading at a given time. It accom-

plishes this while the server selection and cost of task offloading is done at

the same time. By including entropy of the policy in the calculation, SAC

can take advantage of better strategies. When there are multiple feasible

options, it will choose each option with equal probability, allowing for easy

adjustments in stochastic vehicular environment.

3.4 Deep Q-Network

Another algorithm used for task allocation optimization that is based deep

reinforcement learning is Deep Q-Network (DQN) [11]. DQN uses neural

network to approximate the Q-value function using the previous state. In

contrast to Q-tables, it does not calculate each possible state which saves

memory and time. Zhu et al. proposes to install a DQN agent at BS,

which is the coordinator for a given service zone. Initially, DQN agents

randomly assign processing tasks to each fog node and set a collection

rate for all data collecting vehicles. DQN agent will update its task al-

location strategy as it gradually learns the variations in the workload of

fog nodes and the results of its past strategies. Agents do not require any

predefined rule-set as they solely develop using experience. Additionally,

they can optimize multiple parameters at the same time, such as Quality

of Information (QOI) and processing latency.

3.5 Fault-tolerant Particle Swarm Optimization

Particle swarm optimization (PSO) algorithm is known for its efficient

global search capability [2]. It is a great choice for solving non-convex

and NP-hard problems since it has no requirement to the convexity of the

problem. To maximize reliability of task allocation, Hou et al. proposes

a fault-tolerant algorithm based on PSO named FPSO-MR, as it is an

important property of VCS due to the dynamic nature of the traffic. A

particle is a solution of the optimization problem. The swarm seeks the

best position which is the optimal solution to the problem. Each iteration

of FPSO-MR, particles adjust their direction and speed based on their

historical location and position of the optimal particle. Eventually, all of

the particles in the swarm will converge to the optimal solution. The time

complexity of the algorithm is O(2p+q) where p is the mobile-edge nodes

and q is fixed edge nodes. It is quite high since the algorithm traverses all

possible task allocation to find the optimal strategy. This is not applicable

to real world cases. Including the appropriate nodes only to the algorithm

increases the performance of FPSO-MR while maintaining level of utility.

Additionally, lowering the failure threshold of the framework improves

the algorithms efficiency.

3.6 Binary Particle Swarm Optimization

In order to achieve real-time task allocation, Zhu et al. utilized Binary

Particle Swarm Optimization (BPSO), a heuristic algorithm [12]. Com-

pared to linear programming based optimization (LBO), it is more effi-

cient and has lower computational complexity. BPSO initializes the pop-

ulation of particles in the swarm with local (LV) and global velocity (GV)

vectors. It runs two ongoing comparisons for each particle, local and global

best positions. If fitness value of the particle is better than local best po-

sition, then it will be set as the new local best position. If the local best is

greater than global best, it will become the new global best. The algorithm

then uses these values combined with particle’s inertia weight to calculate

new velocity and position. Each particle represents a task assignment de-

cision and quality loss of results (QLR) selection. BPSO calculates fitness

and quality value for each particle. It will try to minimize the QLR and

latency, until the maximum iteration number is reached.

4 Analysis

No VCS framework has a silver bullet solution to every problem surround-

ing the field. Researchers aim to optimize one part of the system while

sacrificing from another. Overall, it is a substantial challenge to build an

efficient and reliable VCS framework on top of multiple moving pieces.

Developing new algorithms to lower the complexity will become easier as

the amount of available real world data increases. This section will dis-

cuss results of the latest research on VCS based on VFC.

4.1 Latency

Although some papers focus on optimizing only one property of the sys-

tem, most of them view latency and quality as a single target. Latency

itself has many meanings in the context of VCS. Delay between client and

fog node, fog node and base station, initialization of the system and task

allocation all share the umbrella term latency. To get real-world perfor-

mance improvements, authors must consider the overall system latency.

When comparing different algorithms, it should be kept in mind that re-

sults of simulations will vary significantly based on the location and time-

frame of the data the authors have used. Furthermore, not all papers

are comparable with each other since they have different frameworks and

optimization targets.

A POMDP based task offloading strategy were tested by Zhu et al. [10].

When compared with Random and Adaptive task offloading strategies, it

reduced average service latency by 65% and 58% respectively. Another

approach based on Matching-Learning proved reduce average delay by

17.63% compared to upper confidence bound algorithms [8]. Authors note

that selecting the right exploration degree c is critical for the learning

performance as a inappropriate value can cause the algorithm to lose its

advantage.

Task offloading using SAC, a DRL algorithm, managed to achieve close

to 100% completion ratio performance as the vehicle density of the traffic

past 15 vehicles/km [5]. Additionally, it performed faster than greedy and

random based algorithms in high-priority task allocation. FlexSensing

proposed by Zhu et al., a DQN based strategy, reduced average processing

latency by up to 51% compared to MUEECA and adaptive task allocation

strategies [11]. Both of the deep learning based algorithms have shown

great promise to improve the overall system latency. However, they re-

quire great amount of data to be functional.

4.2 Quality

Although latency is the fundamental optimization target of a VCS run-

ning real-time applications, quality of the computation cannot be disre-

garded. No matter how performant the task allocation or node communi-

cation is, an incorrect result of object detection algorithm may result in

serious accidents. Quality is a very broad term, in the context of VCS it

could be one of many application outputs, including object detection and

image compression rate. Researchers that have realized this include qual-

ity parameter in their optimization algorithms.

Folo, a BPSO based dynamic task allocation solution, can be adjusted to

the latency and quality requirements of the application [12]. Compared

to naive and random node selection, it reduces average latency by up to

27% while lowering quality loss by up to 56%. Another solution based on

FPSO-MR, a sub algorithm of PSO, showed that there is a reverse correla-

tion between reliability and latency [2]. As the latency constraint became

stronger, more errors occurred, resulting in lower quality and reliability.

However, FPSO-MR achieved above 95% reliability with 0.6 latency con-

straint, surpassing genetic and simulated annealing algorithms.

Deep learning based algorithms have also proven to be successful at

optimizing for quality. Priority aware DRL solution proposed by Shi et

al. outperforms greedy and random based algorithms in terms of high-

priority task completion rate [5]. However, it falls behind in low density

traffic with 5-10 vehicles/km since other algorithms focus on maximiz-

ing completion ratio all tasks regardless of their priority. FlexSensing on

the other hand, can be tuned to maximize quality of information (QoI),

latency or a compromise between both [11]. A case study of FlexSens-

ing computing a real-time object detection application showed up to 34%

improvement of QoI, trained using real-world data from city of Helsinki.

Compared to MUEECA it can reduce latency by 18% while only losing 2%

quality. Configurable algorithms provide great flexibility for VCS applica-

tions and are improve applicability for variety of applications.

4.3 Security

The lack of central trust in some systems can allow dishonest actors to

disrupt communication, invalidate computation and cause failures in ap-

plications [6]. Without proper security mechanisms, both the users and

the fog nodes are vulnerable to such attacks. Base stations that are used

for system orchestration can also act as a gate, requiring authentication of

all actors that join. However, Peer-to-Peer (P2P) only VFC systems must

utilize decentralized solutions, which may require effort [1]. When design-

ing such complex communication systems and algorithms, engineers and

architects must consider security as a crucial part of the whole solution.

5 Conclusion

This paper outlined the paradigms surrounding Vehicular Computing So-

lutions, mainly Vehicular Fog Computing. As the number of vehicles

with high capacity of computation grows, VFC presents great opportu-

nities and challenges. We have reviewed various solutions of using mobile

and parked vehicles as a communications and computing resource. VCS

research shows the potential for significant improvements in communi-

cation and computing capabilities that can be achieved through VFC. In

particular, with the help of task allocation optimization algorithms, lower

service latency and higher output quality can be achieved, resulting in

greatly reliable VCS frameworks. VFC also significantly improves com-

puting power compared to traditional systems by optimally using the cur-

rently underutilized computing resources of individual vehicles. As com-

munication and computing capabilities improve, more advanced develop-

ments in vehicle applications and decentralized compute networks will

emerge. VFC paradigm is a promising model that can radically transform

vehicle networks and various vehicle applications in the future.

References

[1] Zeinab Bakhshi and Ali Balador. An overview on security and privacy chal-
lenges and their solutions in fog-based vehicular application. pages 1–7,
2019.

[2] Xiangwang Hou, Zhiyuan Ren, Jingjing Wang, Wenchi Cheng, Yong Ren,
Kwang-Cheng Chen, and Hailin Zhang. Reliable computation offloading
for edge-computing-enabled software-defined iov. IEEE internet of things
journal, 7(8):7097–7111, 2020.

[3] Gaurang Naik, Biplav Choudhury, and Jung-Min Park. Ieee 802.11bd amp;
5g nr v2x: Evolution of radio access technologies for v2x communications.
IEEE Access, 7:70169–70184, 2019.

[4] Gopika Premsankar, Bissan Ghaddar, Mario Di Francesco, and Rudi Ver-
ago. Efficient placement of edge computing devices for vehicular applica-
tions in smart cities. 2018.

[5] Jinming Shi, Jun Du, Jingjing Wang, Jian Wang, and Jian Yuan. Priority-
aware task offloading in vehicular fog computing based on deep reinforce-
ment learning. IEEE transactions on vehicular technology, 69(12):16067–
16081, 2020.

[6] Vipul Tiwari and Brijesh Kumar Chaurasia. Security issues in fog comput-
ing using vehicular cloud. pages 1–4, 2017.

[7] Jingjing Wang, Chunxiao Jiang, Kai Zhang, Tony Q. S Quek, Yong Ren,
and Lajos Hanzo. Vehicular sensing networks in a smart city: Principles,
technologies and applications. IEEE wireless communications, 25(1):122–
132, 2018.

[8] Zhenyu Zhou, Haijun Liao, Xiaoyan Wang, Shahid Mumtaz, and Jonathan
Rodriguez. When vehicular fog computing meets autonomous driving: Com-
putational resource management and task offloading. IEEE network, 34(6):70–
76, 2020.

[9] Zhenyu Zhou, Pengju Liu, Junhao Feng, Yan Zhang, Shahid Mumtaz, and
Jonathan Rodriguez. Computation resource allocation and task assignment
optimization in vehicular fog computing: A contract-matching approach.
IEEE transactions on vehicular technology, 68(4):3113–3125, 2019.

[10] Chao Zhu, Yi-Han Chiang, Abbas Mehrabi, Yu Xiao, Antti Yla-Jaaski, and
Yusheng Ji. Chameleon: Latency and resolution aware task offloading for
visual-based assisted driving. IEEE transactions on vehicular technology,
68(9):9038–9048, 2019.

[11] Chao Zhu, Yi-Han Chiang, Yu Xiao, and Yusheng Ji. Flexsensing: A qoi and
latency-aware task allocation scheme for vehicle-based visual crowdsourc-
ing via deep q-network. IEEE internet of things journal, 8(9):7625–7637,
2021.

[12] Chao Zhu, Jin Tao, Giancarlo Pastor Figueroa, Yu Xiao, Yusheng Ji, Quan
Zhou, Yong Li, and Antti Ylä-Jääski. Folo: Latency and quality optimized
task allocation in vehicular fog computing. 2019-06.

Federated learning in industrial
applications: opportunities and
challenges

Bastien Gouila
bastien.gouila@aalto.fi

Tutor: Alexander Jung

KEYWORDS: federated learning, machine learning, distributed data, in-

dustrial applications

1 Introduction

During the past few years, Machine Learning has been an area of focus for

many companies to design and commercialize innovative products. With

more and more applications emerging, technologies improving, and data

being generated, more complex problems can be solved [11]. Federated

learning proposes a decentralized computing strategy to train a neural

network model from heterogeneous datasets. Datasets can be generated

by a single or multiple devices. Unlike centralized training where all the

datasets are sent to a server, the devices are analysing their local data

and uploading their own model updates to the server, improving the global

model [8, 17].

Federated learning has been suggested for different purposes and indus-

trial companies might beneficiate from what it has to offer. It is important

to consider that at the time of writing this paper, actual implementations

of this technology are still rare. Indeed, many academic articles and re-

searches have been exploring the potential implementations and theoret-

ical benefits. However, referenced federated learning applications which

have been released into production are limited.

This paper reviews some properties of federated learning such as, privacy-

preservation, connectivity and customizable applications. It attempts to

discuss on how these properties could be integrated to industrial products

as well as the difficulties they may encounter. Furthermore, it examines

on how suitable federated learning is for an industrial product based on

its impact on exiting products.

This paper is divided into the following sections. Section 2 introduces

the transition from machine learning to federated learning and its prop-

erties. Section 3 presents the opportunities and challenges of federated

learning in industrial applications. Section 4, discusses the usefulness

of federated learning in a specific industrial product. Finally, Section 5

provides conclusion to this paper.

2 From machine learning to federated learning

Machine learning (ML) has recently seen an increasing amount of use

cases. Certain problems were no more solvable with traditional algo-

rithms. Learning algorithms, meant to be trained on data to identify and

learn from non-explicit patterns and carrying out tasks hardly done by

humans, but computationally feasible, started to emerge [2].

In machine learning, a model is created to learn general features from

sample data. Once the model is trained, it attempts to provide predic-

tions or decisions based on what was previously learned. Typically, a

machine learning model assumes an evenly and/or randomly distributed

input data then attempts to highlight and learn generic pattern on the

entire dataset [2].

Due to a growing number of mobile and Internet of Things (IoT) devices,

cloud services and wider networks, new potential applications and chal-

lenges followed. For instance, heavy data consumption, datacenters scal-

ability problems, communications bottlenecks and data privacy concerns

were problems that common ML algorithms were facing and prevented

them to provide entirely satisfying results [11]. Hence, to face such is-

sues, and to optimize ML methods for decentralized networks, new angles

had to be explored [10].

The next section describes the transition from machine learning to fed-

erated learning as well as its relevant properties to this paper.

2.1 Transition to federated learning

Federated learning (FL), is one of these different angles. The goal is to

adapt a wider approach. The distribution and the links between some

features of the input data help towards building a more global and ac-

curate model, yet also more specific and privacy-preserving at the same

time. The idea is to draw a graph of similarities between the datasets us-

ing hyper parameters. The similarities regroup the sample data creating

clusters of datasets, also called nodes, on which models will be trained,

called local models [11, 9].

Combining decentralized networks and machine learning training tech-

niques, a global model learns overall and generic patterns by supervising

and updating the local models working on the clusters. In machine learn-

ing, the model works on the regularization of the weights to minimize the

loss. For the global model in federated learning, the edges of the graph

linking the sample data together and the local model updates can be con-

sidered as the weights. However, the global model does not ignore what is

happening inside a cluster. Indeed, even though the local models are man-

aging their own cluster, the global model learns from the entire dataset

and combines the feedback from the local models at the same time [6].

Figure 1 shows an overview of different federated learning network

topologies computational plans.

Figure 1. Overview of different FL design choices [15]

As illustrated in Figure 1, federated learning is still similar to tradi-

tional machine learning in terms of internal components and computa-

tions. However, the organization of the network of nodes and their con-

nections are utilizing well-known network topologies and distributed al-

gorithms methods.

Overall, the training procedure can be separated into the following steps:

initialization, nodes selection, configuration, reporting and finalization

[2]. The first step chooses a ML model to be trained and prepares the local

nodes for instructions. Then, the nodes selection involves using parts of

the local nodes to run a single iteration round, while the others, wait for

the next one. Afterwards, in the configuration step, the global server pre-

pares the nodes and starts the training of the local models for the selected

nodes, then transits to the reporting phase. The reported results of the

local models are handled by the global server which transmits back the

required local updates. If more training is required, the cycle loops back

to the nodes selection and repeats the previous steps with different local

nodes. Otherwise, it proceeds to the final step, where the global server

performs the last updates to the global and local models and finishes the

training procedure [10].

2.2 Federated learning properties

Federated learning possesses key properties which can be fitted to many

applications. The first one is enhanced data privacy compared to tradi-

tional machine learning applications. Creating more accurate and custom

applications in machine learning sometimes require more information to

be extracted from the original data. However, ensuring data anonymiza-

tion and complying to data privacy regulations can limit such practices.

In federated learning, even though the global model is training on all the

datasets scattered across each cluster, no raw local data is exchanged

externally. During the training and update process, local model results

and/or partial amount of their weights are shared. Hence, the learned

features are the primary focus making it harder to reverse-engineer or

hack into the original input data point [6].

The second property is a more customizable and tailored final output.

Although the global model is learning to generalize like a traditional ma-

chine learning model, local models can adapt their results for their own

purposes. In deep learning neural networks applications, the first lay-

ers are focusing on general pattern recognition while the final ones are

oriented towards the targeted results. Hence, sharing the first layers

across the federated learning network and letting the local models man-

age their last layers is a way to improve local customization [1]. Several

algorithms exist to enhance the personalization of FL models. For in-

stance, the "Masking Trick" proposes a way to improve this customization

by allowing more flexibility on the local models while still permitting them

to assist in the training of the global model. This flexibility is achieved by

coordinating the training of local models designed as reduced versions of

the global model, resulting in a single global inference model [6].

Finally, once a model training has been transitioned to federated learn-

ing, the deployment and implementation of the FL-trained model is straight-

forward. Since federated learning shares the characteristics and chal-

lenges from distributed algorithms and large scale communication net-

works, the training process and requirements of a FL model are different.

However, the lifecycles of federated learning models are similar to the

ones of classic ML models. Figure 2 gives an example of a lifecycle as well

as the interactions of a trained model in a FL system.

Figure 2. Lifecycle of an FL-trained model and the various actors in a federated learning
system [10]

As pictured in Figure 2, a federated learning system regroups the main

actors of a machine learning one. A server supervising results of differ-

ent trainings, engineers and analysts reviewing and testing the models,

followed by the deployment of the selected one. This closeness, can offer

a smooth transition from traditional ML model deployment that might

already exist in a system. Indeed, the local models improvements and

changes will be updated from a FL system similarly to a standard ma-

chine learning model deployment. Furthermore, it also offers an improve-

ment of scalability due to the wider scope inherent to federated learning

[10].

3 Opportunities and challenges in the industry

The next section explains in more details some properties of federated

learning , such as, personalized application, data privacy and connectivity

as well as the opportunities and challenges they represent in the scope of

potential industrial applications.

3.1 Tailored applications

Federated learning has been investigated across several areas. Self-driving

vehicles being one of many, where machine learning and computer vision

applications are present to analyse and learn from the surroundings of

the vehicles [7]. Digital health is also an area of focus with the learning

of clinical symptoms and diagnoses [16]. The COVID-19 pandemic, and

the challenges it brought, encouraged the research conducted on machine

learning for clinical pattern recognition in the health sector [5].

For instance, Figure 3 highlights one of the potential federated systems

in the goal of future epidemics warning and response applications.

Figure 3. A federated ubiquitous systems for epidemiological warning and response [3]

As illustrated in Figure 3, this federated learning system suggests the

usage of crowd-source data. Individual mobile devices being gathered on

local processing data nodes and being integrated to a larger decentral-

ized federated system. Such system could be used to provide better es-

timations and individual diagnoses, recommended procedures to follow,

epidemic clusters predictions and more.

Finally, federated learning has been considered for industrial applica-

tions, such as smart manufacturing or equipment health. Inspired by

the previously mentioned epidemiological warning and response system, a

similar prediction and recommendation system could be integrated for the

following integrations: process monitoring, supply chain management,

quality and maintenance control or energy consumption feedback [4].

3.2 Privacy and security concerns

The ability of federated learning approach to prevent the exchange of local

data externally improves data privacy and might convince more compa-

nies to utilize their data. Protection of users or equipment private data

has become a sensitive legal topic for the past few years and federated

learning could align with such concerns [17].

Other problems appear in different matters. For instance, from a secu-

rity point of view, if a local model is flawed or manipulated, its impact on

the global model must be limited [14]. Furthermore, with less access to

the client-side annotation, it is more difficult to detect unwanted biases in

the training data [6].

Some users or customers might be competitors and the concerns of shar-

ing their data, which will be mixed with others, might lead them to refuse

machine learning applications. Combined with the previously mentioned

tailored applications possibility, each competitor could gain access to a

global federated learning model between them while their local models

and formulas would remain their own.

3.3 Connectivity

Federated learning relies on connectivity and interactions between nodes

that may be data points from sources scattered around the globe. If cus-

tomers sometimes refuse to share data, it might be because they simply

cannot due to poor network connection. In such case, beneficiating from

cloud and distributed systems is not possible [12].

However, if the generated data and the computing resources present

on a single industrial site are substantial enough, perhaps a federated

learning approach could be considered to tackle some issues on the site

level instead.

Even if the remotely located sites or plants have a bad connectivity to

the outside world, their premises and equipment are connected to each

other locally to ensure the proper control and supervision of the processes.

Hence, a stable internal connectivity on the site level could be sufficient

to run a federated learning application.

4 Federated learning applied to existing products

This section develops the impact of federated learning when it is applied

to an existing product. This section also attempts to observe how it could

be transposed to industrial products.

An implementation of a federated learning model has been designed for

Google mobile virtual keyboard, also known as GBoard. The implementa-

tion meant to improve the existing next-word prediction model based on n-

gram finite state transducer [8]. Two other models, trained from scratch,

were designed based on a modified Long Short-Term Memory (LSTM) re-

current neural network, called the Coupled Input and Forget Gate (CIFG).

One model was trained on a central server, and the other one, was trained

using federated learning. The different models evaluated the top-1 and

and top-3 recalls of the next-word prediction on different data samples,

such as server-hosted logs, client owned or live user traffic data [8]. The

results of the analysis on live user data can be observed in Figure 4.

Figure 4. Prediction impression recall for the server and federated CIFG models com-
pared with the n-gram baseline, evaluated in experiments on live user traffic
[8]

The decentralized CIFG model, achieved with federated learning, has

shown better results than the identical server-trained and n-gram mod-

els for next-word predictions as illustrated in Figure 4. Furthermore, it

manages to achieve such results while preserving user data privacy. This

successful implementation of federated learning is promising. Indeed,

this decentralized learning applied to mobile phones could be considered

for other devices, for instance, sensors or smart equipments in industrial

plants.

Another integration of federated learning was experimented for a recom-

mender system using federated collaborative filtering. The purpose of this

research was to offer a general privacy-preserving federated recommen-

dations system. The system was evaluated using the Hit Ratio (HR@K)

metric. HR@K measures the probability of the top-K recommended items

to contain left-out test data [13].

On the public MovieLens dataset, the recommender achieved a HR@10

probability of 0.68 on 50,000 users with 5,000 items as well as a HR@10

score higher than 0.50 on the full dataset without impacting the users pri-

vacy. In terms of utility, this recommender achieved better HR@K scores

than the baseline used in the tests. On the other hand, it was still be-

hind other pre-existing recommenders which could achieve HR@10 scores

between 0.70 and 0.80 in the previously mentioned tests. However, even

though it was not the most efficient solution, this federated collaborative

filtering demonstrated the possibility of achieving a decent performance

without sacrificing data privacy [13].

Based on the previously mentioned examples, it can be observed that

federated learning could offer a positive impact, with improvements in

terms of both performance and data privacy. These properties could pro-

vide to industrial companies new ways to process their data and to collab-

orate into making more accurate applications without risking the privacy

of their products and users. Regarding a potential use of such technology

in the industry, prediction or recommendation systems similar to the pre-

viously mentioned examples could be investigated for process prediction,

energy consumption recommendations or supply chain management [4].

5 Conclusion

This article reviewed Federated Learning (FL) and some of its properties,

such as, stronger data privacy, customizable applications as well as the

potential benefits it could bring to industrial products. Additionally, this

paper described the challenges that FL might face. Furthermore, it ob-

served the impact of federated learning on existing products and how it

could be integrated to some products in the industry.

Based on the implementations on Google mobile virtual keyboard pre-

dictions and the federated collaborative filtering for recommendations sys-

tem presented in this article, it can be concluded that federated learning

offers promising results. Indeed, both the recommender system and the

keyboard next-word prediction models using FL present stronger user-

data privacy than other systems without sacrificing correctness of the end

results. Furthermore, the FL model designed for GBoard performs bet-

ter than centralized machine learning applications. Federated learning

could reduce the concerns of industrial companies regarding the sharing

of industrial data as well as offering new approaches to process users or

equipment data towards improving their products.

Finally, as mentioned earlier in this paper, references on successful im-

plementations of federated learning for industrial products are rare. Sim-

ilar prediction or recommender systems adapted for supply chain man-

agement, smart manufacturing or equipment health could be relevant po-

tential implementations of federated learning in the industry.

References

[1] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and
Sunav Choudhary. Federated learning with personalization layers. arXiv
preprint arXiv:1912.00818, 2019.

[2] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Maz-
zocchi, Brendan McMahan, et al. Towards federated learning at scale: Sys-
tem design. Proceedings of Machine Learning and Systems, 1:374–388,
2019.

[3] Dick Carrillo, Lam Duc Nguyen, Pedro HJ Nardelli, Evangelos Pournaras,
Plinio Morita, Demóstenes Z Rodríguez, Merim Dzaferagic, Harun Siljak,
Alexander Jung, Laurent Hébert-Dufresne, et al. Containing future epi-
demics with trustworthy federated systems for ubiquitous warning and re-
sponse. arXiv preprint arXiv:2010.13392, 2020.

[4] Raffaele Cioffi, Marta Travaglioni, Giuseppina Piscitelli, Antonella Petrillo,
and Fabio De Felice. Artificial intelligence and machine learning applica-
tions in smart production: Progress, trends, and directions. Sustainability,
12(2):492, 2020.

[5] Ittai Dayan, Holger R Roth, Aoxiao Zhong, Ahmed Harouni, Amilcare Gen-
tili, Anas Z Abidin, Andrew Liu, Anthony Beardsworth Costa, Bradford J
Wood, Chien-Sung Tsai, et al. Federated learning for predicting clinical
outcomes in patients with covid-19. Nature medicine, 27(10):1735–1743,
2021.

[6] Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and com-
munication efficient federated learning for heterogeneous clients. arXiv
preprint arXiv:2010.01264, 2020.

[7] Ahmet M Elbir, Burak Soner, and Sinem Coleri. Federated learning in
vehicular networks. arXiv preprint arXiv:2006.01412, 2020.

[8] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ra-
mage. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604, 2018.

[9] Alexander Jung. Networked exponential families for big data over net-
works. IEEE Access, 8:202897–202909, 2020.

[10] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham
Cormode, Rachel Cummings, et al. Advances and open problems in feder-
ated learning. Foundations and Trends® in Machine Learning, 14(1–2):1–
210, 2021.

[11] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. Federated opti-
mization: Distributed optimization beyond the datacenter. arXiv preprint
arXiv:1511.03575, 2015.

[12] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Feder-
ated learning: Challenges, methods, and future directions. IEEE Signal
Processing Magazine, 37(3):50–60, 2020.

[13] Lorenzo Minto, Moritz Haller, Benjamin Livshits, and Hamed Haddadi.
Stronger privacy for federated collaborative filtering with implicit feedback.
In Fifteenth ACM Conference on Recommender Systems, pages 342–350,
2021.

[14] Viraaji Mothukuri, Reza M Parizi, Seyedamin Pouriyeh, Yan Huang, Ali
Dehghantanha, and Gautam Srivastava. A survey on security and privacy
of federated learning. Future Generation Computer Systems, 115:619–640,
2021.

[15] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth,
Shadi Albarqouni, Spyridon Bakas, Mathieu N Galtier, Bennett A Land-
man, Klaus Maier-Hein, et al. The future of digital health with federated
learning. NPJ digital medicine, 3(1):1–7, 2020.

[16] Chi-Ren Shyu, Karisma Trinanda Putra, Hsing-Chung Chen, Yuan-Yu Tsai,
KSM Hossain, Wei Jiang, Zon-Yin Shae, et al. A systematic review of fed-
erated learning in the healthcare area: From the perspective of data prop-
erties and applications. Applied Sciences, 11(23):11191, 2021.

[17] Abraham Woubie and Tom Bäckström. Federated learning for privacy-
preserving speaker recognition. IEEE Access, 9:149477–149485, 2021.

Deep Learning for Kinematic Character
Animation

Alena Shchevyeva
alena.shchevyeva@aalto.fi

Tutor: Nam Hee Kim

Abstract

The animation industry can benefit significantly from rapidly evolving ma-

chine learning solutions, such as neural networks. These methods could al-

low for faster and cheaper production, thus democratizing the market and

allowing more creative freedom. This paper reviews the state-of-the-art

neural network techniques in 3D character animation. The review is lim-

ited to kinematic animation and covers only motion retrieval and motion

synthesis techniques. Motion retrieval covers learned motion matching,

whereas motion synthesis is focused on phase and mode adaptive neural

network models, such as PFNN, MANN, and local motion phases frame-

work. Finally, the paper summarizes the implications of the methods dis-

cussed and possible areas for future research.

KEYWORDS: 3D character animation, neural networks, kinematics

1 Introduction

The rise of computer technologies led to the appearance of 3D graphics

in live-action films by the late 1980s and entire 3D feature films by the

mid-1990s. By the 2010s, 3D computer graphics became the prevalent an-

imation technique that is still being developed continuously. Although 3D

animation tends to lead to faster production than traditional hand-drawn

animation, it is still extremely expensive and time-consuming. Produc-

tion of a fully animated full-length film can take anywhere between two

to four years and require a crew of hundreds of employees [1]. For exam-

ple, Tangled, an animated film by Walt Disney Animation Studios, spent

six years in production with a budget estimate comparable to that of the

whole The Lord of the Rings trilogy [2].

Artificial neural networks offer promising solutions to the issues of 3D

animation outlined above. The possible applications of neural networks

include character motion synthesis [3], eliminating corrupt motion errors

[4], character control over various terrains [5], and animating quadruped

animals [6]. Utilizing these techniques has the potential to make ani-

mation more affordable and accessible to individuals and smaller teams

while decreasing costs and production time for larger studios.

The paper aims to review current state-of-the-art neural network solu-

tions to 3D computer character animation problems. Here, the animation

is limited only to kinematic animation where the object’s state is described

by its pose, and the motion of the object is simulated by subsequently

changing its poses. The poses and the rules for their update are described

via some set of equations. The dynamic animation, which focuses on how

different forces affect the movement, is left out of the scope of this paper.

The rest of the paper is organized as follows. Section 2 briefly describes

the history of 3D animation and neural networks. Section 3 introduces

basic concepts of character animation and minimal formalism. Section 4

overviews state-of-the-art neural network techniques in character anima-

tion. Section 5 discusses the implications of these methods and avenues

for future research. Finally, Section 6 summarizes the paper.

2 History of 3D Animation and neural networks

2.1 3D Animation

Although the first digital computer animation was produced already in

the 1960s [7], 3D animation in its current form started to evolve only in

the mid-1970s with the development of microprocessors and reached in-

dustry production by the late 1980s [1]. These advancements allowed for

the emergence of the character 3D animation in the same decade. Three

innovative 3D-animated short films were produced at the University of

Montreal: Dream Flight, the first 3D generated film telling a story with

some limited character animation [8]; Tony de Peltrie portraying the first

3D animated human character expressing emotions [9]; and Rendez-vous

in Montreal, a short film simulating Marilyn Monroe meeting Humphrey

Bogart in a café in the old town of Montreal [10]. Another key animated

short film of the time, Luxo Jr. produced by Pixar, became the first CGI

film nominated for an Academy Award. This short film was a break-

through not only by the technologies used but also by its strong appeal

to a wider audience.

In the same decade, Ginsberg and Maxwell at MIT presented the Graph-

ical Marionette project, an early version of motion capture [11]. However,

the realistic and complex animation created entirely with motion capture

was presented only in 1993 by Acclaim Entertainment when faster sen-

sors and more efficient hardware were developed [11]. The next milestone

in the industry was the release of Toy Story in 1995 – the first full-length

3D animated feature film produced by Pixar Animation Studios [12].

2.2 Neural networks

Neural networks were first introduced in the mid-1940s. However, convo-

lutional neural networks (CNN) that are currently widely used in image

recognition and generation tasks were first introduced only in 1987 by

Atlas et al. [13]. In 2004, Oh and Jung [14] significantly improved the

runtime of standard neural networks by utilizing GPU instead of CPU.

This allowed the creation of deeper networks and the improvement of

the results. By 2011, CNNs achieved rapid learning and low error rates

on standard image recognition datasets, such as MNIST, CIFAR-10, and

NORB [15].

The first impactful application of the CNNs in the field of 3D charac-

ter animation emerged in 2015-2016 when Holden et al. [3, 4] introduced

new solutions based on the convolutional autoencoders to the problems of

corrupt motion data or character motion synthesis. Finally, novel neural

network architectures, such as phase-functioned neural network (PFNN)

and mode-adaptive neural network (MANN), were developed in the past

5 years to address issues of character control over difficult terrain and

quadruped motion control [5, 6]. These advancements, including PFNN,

MANN, and recently emerging solutions based on them, will be further

discussed in Section 4.

3 Concepts of character animation

Character animation focuses on a movement of a particular character in a

two- or three-dimensional space. The character structure consists of bones

and joints that form chains of rigid body structures modelling the skeletal

structure of real-life animals. Furthermore, it includes a root joint that is

meant to control the character’s global body position and orientation. An

example of such animation skeletons is shown in Figure 1. Every joint

can be described by its position, rotation, and in some applications by its

angular velocity at any given time. Traditionally, character animation is

performed by manually adjusting joints for each frame to create smooth

movement. However, this is a tedious, time-consuming process that does

not scale well. A controller – an instance that displays frame sequences

based on the context – simplifies this process by defining what the char-

acter’s next position should be (i.e., position and rotation for each joint),

based on the current state, target state, trajectory, or other user input.

Figure 1. Animation skeletons with bones marked in blue, joints in green, and root joint
in red [16].

At a rather basic level, animation is a sequence of frames, where each

frame contains information about the current state of the world, based on

which one can visualize it. More formally, animation can be represented

as an input vector x for frame ϕ, which includes, for example, joint posi-

tions, rotations, and velocities. To produce believable motion sequences

based on the available data (for example, from motion capture), we intro-

duce some function f , which produces an output vector y of joint positions,

rotations, and velocities for frame ϕ+ 1 when applied on a vector x:

x =




j0ϕ

j1ϕ
...

jnϕ




, y = f(x) =




j0ϕ+1

j1ϕ+1

...

jnϕ+1




(1)

, where j0ϕ ...jnϕ
represent joint positions, rotations and velocities at the

frame (time) ϕ. The output y is a prediction of the next state needed for

the visualization based on the current character state. Predicting com-

plex motions, such as playing basketball, requires complex function f or

a combination of several functions constituting a model, as well as more

information in the input x. Such additional information may include, for

example, movements of other objects that affect the character (e.g., ball

movement for animating a basketball player) or phases for cyclical mo-

tion, such as walking [17].

4 Evolution of neural networks based techniques for character
animation

This paper focuses on two clusters of neural network techniques currently

used for character animation: motion retrieval techniques and motion

synthesis techniques. Both approaches require sufficiently large motion

capture datasets, but they utilize them differently. Motion retrieval tech-

niques, such as motion matching, are focused on selecting the next ani-

mation fragment from a large database of animations based on how well

it fits the current context [18]. In contrast, motion synthesis techniques

advance animation by generating new poses based on the current ones.

The motion synthesis techniques utilize learned functions, i.e., functions

trained on some dataset; however, they do not consult any database af-

ter the training is completed. These different approaches are analyzed

further in Sections 4.1 and 4.2.

4.1 Motion matching techniques

Once the task is defined, the general process of motion matching can be

described as first identifying a few crucial features for the current task

and then based on them formulating a query vector to retrieve the next

animation from the database. Finally, the transition from the source to

the target frame is blended to achieve smoother results [18]. Here, the

fully-parameterized vector x, as in Section 3, often contains excessive in-

formation, such as joints irrelevant to the current movement. These fea-

tures might hinder the formulation of the query vector and unreasonably

limit the available results. Therefore, a smaller subset x′ of only rele-

vant crucial features are selected from x and each complete pose vector

is matched to this resulting feature vector. All available poses (vector y

from Section 3) and corresponding feature vectors are concatenated into

two large matrices that are called Animation and Matching databases re-

spectively [18].

(a) Basic motion matching: Matching and Animation databases are used for

querying.

(b) Learned motion matching: Decompressor, Projector and Stepper net-

works are utilized to replace Matching and Animation databases for a

memory-efficient solution.

Figure 2. Comparison of basic and learned motion matching techniques [18].

The advantages of motion matching include predictability, low pre-

processing time and visual quality [18]. However, continuously storing

Animation and Matching databases in memory results in this method be-

ing memory-inefficient – memory usage scales linearly with the size of

the databases. To address this issue, Holden et al. [18] suggest a learned

motion matching algorithm, which applies several neural networks to re-

move the dependency of the basic motion matching on Animation and

Matching databases (see the comparison of the methods in Figure 2). The

first two networks, the Projector and the Stepper, work together to elimi-

nate the Matching database. The Projector replaces the traditional near-

est neighbour search and finds the next best-matching feature vector via

a neural network that takes as input a query vector x and outputs the

feature vector x′ and additional latent vector z which adds state context

missing from x′ otherwise. The Stepper then recurrently advances the an-

imation by utilizing the found representations at frame i, i.e., x′
i and zi, to

find the representations for frame i+ 1, i.e., x′
i+1 and zi+1. The final net-

work, the Decompressor, eliminates the Animation database by predicting

output pose vector y from the learned representations, i.e., input vectors

x′ and z representing the current character pose. Furthermore, the De-

compressor can be used separately from the Projector and the Stepper to

achieve different trade-offs between memory usage and evaluation time.

With all three networks deployed, the resulting algorithm achieves a sig-

nificant improvement in memory usage for a variety of tasks compared to

the basic motion matching.

4.2 Motion synthesis techniques

There is a vast variety of methods utilizing neural networks for mo-

tion synthesis. This paper covers only a small subset of them, which

mostly focus on game-controlled animation with forward kinematics mod-

els trained on motion capture datasets.

One of the notable solutions is phase-functioned neural networks

(PFNN) [5], which significantly contributed to the further development

of character control techniques. It is aimed at solving locomotion tasks,

such as stepping, jumping, or climbing, over difficult terrain. These tasks

are cyclical, hence utilizing the global motion phase enhances the out-

put quality. The global motion phase serves for generating the weights

of a regression network at each frame, which prevents mixing data from

different phases and allows smoother outcome [5]. Once the weights are

generated, the network performs regression from the input feature vector

x to the character pose y of the next frame. Aside from the basic motion

capture preprocessing, data preprocessing for PFNN includes addition-

ally phase extraction and terrain fitting. Here, terrain fitting refers to fit-

ting a database of heightmaps to separately captured motion data, since

motion capture does not allow for easy simultaneous capturing of both

terrain and motion in a motion capture studio. Although the PFNN as

introduced by Holden et al. is limited to only generating cyclic behaviour,

it proposes a fast and lightweight system, which is capable of producing

realistic walking or running sequences for humanoid characters.

While PFNN mostly addresses human locomotion, mode-adaptive neu-

ral networks, MANN, aim to solve the challenges of the quadruped motion

control [6]. Additionally, MANN address the challenges of preprocessing

by eliminating the need for manual phase labelling, reducing preprocess-

ing time, and avoiding human error in gait mislabelling. To achieve this,

the system learns consistent features across the wide range of unstruc-

tured quadruped motion with different periodic gait types (e.g., gallop or

trot) and develops gait-specific controllers that can be then blended with

a mixture of experts. MANN implements the mixture of experts by tak-

ing inputs in a similar format to PFNN (but excluding phase labels) and

utilizing two neural networks: a gating network and a motion prediction

network. The gating network receives a motion feature x′ ∈ x and dynam-

ically computes blending coefficients, which are then utilized as weights

by the motion prediction network to produce output vector y based on

the input x [6]. The overall architecture can be found in Figure 3. In

comparison to PFNN and vanilla feed-forward networks, MANN achieves

smoother and more natural results for quadruped locomotion; however,

its implementation by Zhang et al. [6] is still limited to flat terrains and

does not support more complex motions, such as jumping.

Figure 3. MANN architecture [6].

In 2020, Stark et al. [17] introduced a local motion phases framework

that combines the ideas introduced in PFNN and MANN for learning

multi-contact character movements. It uses an architecture similar to

MANN with gating and motion prediction networks. Its high-level archi-

tecture overview can be found in Figure 4. The input to the gating net-

work consists of local motion phases. The idea of local motion phases ex-

tends the phase information introduced earlier by Holden et al. in PFNN.

Instead of using one global phase for the character, Starke et al. [17] sug-

gested multiple independent local phases for each bone to improve per-

formance on asynchronous movements, where different body parts are

moving at different and consistently changing phase shifts. The resulting

framework produces realistic outputs for fast-paced, asynchronous char-

acter interaction, such as a basketball game with two players. Further-

more, it is faster and more responsive than MANN for the quadruped

motion, especially when switching between different locomotion modes,

such as from sitting to walking [17].

Figure 4. Architecture of local motion phases framework [17].

5 Discussion

Currently, the majority of the research is focused on bipedal and

quadruped motion, such as the motion of human or four-legged animal

characters. Although the methods reviewed in this paper achieve great

results, they are still limited to a few character structures they can op-

erate on. Future research could investigate the possibilities of transfer-

ring these methods to a wider range of characters – for example, birds

or other non-humanoid characters, such as aliens. This might bring ad-

ditional challenges, among which are complex rigging (i.e., defining the

bones and joints of a character) and lack of motion capture data. More-

over, there might be new kinds of motion that are completely different

from the bipedal or quadruped motion.

These arising challenges can be at least partially solved by neural net-

work solutions. For example, RigNet introduced by Xu et al. [16] can

already generate a skeleton matching animators’ expectations based on a

provided 3D model, including cases of characters with an arbitrary num-

ber of limbs or non-humanoid characters. Motion retargetting [19] is an-

other approach to adapting existing methods to novel character models.

Overall, the animation is only a small part of a 3D production pipeline

that consists of a multitude of steps, including, but not limited to, ini-

tial idea, story, design, modelling, rendering, and compositing. Future

research could target the challenges of integrating neural network mod-

els into the production pipeline and the implications it would have for

industry professionals, especially animators. Automating manual labour-

intensive tasks might lead to the role of animators shifting towards post-

processing (for example, validating and correcting generated results) or

data engineering and MLOps positions since neural networks in the pro-

duction environment would require continuous maintenance and very

likely continual learning as new data arrives. This process might have

certain ethical implications, which also presents an opportunity for fur-

ther research.

6 Conclusion

This paper has reviewed two different approaches in current anima-

tion techniques utilizing neural networks: motion retrieval and motion

synthesis. It covered several state-of-the-art techniques associated with

each approach and discussed their aims, advantages, and disadvantages.

These methods have the potential to make 3D character animation faster

and more affordable and therefore more accessible to small independent

studios or individual creators. This could allow for more creative free-

dom with less technical limitations and lead to more diversity among 3D

projects targeting a wide audience. Therefore, many parties, including

studios, artists, and audience, could benefit from the further development

of neural network animation techniques.

References

[1] A. Beane, 3D animation essentials. John Wiley & Sons, 2012.

[2] Box office mojo. Accessed on: 03.02.2022. [Online]. Available:
https://www.boxofficemojo.com

[3] D. Holden, J. Saito, and T. Komura, “A deep learning framework for
character motion synthesis and editing,” ACM Trans. Graph., vol. 35, no. 4,

jul 2016. [Online]. Available: https://doi.org/10.1145/2897824.2925975

[4] D. Holden, J. Saito, T. Komura, and T. Joyce, “Learning motion
manifolds with convolutional autoencoders,” in SIGGRAPH Asia 2015
Technical Briefs, ser. SA ’15. New York, NY, USA: Association
for Computing Machinery, 2015. [Online]. Available: https:
//doi.org/10.1145/2820903.2820918

[5] D. Holden, T. Komura, and J. Saito, “Phase-functioned neural networks for
character control,” ACM Trans. Graph., vol. 36, no. 4, jul 2017. [Online].
Available: https://doi.org/10.1145/3072959.3073663

[6] H. Zhang, S. Starke, T. Komura, and J. Saito, “Mode-adaptive neural
networks for quadruped motion control,” ACM Trans. Graph., vol. 37, no. 4,
jul 2018. [Online]. Available: https://doi.org/10.1145/3197517.3201366

[7] P. Lundin, “Databehandling vid väg- och vattenbyggnads-
styrelsen/vägverket 1957–1980: Transkript av ett vittnesseminarium
vid tekniska museet i stockholm den 22 maj 2006,” 2007.

[8] N. Magnenat-Thalmann and D. Thalmann, “The use of high-level 3-d graph-
ical types in the mira animation system,” IEEE Computer Graphics and
Applications, vol. 3, no. 9, pp. 9–16, 1983.

[9] P. Bergeron and P. Lachapelle, “Controlling facial expressions and body
movements in the computer-generated animated short: Tony de peltrie,”
Computer Graphics (SIGGRAPH’85), Course Notes: Techniques for Animat-
ing Characters, 1985.

[10] N. Magnenat-Thalmann and D. Thalmann, “The direction of synthetic ac-
tors in the film rendez-vous a montreal,” IEEE Computer Graphics and Ap-
plications, vol. 7, pp. 9–19, 1987.

[11] D. J. Sturman, “A brief history of motion capture for computer character
animation,” SIGGRAPH 94, Character Motion Systems, Course notes, vol. 1,
1994.

[12] D. Price, The Pixar Touch: The Making of a Company. Alfred A. Knopf,
2008. [Online]. Available: https://books.google.fi/books?id=ExfiwAEACAAJ

[13] L. Atlas, T. Homma, and R. Marks, “An artificial neural network for spatio-
temporal bipolar patterns: Application to phoneme classification,” in Neural
Information Processing Systems, D. Anderson, Ed. American Institute of
Physics, 1988.

[14] K.-S. Oh and K. Jung, “Gpu implementation of neural networks,” Pattern
Recognition, vol. 37, no. 6, pp. 1311–1314, 2004. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0031320304000524

[15] D. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber,
“Flexible, high performance convolutional neural networks for image clas-
sification.” 07 2011, pp. 1237–1242.

[16] Z. Xu, Y. Zhou, E. Kalogerakis, C. Landreth, and K. Singh, “Rignet: Neural
rigging for articulated characters,” ACM Trans. Graph., vol. 39, no. 4, jul
2020. [Online]. Available: https://doi.org/10.1145/3386569.3392379

[17] S. Starke, Y. Zhao, T. Komura, and K. Zaman, “Local motion
phases for learning multi-contact character movements,” ACM Trans.
Graph., vol. 39, no. 4, jul 2020. [Online]. Available: https:
//doi-org.libproxy.aalto.fi/10.1145/3386569.3392450

[18] D. Holden, O. Kanoun, M. Perepichka, and T. Popa, “Learned motion
matching,” ACM Trans. Graph., vol. 39, no. 4, jul 2020. [Online]. Available:
https://doi.org/10.1145/3386569.3392440

[19] M. Gleicher, “Motion editing with spacetime constraints,” in Proceedings of
the 1997 Symposium on Interactive 3D Graphics, ser. I3D ’97. New York,
NY, USA: Association for Computing Machinery, 1997, p. 139–ff. [Online].
Available: https://doi.org/10.1145/253284.253321

The Multiple Layers of Anonymity

Sara Kanerva
sara.kanerva@aalto.fi

Tutor: Chris Brzuska

Abstract

Anonymity is the cornerstone of truly honest communication. Anonymity

can shield communicating parties from any major consequences that ex-

pressing their opinions or experiences might accompany. Hence, removing

inhibitors of discussion and speech. Anonymity can be condensed by the

notion of not allowing an attacker or observer on a network to link par-

ticipants to certain actions. This paper discusses the notion of anonymity,

while examining diverse models for reinforcing and enhancing the notion

itself, predominantly within anonymous communication systems.

KEYWORDS: anonymity, authentication, cryptography, anonymous com-

munication, anonymity set, anonymous communication systems

1 Introduction

One can no longer question whether electronic communication technolo-

gies are here to stay. Due to the progression of technology, the amount

of communication conducted through technological devices has increased

significantly. Thus, the demand for identifying mechanisms accompanied

with the technologies and cryptographic mechanisms enabling them has

grown [1]. Through the emergence of web services such as social media,

online shopping and banking, the quantity of personal information cir-

culating online has skyrocketed. With these online tools it has become

child’s play to gain knowledge about a specific person. Furthermore, nu-

merous bits and pieces of personal information harvested by online ser-

vices are being put up for sale, which is only one of the plethora of reasons

for which a party could wish to remain anonymous during communication

[2].

True anonymity can be seen to include the notion of unlinkability. In-

deed, within the context of cryptographic key exchange, anonymity and

unlinkability are nearly equivalent [3]. Still, anonymity as a concept can

be viewed both from the points of hiding the identity of the entity who is

preforming an action as well as hiding the action itself [4]. Users can wa-

ver between what identity information they are willing to succumb while

using various online services. Thus, even how the users themselves ex-

perience privacy is prone to fluctuate. In some cases concealing who is

responsible for the message might be more crucial than the sent message

itself [5].

The technical and the social infrastructure behind anonymity is tangled

and complex. The large scale of implementation environments does not

make the task of fulfilling the architectural needs of anonymity any eas-

ier. Various ways of improving and measuring the strength of the imple-

mented anonymity processes have been suggested, but few seem to meet

the requirements of all implementation objectives.

2 Anonymity

Rooted in the Greek language, the word anonymity has been given the

meaning of "namelessness" or "without a name" [6]. Pfitzmann and Köh-

ntopp [7] define anonymity as the state of being unidentifiable within a set

of subjects, also referred to as the anonymity set. Anonymity can be con-

sidered as one of the cornerstones for democracy, by empowering the prin-

ciple of freedom of speech [1]. Actions which in the absence of anonymity

can result in the torment of the individual, construct significant use cases

for anonymity [2]. When it comes to communication in the cyberspace,

the identities of message sender’s can be anonymised trough various pro-

cesses. This allows for activists and so-called whistle blowers to share crit-

ical knowledge on companies, organizations and individuals taking part

in criminal or unjust activities, in the safety of their anonymity. Alter-

natively anonymity opens a possibility for users to spread messages with

malicious intentions [1].

The concept of anonymity can be further divided into subcategories. Two

of which are true anonymity and pseudo-anonymity [7]. True anonymity

is completely untraceable. When true anonymity is applied the identity of

the sender is unable to be detected. True anonymity can be seen to possess

grave potential for exploitation in the realm of illegal activities and cyber

crime [1]. In pseudo-anonymity the communication between the senders

is indeed traceable. The sender’s identity is anonymised, but possible

to be uncovered, although only through extensive efforts [7]. Thus, the

sender commits to taking accountability of their actions, although initially

protected by anonymity. Pseudo-anonymity can facilitate governments in

misusing their access to the identities of pseudo-anonymous users [8].

3 Anonymous Communication Systems

Anonymity and privacy are central concepts of the field of communica-

tion. Users seeking higher degrees of anonymity are moving towards sys-

tems which can provide them with the promise of anonymous communi-

cation [9]. Anonymous systems for communication first surfaced in the

mid-1980s, providing users with the first ways of anonymous electronic

communication through relay servers [5]. The central ambition of anony-

mous systems is to protect the identities of the communicating entities.

Further motivators include personal privacy and prevention of data min-

ing and tracking [10].

Anonymous communication systems (ACSs) can be categorised based on

system architecture and the latency their users are succumbed to dur-

ing communication [10]. Architecturally the systems are divided into

client-server communication systems and peer-to-peer anonymous net-

works. Latency wise, into low and high latency systems. Using a peer-

to-peer architecture allows for no distinction to be made between a user

and a server, hindering the possibility of an attacker tracking the network

traffic. The architecture in client-server communication systems provides

anonymity for the system users only through a few nodes, thus making it

easier for the attacker to extract data.

Anonymous communication systems brought into being the technique of

routing messages through multiple relays, to offer their users the anonymity

they are seeking for [11]. Tor, and the onion routing the system im-

plements is one of the most widespread anonymous communication sys-

tems [12]. Tor has a large user-base accompanied with a limited num-

ber of servers, which can result in performance issues when it comes to

anonymity [10]. Hence, some systems such as Riffle and Vuvuzela provide

additional security against adversaries by using communication rounds

[11]. Communication rounds regulate the time frames clients can com-

municate in. Messages are sent every round either by choice of the user

or through system fabrication. A real message sent by the user is indis-

tinguishable from system fabricated messages.

The privacy goals of anonymous communication systems may vary to

a great extent. The systems are constructed with a range of use cases

in mind. Advantages of the implemented anonymity technologies often

come with drawbacks such as latency and lack of malicious attack detec-

tion [10]. However, new improved techniques and approaches are being

researched. As the design of anonymous systems advances, so does the

overall perception of the concept of anonymity itself.

4 Attacks on anonymity

As with most protective measures, weaknesses found in anonymous sys-

tems are targeted by various attacks. Anonymous systems have been tar-

geted with attacks such as encrypted data cracking, man-in-the-middle

attacks, data replays and traffic analysis to list a few [5]. However passive

long term attacks such as intersection attacks form one of the strongest

threats posed against anonymous communication systems, such as Tor

[11].

Intersection attacks are deterministic attacks where an adversary of a

global and passive nature is able to observe outgoing and incoming mes-

sage traffic completely within a ACS [11]. The adversary can then link

the sender and targeted receiver as illustrated in Figure 1. The attack is

performed by the adversary recording which recipients are online at the

time a message was sent, hence by repetition being able to weed out a

single client out of the possible recipients.

ACS

Clients Servers

Adversary Adversary

Figure 1. Threat model of a global passive adversary monitoring all messages incoming
and outgoing from the ACS, modified from [11]

In addition to the attacks of deterministic nature, anonymous commu-

nication systems possess vulnerabilities to statistical disclosure attacks

[11]. Statistical disclosure attacks can be conducted when an adversary

is able to estimate the likelihood of a single recipient from a group of pos-

sible recipients, being the targeted receiver of the message in question

[11]. The attack is conducted by churning of the ACS’s user base. Resis-

tance against these attacks could be improved by setting random delays

to sending messages and by utilizing strong anonymity sets.

5 Anonymity loves company

The more users a service such as an ACS has, the more there are possible

entities to link with the messages sent across the system. To increase

the anonymity resistance of these services, their user base can be further

grouped into anonymity sets. An anonymity set includes a group of users,

so called "honest" users. All of these "honest" users might be responsible

for sending a message, since they are in possession of the same attributes

from the perspective of the adversary [13].

Within a system consisting of an arbitrary number of users, the system

can reach the highest level of anonymity the moment an adversary recog-

nizes all entities within a anonymity set to have equivalent probabilities

as for being the senders of a message [13]. In practise latency and user be-

haviour are constraints on the anonymity set. This enables an adversary

to succeed in the creation of persistent behavioral user profiles [14]. Bas-

ing security mechanisms on the assumption of constantly participating

clients might prove detrimental for an ACS, since human user behaviour

patterns can be unpredictable.

An anonymity set consisting of a lone user is impossible to maintain,

thus the minimum size of an anonymity set is two entities [13]. Insert-

ing fake identities to grow the size of an anonymity set can be done, but

issues arise when the users within one anonymity set stop using the ser-

vice or change their posting behaviours. This can lead to the shrinkage of

the anonymity set. Hence, the set increasingly exposed to a intersection

attack. This can be referred to as anonymity degradation [11]. Dummy

traffic and identities are indeed a way to increase the workload of an ad-

versary during attack, but they are incapable of eliminating the attack

itself.

6 Measuring anonymity

Anonymity can be considered as a young area within the field of secu-

rity, when compared to the areas of confidentiality and authentication

[15]. Measuring the level of anonymity a certain Anonymous communi-

cation service provides is a troublesome task. Partly due to the narrow

safety marginals set for the services [16]. Since it has been established

anonymity can take shape in various forms within the technical realm,

privacy notions on the topic can be riddled with naming issues and lack of

consistency. However, much like with other security measurements, the

strength of anonymity can be assessed by the trouble an adversary is de-

manded to go through to overcome it [15]. For metrics to be applicable,

success in reflecting precisely this is key.

By measuring the source-hiding properties of anonymous services, more

specifically the ways in which the service is able to upkeep concealing the

identity of the sender and the destination of the message, the workload of

an adversary can be quantified [17]. Indeed, when defining the security

measurements of a network according to metrics, the attacker’s capabili-

ties require to be defined [16]. Applying the right metrics and adversary

models can turn out challenging.

Real anonymous communication systems are unable to reach the ideal

of producing an uniform distribution of senders and receivers for a mes-

sage enclosed by an anonymity set [16]. Distinguishing the direction of

data flow will allow the adversary to make distinctions between senders

and receivers. Thus the unevenness of the probability distribution can

function as a useful metric for the degree of anonymity within ACSs.

By using attributes such as the entropy of an attackers probability dis-

tribution, the volume an adversary needs to match messages and users

is quantified [17]. Nevertheless, anonymity measures based on entropy

have been criticized due to the shortcomings they exhibit. Entropy based

measures are unable to take into the account the amount of knowledge

the adversary is in possession of. Thus supplying an incomplete view of

the level of compromised information, on which ACS design decisions be

built upon.

7 Amplifying anonymity

Methods by which anonymous communication systems can amplify their

anonymisation processes are under constant research. Design choices fo-

cus on advancing security through user-base enlargement and minimizing

information disclosed to observers [16]. Unfortunately the implementa-

tion of these objectives are followed by the reduction of network capacity.

Prioritizing anonymity in system architectures includes trade-offs set be-

tween security and performance, still the future of user needs demands

for a balance to be struck.

Utilizing the Buddies architecture can provide level k anonymity to pub-

lishing clients within an ACS [11]. The Buddies architecture functions by

denying clients publishing requests, when an ACS deems them vulnera-

ble to a intersection attack. The biggest downside accompanying the bud-

dies architecture is the latency it generates, through blocking clients from

interacting [11]. Thus, the usability and availability of the system are de-

teriorated at the stake of anonymity. Hence, services which implement

the buddies architecture should possess a high buffer for latency.

Danezis, Hayes and Troncoso [11] have lead the work Towards Anonymity

sets that Persist. Hence, introducing TASP, a protocol for ACS’s to facili-

tate grouping their clients into anonymity sets by gathering clients with

similar patterns of communication together. In addition, anonymity could

be amplified by using local randomisation [4]. By combining locally ran-

domised inputs through secret-sharing with global mixing of the shares

which are supplied by the initial anonymity processes taking place, inputs

could be kept private.

The discussed methods of amplifying anonymity, all have a downfall

when it comes to the usability of anonymous services. Some causing la-

tency problems which can prove to be detrimental to user satisfaction.

Possibilities might lie in improving the strength of anonymity sets and

optimizing them to the fullest. To succeed in this additional research is

required. Striving towards assuring the status of data integrity whilst

being able to avoid traffic analysis while utilizing anonymity amplifying

measures is essential [5]

8 Conclusion

Every anonymous system can be seen as a double-edged sword [5]. Au-

thors writing under pen names, newspaper articles published under pseudonyms

and anonymous peer reviews are few of the examples where one can run

into anonymity on the daily [1]. In light of these positive applications of

anonymity one might be steered away from contemplating the possible

harm causing effects. Including the possibility of cyber crime taking ad-

vantage of anonymity, through numerous unlawful action such as fraud

as well as selling and distributing illegal commodities.

Anonymity alone remains insufficient to construct the notion of privacy

thoroughly [4]. Still, anonymity can open doors for privacy by establish-

ing a barrier between the action and the user [18]. When the context

of distributed computation is utilized, anonymity hides the entities ac-

countable for specified outputs. Enabling privacy would demand hiding

every bit of information except the results of the outputs. Privacy is of-

ten framed as a trade-off taking place between social values and norms

and individual needs [18]. Indeed, as Chawki [1] states: "Each problem

relies on striking a fair balance between the interests of the individual

on the other hand, and the interests of the state on the other." Anony-

mous systems have not been left unnoticed by government organizations.

Reactions have been varied, some governments opting towards banning,

while others sponsoring the systems. For example Tor is sponsored by The

United States Defence Advanced Research Projects Agency (DARPA) [5].

The notion of whether anonymity is required or not, and the level of

implementation needs to be on, depends on numerous aspects. A con-

trolled setting in need of anonymity measures such as an election vot-

ing system, constructs a case for anonymity which is more predictable,

when compared to the broad concept of communication on the internet.

Constructing special anonymity regulations to establish standards con-

sidering measurements and models, could benefit the future research. Si-

multaneously steps should be taken to improve public awareness and en-

abling users to demand better privacy reinforcing technologies for them-

selves. Urging the research efforts towards anonymity systems, which

hold up even when put against global adversaries, such as governments.

References

[1] M. Chawki, “Anonymity in cyberspace: Finding the balance between privacy
and security,” vol. 9, no. 3. Inderscience Publishers, 2010, pp. 183–199.

[2] R. Kang, S. Brown, and S. Kiesler, “Why do people seek anonymity on the
internet? informing policy and design,” in Proceedings of the SIGCHI con-
ference on human factors in computing systems, 2013, pp. 2657–2666.

[3] I. Goldberg, D. Stebila, and B. Ustaoglu, “Anonymity and one-way authen-
tication in key exchange protocols,” vol. 67, no. 2. Springer, 2013, pp. 245–
269.

[4] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Cryptography from
anonymity,” in 2006 47th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’06). IEEE, 2006, pp. 239–248.

[5] R. A. Haraty and B. Zantout, “A collaborative-based approach for avoiding
traffic analysis and assuring data integrity in anonymous systems,” vol. 51.
Elsevier, 2015, pp. 780–791.

[6] M. Simioni, P. Gladyshev, B. Habibnia, and P. R. N. de Souza, “Monitoring
an anonymity network: Toward the deanonymization of hidden services,”
vol. 38. Elsevier, 2021, p. 301135.

[7] A. Pfitzmann and M. Köhntopp, “Anonymity, unobservability, and pseudonymity—a
proposal for terminology,” in Designing privacy enhancing technologies. Springer,
2001, pp. 1–9.

[8] G. T. Marx, “What’s in a name? some reflections on the sociology of anonymity,”
vol. 15, no. 2. Taylor & Francis, 1999, pp. 99–112.

[9] A. Kwon, D. Lazar, S. Devadas, and B. Ford, “Riffle,” vol. 2016, no. 2, 2016,
pp. 115–134.

[10] R. A. Haraty, M. Assi, and I. Rahal, “A systematic review of anonymous
communication systems.” 2017, pp. 211–220.

[11] J. Hayes, C. Troncoso, and G. Danezis, “Tasp: Towards anonymity sets that
persist,” in Proceedings of the Workshop on Privacy in the Electronic Society
(WPES 2016), November 2016.

[12] Y. Wang, “Privacy-enhancing technologies,” in Handbook of research on so-
cial and organizational liabilities in information security. IGI Global, 2009,
pp. 203–227.

[13] C. Diaz, S. Seys, J. Claessens, and B. Preneel, “Towards measuring anonymity,”
in International Workshop on Privacy Enhancing Technologies. Springer,
2002, pp. 54–68.

[14] S. Oya, C. Troncoso, and F. Pérez-González, “Do dummies pay off? limits of
dummy traffic protection in anonymous communications,” in International
Symposium on Privacy Enhancing Technologies Symposium. Springer,
2014, pp. 204–223.

[15] P. Syverson, “Why I’m not an entropist,” in Proceedings of Security Proto-
cols XVII: 17th International Workshop, April 2009, Revised Selected Papers,
B. Christianson, J. A. Malcolm, V. Matyáš, and M. Roe, Eds. Springer-
Verlag, LNCS 7028, 2013, pp. 231–239.

[16] S. J. Murdoch, “Quantifying and measuring anonymity,” in Data Privacy
Management and Autonomous Spontaneous Security. Springer, 2013, pp.
3–13.

[17] G. Tóth, Z. Hornák, and F. Vajda, “Measuring anonymity revisited,” in Pro-
ceedings of the Ninth Nordic Workshop on Secure IT Systems. Citeseer,
2004, pp. 85–90.

[18] C. Kuhn, M. Beck, S. Schiffner, E. Jorswieck, and T. Strufe, “On privacy
notions in anonymous communication,” vol. 2019, no. 2, April 2019.

Task Allocation for Vehicular Fog
Computing: A Survey

Mariam Moustafa
mariam.moustafa@aalto.fi

Tutor: Wencan Mao

Abstract

Collaborative driving has been the subject of numerous studies and exper-

imentation throughout the years. Autonomous vehicles require heavy and

time-sensitive processing of collected data in order to make safe decisions.

Vehicular fog computing (VFC) is an emerging paradigm designed to fulfil

time critical visual-based tasks using edge devices. VFC utilizes the re-

sources co-located with the neighboring base stations and cars in order ex-

ecute the required processing tasks. A VFC network must reliably allocate

tasks in order to guarantee the efficient use of available resources. This pa-

per reviews different task allocation techniques, compares how those tech-

niques handle the dynamic VFC environment, and provides an analysis of

the current state of task offloading implementation.

KEYWORDS: fog computing, vehicular fog computing, task allocation

1 Introduction

The emerging concept of autonomous cars has led current and future ve-

hicles to be increasingly aware of their surroundings. This awareness can

be translated into computational-intensive and latency-sensitive tasks,

such as video processing and object recognition [12]. One possible solu-

tion to perform those tasks is to offload them to a cloud server. However,

cloud servers are in remote locations and such time-sensitive computa-

tions cannot afford the latency of data processing in such locations. In

order to avoid this delay, the notion of fog computing was proposed [14].

The idea behind the fog computing paradigm is to allocate computing re-

sources closer to the end devices that require data processing. Therefore,

fog computing solved the problem of round-trip delays cause by communi-

cating with a cloud server [8]. Researchers took this concept a step further

and proposed Vehicular Fog Computing (VFC). VFC is an extension of the

edge computing paradigm where vehicles can act as fog nodes. It is envi-

sioned because the technological advancements of cars will lead to compu-

tational resources that might be under-utilized [11]. The VFC paradigm

can utilize these potential idle resources by including vehicles as part of

the fog resources in the network [8], [6]. Therefore, this paradigm can

reduce the idle state of resources. Furthermore, it is better suited for

the demands required by smart and context-aware vehicles because data-

intensive tasks can be offloaded to either stationary or mobile fog nodes

[14]. The flexibility of mobile fog nodes would also increase the geograph-

ical area of serving cars in need of data computation as the nodes are now

moving closer to the consumers [8].

While VFC leverages the under-utilized resources in vehicles by adding

the support of mobile fog devices, critical challenges emerged [11]. The

flexibility and mobility provided by a VFC network can lead to synchro-

nization problems, such as communication loss. One of the other major

open issues of VFC is task allocation. Task allocation is the process of

assigning tasks to fog nodes, whether mobile or stationary. During this

process, factors such as available resources, energy consumption, location

of vehicles, the degree of quality loss and time-sensitivity need to be taken

into consideration [8], [9], [14]. These factors affect not only the individ-

ual performance of task offloading but also the overall performance of the

VFC resource provisioning. There are several optimization schemes and

architecture implementations that try to perform task allocation while

considering some of the aforementioned factors. Modern research has

investigated task allocation using different methods, including particle

swarm optimization [14], reinforcement learning [6], and Markov chains

[12].

This paper aims to review and compare some of the latest approaches

proposed for task allocation in VFC. The rest of the paper is organized as

follows. Section 3 explains the various methods proposed for task alloca-

tion in VFC. Section 4 compares and analyzes the different approaches of

related papers. A discussion of existing issues and future direction is ex-

plored in Section 5. Finally, Section 6 provides some concluding remarks

and insights on the topic.

2 Background

The principle of VFC was established because vehicles are evolving to

posses powerful computing capabilities that enables them to perform com-

plex data processing [7]. Therefore, vehicles can now be viewed as possi-

ble resource providers as opposed to just resource consumers [5]. Figure 1

demonstrates the common architecture of a VFC network. The architec-

ture typically consists of two kinds of devices that perform data process-

ing in the edge. Those two kinds are the immobile devices, such as Road

Side Units (RSUs) and base stations, and mobile devices, such as cars and

busses. Moreover, cloud servers are used in computation-intensive tasks

that are not time-critical [2]. This architecture is flexible enough to allow

Figure 1. VFC network architecture (Image by Mariam Moustafa 2022)

different kinds of devices to communicate with each other in order to ef-

ficiently utilize all resources in this network. Figure 1 illustrates three

different types of communication in a VFC network:

1. Vehicle-to-Vehicle (V2V) communication between two vehicles where

one is a resource consumer and the other is a resource provider.

2. Vehicle-to-Infrastructure (V2I) communication between a vehicle and

a stationary device. This kind of communication is done either for re-

source provisioning when a vehicle subscribes itself to the network or

for resource consumption when a vehicle needs to have a time critical

task executed.

3. Inter-roadside communication between two immobile devices with the

goal to share information about current devices and tasks in the net-

work.

However, the flexibility of this network resulted in a task allocation chal-

lenge. In other words, finding an efficient use and distribution of the net-

work resources became an essential problem in need of a solution. The

following section will present the different approaches researchers inves-

tigated to perform efficient and reliable task allocation.

3 Related Work

3.1 Binary Particle Swarm based Optimization

Zhu et al. [14] investigated task allocation in VFC as an optimization

problem between the quality loss and latency. The architecture includes

a coordinator called the zone head, which knows all the capabilities of

devices in the network, their location, and their speed and assigns tasks

accordingly. The zone head is able to assign tasks to nodes by utilizing a

heuristic algorithm known as Binary Particle Swarm based Optimization

(BPSO). The algorithm creates a set of particles where each particle is

a vector. The particle maps each task to a fog node and determines the

quality that this fog node is able to process the task with. Then, the

algorithm runs for a determined number of times trying to minimize the

quality loss for all tasks while decreasing latency. The particle that is

able to balance between the quality loss and latency the most is used as

the mapping.

Optimization

Components
Approach in [14] Approach in [1]

Objective
minimize the maximum

service latency and total

quality loss

maximize reliability of tasks

Inputs

the maximum service

latency and the set of

quality loss of

results (QLR) levels

transmission rate between

edge node and the RSU,

data size, CPU cycles

per task,

and computation time

Constraints
quality loss,

latency and vehicle capacity
latency

Decision variables
task assignment decisions

and their corresponding

QLR selections

position and velocity vectors

representing how optimal is

the current task allocation

Table 1. Summary of optimization techniques for task offloading in VFC

3.2 Fault-tolerant Particle Swarm Optimization

Hou et al. [1] utilized the concept of software defined networks (SDN).

SDNs contain global information of the domain and are able to orchestrate

the edge computing resources. Hou et al. [1] also introduced a heuristic

algorithm called Fault tolerant Particle Swarm Optimization for Maxi-

mizing Reliability (FPSO-MR). The algorithm provides several solutions,

represented as vectors, for optimizing task allocation. The algorithm ad-

justs these vectors iteratively in order to represent the optimal solution.

3.3 Summary of Optimization Techniques

Both approaches in sections 3.1 and 3.2 formulate task allocation as an

optimization problem to be solved. An optimization problem is composed

of an objective, inputs, constraints and decision variables. A decision vari-

able refers to the values an optimization problem finds that satisfy the

given constraints. In VFC, it represents possible task assignments [3].

Table 1 summarizes those key aspects of the optimization problems dis-

cussed in the previous sections.

3.4 Markov Chains

Zhu et al. [12] approached task allocation from a different perspective.

Constant communication with a central node is not feasible due to the

high mobility of vehicles. Therefore, distributed task offloading was used

such that client vehicles perform task offloading by themselves. The au-

thors define the workload of a fog node as the current number of neighbor-

ing clients. This number changes according to a particular time bucket.

The fog nodes translate those workloads and time buckets into a proba-

bility transition matrix that describes the transition of the Markov chain.

In other words, it describes how the workload will change from one time

bucket to another based on probabilities. The client then requests from

nodes that are one-hop away this matrix and decides which node can best

handle the tasks this client needs.

3.5 Deep Q-Networks

Similar to the approach in [12], Zhu et al. [13] also modelled task al-

location as a Markov decision process. The aim in [13] is to maximize

the quality of information (QoI) while also minimizing the data process-

ing latency. The authors proposed converting commercial vehicles, such

as busses, to Vehicular Fog Nodes (VFNs) which are equipped with the

necessary devices to perform required computations. Based on this as-

sumption, Zhu et al. [13] utilize Deep Q-Networks (DQNs) to solve the

optimization problem of increasing QoI and decreasing latency. An agent

running a DQN is able to adapt and learn from previously seen workload

patterns in VFNs.

3.6 Deep Reinforcement Learning

In [6], Shi et al. proposed using deep reinforcement learning for task

offloading. The approach focused on incentivisation techniques to moti-

vate cars for sharing their idle resources while taking into consideration

the priority of tasks and the availability of computing devices. Shi et

al. used a deep reinforcement learning (DRL) algorithm known as soft

actor-critic (SAC), which is more efficient in solving problems with high-

dimensional action space than DQN. In other words, SAC allocates task

more efficiently under different traffic densities. The algorithm works

by maximizing the reward and the entropy of policy to offload tasks in a

robust and efficient manner. The entropy of policy represents how infor-

mative is the choice of task allocation.

RL

Components
Approach in [12] Approach in [6]

Agent

a DQN agent in zone head

that assigns tasks to VFNs

and selects the data collection

rate

- an agent in base station that

determines the fog node and

corresponding unit service price

- a critic is implemented for

policy evaluation

State

geographical information,

camera configuration (client)

and number of neighboring

client vehicles (fog node)

wireless link between client and fog

node, remaining computing resou-

ources, data size and task utility

Action

a pair containing the fog

node the task is assigned

to and the frame rate the

node will use in processing

choosing a service vehicle for each

task and determining the correspo-

nding price

Reward
weighted difference between

the number of pixels a node

processed and task duration

directly proportional to the utility

of the assigned task

Table 2. Summary of RL for task offloading in VFC

3.7 Summary of Reinforcement Learning Techniques

Sections 3.5 and 3.6 utilize variants of reinforcement learning (RL) in

order to perform task offloading. Reinforcement learning rewards a task

assignment based on the suitability of the allocation. The task allocation

problem can be formulated as a markov decision process (MDP) [4]. The

components of an MDP include agent, state, action, and reward. Table 2

summarizes how the papers utilizing RL defined these components.

3.8 Matching-learning

Zhou et al. [10] represented the actions needed in VFC networks as a

two-stage framework. The first stage is recruiting vehicles with idle re-

sources to act as a fog server, while the second stage is allocating tasks

to those recruited devices using a matching algorithm. Vehicles running

the matching algorithm first orders the fog servers by their preference,

which is inversely proportional to task offloading delay. The vehicle then

requests a match from the top candidate on the list. If this candidate has

only one request, then the vehicle’s tasks are allocated to the candidate.

Otherwise, if the fog server receives multiple requests, it raises its costs

and the vehicles repeat the ordering step again.

4 A comparison of task allocation techniques

Several factors have to be considered when implementing task allocation

techniques in VFC networks. One factor is the mobility of VFNs. A task

allocation mechanism should anticipate and react to a fog node leaving

the network. Hence, the algorithm should consider the remaining time

of the fog node in the network and assign tasks that can be completed

within this time. The priority of a task is also an important factor, it is es-

sential to serve tasks that require immediate responses first as failure to

accomplish these tasks in a timely matter might impact the road. Another

factor is the quality of the result of an offloaded task. A task allocation

algorithm should also be able to determine the number of tasks it can of-

fload in a given time window as well as handle tasks with variable time

lengths. This section will compare how the different approaches discussed

in Section 3 consider these factors.

4.1 Mobility

Several factors affect how long a vehicular fog node remains in the net-

work, including speed, traffic congestion, and traffic signals. These factors

are directly correlated to how long a fog node can provide a service. The

controller responsible for task allocation should estimate the task dura-

tion and how long the vehicle remains within the communication range of

other users.

Zhu et al. [12] created a distributed task allocation scheme to accom-

modate the high mobility of vehicles. Instead of having a central node

assigning the tasks, each client vehicle offloads its tasks by itself. A client

vehicle broadcasts a probe message to surrounding vehicular fog nodes

that are one-hop away and gets the capabilities of those vehicles as a re-

sponse. Afterwards, the client vehicle chooses the most suitable fog node.

If the quality of the connection between two vehicles decreases to a cer-

tain threshold, the vehicular fog node notifies the client vehicle to stop

offloading tasks and the connection between those two vehicles will stop

after finishing any tasks already offloaded. This implementation is able

to gracefully end the connection between moving cars and guarantees the

completion of allocated tasks.

Zhu et al. [14] implement a more reactive approach. The zone head in

the network is triggered whenever a service interruption occurs because of

moving vehicles. The zone head assigns another fog node the interrupted

Paper Approach

[12]
a distributed task allocation approach where clients offload

tasks to fog nodes independently

[14] and [13]
zone head is triggered by service interruption caused by

moving vehicles

[6]
evaluation of vehicle speed, traffic density and distance

before task assignment

[1]
transfer control from one RSU to another according to

vehicle proximity

Table 3. Comparison of mobility-handling techniques

task for execution. Similar to [14], Zhu et al. [13] also respond to the

service interruption in the same way. Furthermore, the timing, location

and overall state of the network at the time of interruption is saved and

used by the Q-learning algorithm to learn task allocation strategies.

Shi et al. [6] consider the mobility of VFNs before assigning tasks. The

speed of vehicles, traffic density and distance between client and fog node

are evaluated before allocating any tasks. This approach would able to

provide an estimate of how long the two parties will be within each other’s

range. This estimate would help the model assign a more suitable task.

Hou et al. [1] provide a VFC architecture that relies on V2I communica-

tion. RSUs control and communicate with clients in order to mitigate and

avoid dynamic changes in the network caused by high mobility. The de-

signed algorithm measures the distance between the available RSUs and

the mobile client at consecutive time intervals and determine the best

RSU that a client can be assigned to. Table 3 summarizes how each paper

handles mobility.

4.2 Quality of information and quality of service

Most investigated research papers associate the quality of information of

task results with the quality of service (QoS). One aspect of QoI is the

image or video quality used in processing while QoS is concerned with

the latency or time it takes to perform a task. These two concepts af-

fect each other because in order to process high quality frames for better

results, more communication time, resources and processing is required.

These requirements increases the overall latency of the network. Most

approaches involve formulating the trade-offs between QoI and latency

as an optimization problem.

Paper Approach

[12]
formulate task offloading as a dynamic programming problem

that rewards fast and accurate task results

[14]
optimization problem that minimizes both variables

latency and total quality loss.

[13]
reward system that decreases as processing latency

increases and increases as the quality of information increases

[6] RL to maximize latency-awareness in fog devices

[1] stationary RSUs to avoid latency from mobile devices

Table 4. Comparison of mobility-handling techniques

Zhu et al. [12] assume that quality of information is directly propor-

tional to image resolution. Their task offloading scheme is able to reduce

service latency while increasing the QoI levels their scheme is able to sup-

port. Task offloading is formulated as a dynamic programming problem

that increases the rewards of the network in each time bucket depend-

ing on how well a device was able to balance between the quality of the

video and the time it takes to process the video. On the other hand, Zhu

and Tao et al. [14] formulate the problem as a mathematical equation

involving the two variables latency and total quality loss. Their goal is to

minimize both the latency and quality loss. Binary particle swarm opti-

mization algorithm is used to solve the equation.

In order to balance between QoI and latency, Zhu et al. [13] created a re-

ward system that decreases as processing latency increases and increases

as the quality of information increases. The goal of the architecture is to

maximize the overall system reward.

Other implementations only consider latency. For example, Shi et al. [6]

use reinforcement learning to in order to maximize latency-awareness in

fog devices, while Hou et al. [1] propose using stationary RSUs in order to

avoid any additional latency. Table 4 provides a comparison of the various

task offloading techniques used to increase QoI and decrease latency.

4.3 Varying task count and duration

A VFC task allocation method should take into account the uncertainty of

the number of tasks in the network at any given time. An important point

to note is how many tasks can a VFC task allocation algorithm process at

any given time without affecting the network. Another factor to note in a

Paper Assumptions

[12] all the tasks are the same and have the same duration

[14]
tasks are either video processing or object recognition

and have the same duration

[6]
networks have varying number of tasks but task

processing occurs only in fixed timeslots

[10] fixed number of tasks with the same duration

Table 5. Assumptions about task variability and duration

task allocation implementation is whether the implementation is adjusted

for tasks with varying processing times.

The implementation of Zhu et al. [12] assumes that the the comput-

ing tasks are homogeneous. In other words, the implementation does not

support different kinds of tasks. The authors also limited the number of

tasks processed simultaneously in the network to a fixed number. Zhu

and Tao et al. [14] assume two kinds of different tasks (video stream-

ing and real-time object recognition) and the tasks are run with different

qualities. The method also assumes that there are numerous vehicles that

can generate a various number of tasks with a given threshold. Such an

implementation is robust against differing number of tasks. However, the

authors assume that each task lasts for a fixed length of time and hence

the implementation is not adjusted for tasks with different durations. Shi

et al. [6] assume a network with a variable range of vehicles per kilo-

meter. The number of vehicles are proportional to the number of tasks.

However, their implementation assumes processing a task in a fixed time

slot. Hence, if a task is completed before its assigned time slot ends, the

fog node carrying out the task will remain idle for the remainder of the

time slot. Zhou et al. [10] performed a matching between a fixed number

of vehicles and servers. All tasks are assumed to have the same duration,

thus the time of each task is not incorporated in the algorithm. Table

5 explains how these approaches handle the uncertain number of tasks

with different duration.

5 Analysis and Discussion

While most of the discussed papers use real-world data for simulating

various scenarios, there still lacks a real-world implementation of VFC.

Despite of this, simulations provide the environment with flexibility to

create different architectures and varying network traffic in order to eval-

uate the effectiveness of the proposed task allocation solutions.

In addition, most of the investigated task allocation approaches oper-

ated with the underlying assumption that tasks are homogeneous. While

this assumption is enough to provide a proof of concept, different kinds of

tasks are required when implementing a visual-based autonomous driv-

ing car. These tasks include video processing, object recognition, and

mathematical calculations. Moreover, the heterogeneity of computing re-

sources must be studied in a task allocation implementation. In other

words, different tasks require different hardware resources. An RL model

would require graphics processing units (GPUs), while dynamic program-

ming or matching approaches would rely more on CPUs. Therefore, an

implementation should consider heterogeneous tasks that require differ-

ent hardware capabilities.

Another important area of study in task offloading is error handling.

Task allocation techniques should proactively handle various types of er-

rors in the network, including network errors, task failure or resource

overload. A robust system should proactively handle such failures by up-

dating the resource allocation plan in order to prevent catastrophic con-

sequences of not processing critical or safety-related tasks on time.

6 Conclusion

This paper provides a brief background on vehicular fog computing. In

addition, it summarizes several task allocation techniques and highlights

how those techniques try to optimize task offloading assignments. Those

approaches include formulating task allocation as an optimization prob-

lem, creating a reinforcement learning algorithm that rewards a task

assignment and running matching algorithms that assign tasks based

on preferences. Furthermore, the paper provides a comparison between

those various approaches. Several aspects of a VFC network are consid-

ered in the comparison, including the dynamic nature of the VFC envi-

ronment, quality of information, latency and uncertainty of task count

and duration. Finally, the paper touches some of the open issues in task

allocation in VFC.

References

[1] Xiangwang Hou, Zhiyuan Ren, Jingjing Wang, Wenchi Cheng, Yong Ren,
Kwang-Cheng Chen, and Hailin Zhang. Reliable computation offloading
for edge-computing-enabled software-defined IoV. IEEE Internet of Things
Journal, 7(8):7097–7111, 2020.

[2] Cheng Huang, Rongxing Lu, and Kim-Kwang Raymond Choo. Vehicular
fog computing: Architecture, use case, and security and forensic challenges.
IEEE Communications Magazine, 55(11):105–111, 2017.

[3] Seung-Seob Lee and Sukyoung Lee. Resource allocation for vehicular fog
computing using reinforcement learning combined with heuristic informa-
tion. IEEE Internet of Things Journal, 7(10):10450–10464, 2020.

[4] Zhaolong Ning, Peiran Dong, Xiaojie Wang, Lei Guo, Joel J. P. C. Rodrigues,
Xiangjie Kong, Jun Huang, and Ricky Y. K. Kwok. Deep reinforcement
learning for intelligent internet of vehicles: An energy-efficient computa-
tional offloading scheme. IEEE Transactions on Cognitive Communications
and Networking, 5(4):1060–1072, 2019.

[5] Zhaolong Ning, Jun Huang, and Xiaojie Wang. Vehicular fog computing:
Enabling real-time traffic management for smart cities. IEEE Wireless
Communications, 26(1):87–93, 2019.

[6] Jinming Shi, Jun Du, Jingjing Wang, Jian Wang, and Jian Yuan. Priority-
aware task offloading in vehicular fog computing based on deep reinforce-
ment learning. IEEE Transactions on Vehicular Technology, 69(12):16067–
16081, 2020.

[7] Xuefeng Xiao, Xueshi Hou, Xinlei Chen, Chenhao Liu, and Yong Li. Quan-
titative analysis for capabilities of vehicular fog computing. Information
Sciences, 501:742–760, 2019.

[8] Jindou Xie, Yunjian Jia, Zhengchuan Chen, Zhaojun Nan, and Liang Liang.
Efficient task completion for parallel offloading in vehicular fog computing.
China Communications, 16(11):42–55, 2019.

[9] Rahul Yadav, Weizhe Zhang, Omprakash Kaiwartya, Houbing Song, and
Shui Yu. Energy-latency tradeoff for dynamic computation offloading in
vehicular fog computing. IEEE Transactions on Vehicular Technology,
69(12):14198–14211, 2020.

[10] Zhenyu Zhou, Haijun Liao, Xiaoyan Wang, Shahid Mumtaz, and Jonathan
Rodriguez. When vehicular fog computing meets autonomous driving: Com-
putational resource management and task offloading. IEEE Network, 34(6):70–
76, 2020.

[11] Zhenyu Zhou, Pengju Liu, Junhao Feng, Yan Zhang, Shahid Mumtaz, and
Jonathan Rodriguez. Computation resource allocation and task assignment
optimization in vehicular fog computing: A contract-matching approach.
IEEE Transactions on Vehicular Technology, 68(4):3113–3125, 2019.

[12] Chao Zhu, Yi-Han Chiang, Abbas Mehrabi, Yu Xiao, Antti Ylä-Jääski, and
Yusheng Ji. Chameleon: Latency and resolution aware task offloading for
visual-based assisted driving. IEEE Transactions on Vehicular Technology,
68(9):9038–9048, 2019.

[13] Chao Zhu, Yi-Han Chiang, Yu Xiao, and Yusheng Ji. FlexSensing: A QoI
and latency-aware task allocation scheme for vehicle-based visual crowd-
sourcing via deep Q-Network. IEEE Internet of Things Journal, 8(9):7625–
7637, 2021.

[14] Chao Zhu, Jin Tao, Giancarlo Pastor, Yu Xiao, Yusheng Ji, Quan Zhou,
Yong Li, and Antti Ylä-Jääski. Folo: Latency and quality optimized task
allocation in vehicular fog computing. IEEE Internet of Things Journal,
6(3):4150–4161, 2019.

Benefits and Drawbacks of Using
Microservices in Big Data Platform
Applications

Buket Karakas
buket.karakas@aalto.fi

Tutor: Antti Ylä-Jääski

Abstract

An architecture of microservices provides independent components that

contribute to a business model. It is scalable, highly maintainable and

loosely coupled. An architecture utilizing microservices is intended to solve

universal or general problems. We will explore a different type of archi-

tecture to better understand microservice architecture, which is monolithic

architecture. Often, monolithic architectures consist of a single system pro-

viding needed functionality and deployed as a whole. This paper discusses

and analyzes the benefits and disadvantages of using a microservices ar-

chitecture for developing a big data application. Microservices are used

in various sectors. One important usage area of microservice architecture

discussed in this article is smart city projects. The application for city

transportation system is developed using a microservice-based architec-

ture, which gave satisfactory results. Another area that is analyzed in this

paper is machine learning algorithms used in big data applications. An-

other microservice-based architecture is proposed with multiple layers to

create most efficient structure. Considering two usecases and overall char-

acteristics of both architectures, the choice to use microservices should be

based on the detailed project structure. Microservices can be an excellent

choice depending on the complexity and requirements of the project.

KEYWORDS: Microservices, Monolithic, Big Data

1 Introduction

The data produced by millions of people every day is one of the most signif-

icant assets in a business. Currently, such large amounts of data that can

not be handled with simple relational databases and technologies is called

Big Data [10]. Big Data has a major impact on organizations because it

provides meaningful information about user behaviors [9]. However, it is

not easy to process this data and use it effectively in the decision-making

process [10]. This challenge is mainly caused by the five characteristics of

Big Data [3]. The first is the volume of the data. The increasing amount of

data is a major challenge for Big Data applications. The second is the ve-

locity of the data, which means how frequently the data is arriving to the

system. In Big Data applications, such as IoT systems, this can be a major

problem. The third characteristic is the diversity of the data. Incoming

data can be different from each other, and they can also be unstructured.

The fourth characteristic is the authenticity of the data. It needs to be

protected at each step of structuring and processing. The last property is

the value property. It focuses on the effectiveness of the data.

These characteristics bring different challenges with them. Convention-

ally, these challenges are solved by monolithic software solutions where

the application is tightly coupled [10]. The problem with using this kind

of architecture is that it becomes laborious to maintain with the large

size of the application. Therefore, there is a need for a scalable solution to

overcome the obstacles of the traditional way of designing.

One of the possible solutions is to use microservices architecture. Mi-

croservices are autonomous services that construct a more complex struc-

ture to solve different kinds of problems [4]. The emphasis is on modu-

larity for this architecture type. Therefore, it provides a more agile and

scalable solution. However, using microservices comes with a number of

disadvantages, including refactoring the services and granularity.

This paper discusses and analyzes the benefits and drawbacks to using

microservices architecture in the context of developing a big data applica-

tion.

This paper is organized as follows. Section 2 defines monolith architec-

ture and microservices architecture. Section 3 presents two use cases of

microservices architectures. Section 4 discusses the usage of microser-

vices in big data applications. Section 5 gives concluding remarks.

2 Comparison of Monolithic and Microservices Architectures

This section discusses the advantages and disadvantages of a microser-

vices architecture relative to the monolithic architecture in general. An

overview of this comparison can be also seen in Figure 4.

2.1 Monolithic Architectures

In monolithic architectures, the entire system is deployed as a single unit

that provides all of the required functionality [7]. The single-process ar-

chitecture is one type of this architecture. In this kind of architecture, the

code is deployed as a single process. This is one of the basic monolithic

systems that can be seen in Figure. 1.

Figure 1. Single-Process
Monolith [7] Figure 2. Modular Monolith[7]

Another type of monolithic system is the modular monolith [7]. In this

architectural type, the application contains multiple modules that solve

separate problems. Although the system has different modules, all mod-

ules use the same database, which can be seen in Figure 2.

The final monolithic architecture type is the distributed monolith where

also databases differ according to different modules [7], illustrated in Fig-

ure 3. While it is similar to microservices, all modules are still deployed

together.

Monolithic architecture has benefits for a small group of developers and

a small size project, since it allows for simplicity, fewer configuration is-

sues, and simplified design [7]. However, In terms of Big Data applica-

tions, this architecture is insufficient to develop an efficient solution.

Figure 3. Distributed Monolith [7]

2.2 Microservices Architecture

Microservices, which support business models, are composed of indepen-

dent components [2]. The foundation of microservices consist of different

functional services. These services compose a more complex system. The

independent services are considered as black-box services since their in-

ternal implementation is hidden and irrelevant for the people who want

to use them. Therefore, most of them have their own database [6].

The microservices architecture can be clarified through a few concepts.

The first concept is independent releasability [7]. A change in mindset

is required when developing an application for independent releasability.

There should be explicit design and loose coupling of all services. This

ensures that when a change is required, only services that are directly

related to that change will be deployed. By doing this saves time and

energy associated with deploying an entire application. The second con-

cept is the size of each microservice. This is highly debatable among the

researchers. Newman [7] believes that the number of microservices that

the system can handle and the boundaries around certain microservices

are more important than their size. The key is to ensure a loosely coupled

architecture and to hide information between microservices. The final

concept is the flexibility. The microservice architecture allows for differ-

ent technologies and programming languages to be used for each service

without affecting their relationship and the overall application.

There are advantages and disadvantages to these concepts. One of the

most obvious advantage of using microservices is technology heterogene-

ity [7]. Applications can be developed using a variety of technologies de-

pending on their performance needs. An example of using different tech-

Figure 4. Microservices vs Monolithic Architecture [5]

nologies can be seen in Figure 5. This heterogeneity comes with overhead,

which should not be ignored.

Figure 5. Using different technologies [7]

Another important advantage of using microservices is its resilience to-

wards system fails [7]. In monolithic systems, whole system fails if a ser-

vice fails. However, in microservices, system can continue to work with

reducing overall functionality if a service fails. This resilience brings also

a downside which is configuring and maintaining distributed systems. It

is a challenging task to maintain all services since network problems are

likely to occur.

In addition to the resilience and heterogeneity, microservices provide a

major scalability advantage. In monolithic systems, whole system needs

to be scaled when it is required. In contrast, microservices allow only to

scale the services that needs to be scaled instead of the entire system.

3 Usecases of Microservices in Big Data Applications

Microservices are used increasingly in big data applications for various

reasons. The following subsections present a microservices architecture

for smart city systems and a microservices architecture for machine learn-

ing and data analysis processes.

3.1 Microservice Based Architecture for Smart City Systems

Currently, intelligent transportation systems (ITSs) are a major part of

city planning and development [1]. These systems need to increase the

service performance in order to satisfy all the parties involved in the

project. The data collected from the transportation system presents a

number of challenges since it is huge and inconsistent. The 5 major chal-

lenges are:

1. Fluctuating data structure

2. Changing structure of the output corresponding to the different needs

3. Volume of the data and handling it with an efficient algorithm

4. Post-processing the data for making it more readable

5. Producing insights from the data.

Asaithambi [1] proposes a Microservices-Oriented Big Data Architecture

(MOBDA) that makes it easier to create an effective platform for smart

transportation and analytics. This platform is designed to address dif-

ferent requirements of ITS. These requirements split into two major cate-

gories: functional microservice performance requirements and non-functional

performance requirements. Functional microservice performance require-

ments include storing big data in a secure platform, real-time data re-

porting, data visualization, predictive modelling for transport services,

and creating API for consuming data to produce useful insights. Non-

functional requirements include reliability of public transportation sys-

tem, availability of seats on public transportation, congestion on public

roads, queuing information for public transportation, monitoring public

transport incentives, predicting the demand, and information on traffic

enforcement. MOBDA fulfills these requirements using a hybrid archi-

tecture and having multiple layers. It has a distributed broker backend

that works as a middleware between different layers, which can be seen

in Figure 6. In this architecture, the microservices are not structured as

the smallest possible unit. Instead, they are developed in the right size

in order to enhance processes. As a result of this, microservices appli-

cations both in real time stream processing and batch processing layer,

work together closely with the other components in the layer. The use of

microservices enabled non-real time services to be easily deployable and

loosely coupled. In addition, overall architecture is more scalable and

adaptable.

Figure 6. Overview of MOBDA [1]

This microservice-based architecture was tested on the data that is ob-

tained from Singapore transportation system [1]. The use of MOBDA

on this dataset resulted a successful computation of bus service headway

metrics in terms of a reporting service in ITS.

3.2 Machine Learning and Data Analysis in Big Data
Applications using Microservices Architecture

Use of machine learning algorithms carries a great importance in the con-

text of big data applications. This usage presents great challenges. There-

fore, Shahoud [8] proposes an architecture using microservices and web

technologies to address these challenges. This framework consists of three

layers, which are UI layer, service layer and persistence and processing

layer.

UI layer is responsible for jobs execution of UI, model management, data

management and cluster configuration [8]. It has different applications

for each UI. The service layer is utilizing microservices to provide differ-

ent functionalities which are scalable and independently deployable. It

has two services, which are data management service and job manage-

ment service. There is one responsibility per service and each service

is independent. The persistence and processing layer is providing data

storage and modelling facilities. The overall architecture can be seen in

Figure 7.

Figure 7. Overview of ML architecture in Big Data Applications [8]

The use of two microservices in the service layer seems to make overall

architecture work more efficiently [8]. The evaluation of the framework

demonstrates high performance and low overhead in the model. Further-

more, the architecture has been tested with increasingly large amounts of

data and the results are satisfactory with low overhead, which is critical

for big data applications.

4 Discussion

The use of microservices for big data applications has become increasingly

popular. Analyzing the project structure thoroughly is essential to mak-

ing the right decision. The highly scalable and customizable nature of

microservices makes them an effective way to implement large-scale ap-

plications. However, monolithic architecture is easier to develop in small-

scale applications because of its straightforward structure.

In big data applications, using microservices in computation-heavy lay-

ers is usually the most efficient solution. The layers of big data applica-

tions include data processing, data wrangling, stream analytics, and batch

analytics. The use of microservices means that these layers are indepen-

dent of each other, allowing the application to continue to function when

one service fails. Furthermore, layers can be scaled to suit their needs

without affecting everything at once. As a result, it saves money and

computation power while increasing performance. Utilizing microservices

features allows the application to be more efficient by choosing different

technologies based on the task.

Despite all these advantages, there are also some drawbacks. Due to

the different services provided by the layers, communication is typically

done through a network configuration. Therefore, more work has to be

done. There can be problems within the network as well, and the team

has to be knowledgeable enough to handle these problems effectively. In

addition to that, their security needs to be ensured, since they’re not part

of the same component anymore. Communication between them needs to

be protected.

5 Conclusion

Microservices provide an example of what software systems will look like

in the future. Its scalability, autonomy, and modularity creates an ef-

fective solution to some of the challenges that come with complex soft-

ware systems. This paper examines the use of microservices in big data

applications. The paper illustrates usefulness of microservices with two

examples. The first is in terms of transportation data, while the second

is in machine learning. Both of these data-intensive applications utilize

microservices to increase their performance.

Even though microservices can dramatically improve the performance

of a project, the disadvantages should also be acknowledged, and each

project must be thoroughly understood in order to build an effective archi-

tecture. Big data applications benefit from microservices more than mono-

lithic architectures. In relation to big data applications and microservices,

more research can be conducted since there are not many papers on the

topic at present.

References

[1] Suriya Priya R. Asaithambi, Ramanathan Venkatraman, and Sitalakshmi
Venkatraman. Mobda: Microservice-oriented big data architecture for
smart city transport systems. Big Data and Cognitive Computing, 2020.

[2] Antonio Bucchiarone, Nicola Dragoni, Schahram Dustdar, Patricia Lago,
Manuel Mazzara, Victor Rivera, and Andrey Sadovykh. Microservices Sci-
ence and Engineering. Springer Nature Switzerland AG, 2020.

[3] Andreas Freymann, Florian Maier, Kristian Schaefer, and Tom Böhnel.
Tackling the Six Fundamental Challenges of Big Data in Research Projects
by Utilizing a Scalable and Modular Architecture. In Proceedings of the 5th
International Conference on Internet of Things, Big Data and Security, page
249–256, Prague, Czech Republic, 2020.

[4] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James Lewis, and KSte-
fan Tilkov. Microservices: The journey so far and challenges ahead. IEEE
SOFTWARE, 35(3):24 – 35, 2018.

[5] AVI Networks. Microservices definition.

[6] Sam Newman. Building Microservices. O’Reilly Media, Inc., 2015.

[7] Sam Newman. What Are Microservices? O’Reilly Media, Inc., 2 edition,
2020.

[8] Shadi Shahoud, Sonja Gunnarsdottir, Hatem Khalloof, Clemens Duepmeier,
and Veit Hagenmeyer. Facilitating and managing machine learning and
data analysis tasks in big data environments using web and microservice
technologies. In MEDES ’19, page 80–87, Limassol, Cyprus, 2019.

[9] Neelam Singh, Devesh Pratap Singh, Bhasker Pant, and Umesh Kumar Ti-
wari. µbigmsa-microservice-based model for big data knowledge discovery:
Thinking beyond the monoliths. Wireless Personal Communications, 2020.

[10] Daniel Staegemann, Matthias Volk, Aamir Shakir, Erik Lautenschlager,
and Klaus Turowski. Examining the interplay between big data and mi-
croservices – a bibliometric review. Complex Systems Informatics and Mod-
eling Quarterly (CSIMQ), 27(157):87 – 118, 2021.

Assessment of Security Challenges
Encountered in Microservice
Architecture Compared to Traditional
Monolithic Architecture

Bojana Bakić
bojana.bakic@aalto.fi

Tutor: Antti Ylä-Jääski

Abstract

A paradigm that has emerged in the last decade and generated consider-

able commotion in the domain of software design is microservice architec-

ture. This design principle is based on service-oriented architecture (SOA)

that treats services as components of the system rather than the final out-

put. It is recognized as a step away from the traditional monolithic archi-

tecture due to the modularity of source files that make it more scalable. Al-

though it is a state-of-the-art innovation, the implementation of microser-

vice architecture bears a handful of security risks that will be evaluated in

this seminar paper and compared to the monolithic architecture.

KEYWORDS: software architecture, monolith, microservices, security

1 Introduction

Software architecture dictates the way applications are written and struc-

tured. At present, most applications follow the design principles of mono-

lithic software architecture, with the standard approach providing an all-

in-one solution available on a single platform of choice, proving trustwor-

thy in terms of initial development, tests and deployment [6]. However,

in cases when an application needs to be modified and scaled, developers

may run into obstacles due to its complexity. This is where microservices

can make a difference as they provide a more lightweight, adaptable so-

lution consisting of multiple independent services [15]. Each service has

its own business objective, database, and sometimes it can also employ

a different programming language. What allows this distributed system

to act as a whole is services communicating among themselves over the

network and working towards the same goal. Consequently, these smaller

units facilitate faster development.

Recently, the information security field has simultaneously advanced

and gained significant public attention due to numerous security breaches.

Unfortunately, the consequences of these attacks have become greater by

the day prompting a substantial demand for secure output. New technolo-

gies and products are closely inspected for flaws and microservices have

not escaped this scrutiny.

This paper examines both the pervasive monolithic architecture and its

successor, microservice architecture. Security aspects, such as authenti-

cation, authorization, data protection, defense against cyber attacks and

many more are analyzed and correlated between these software design

concepts.

The rest of the paper is organized as follows. Section 2 considers mono-

lithic architecture, its benefits, and drawbacks. In Section 3, similarly,

the paper closely evaluates microservices. Section 4 assesses these frame-

works from a security perspective. Finally, Section 5 contains a conclusion

of the paper.

2 Defining Monolithic Architecture

Traditional settings encountered in the software development life cycle

(SDLC) limit engineers regarding the technologies, platforms, software,

and hardware they select while creating a single application. Such appli-

cations are sophisticated and unified, consisting of four components: user

interface, business logic, data access layer, and a database, as presented

in Figure 1. Hence, it is often referred to as monolith, which Dragoni et

al. [4] define as a program whose components are not modular. Yet, due

to its prevalence, it is still the default and safe choice in software develop-

ment. Debugging and deployment of monoliths is straightforward because

they are contained in one executable directory. When an issue arises, it is

considered to be a single point of failure. Although some might find this

Figure 1. Monolithic Architecture

Source: Adapted from [3].

troublesome, it is in fact easier to discover and manage an error in code if

it comes from a single source.

However, contemporary advancements have challenged the way we con-

ceptualize computer programs. Thereupon, numerous faults in monolithic

architecture have surfaced and prompted a discussion surrounding its ef-

ficiency and adaptability. As applications grow over time and more fea-

tures are added, they become more complex and oftentimes even convo-

luted. This happens because adjustments need to be employed throughout

the entire code base [12]. At this point, it is almost impossible to make a

considerable alteration, for example, change the programming language

or platform for application development. Likewise, teams who maintain

the system expand and face complications as a result of working with the

same files. Under those circumstances, it was inevitable that a new con-

cept should be constituted, and microservices were developed with the

intention to overcome the aforementioned pitfalls.

3 Defining Microservices

In 2011, at a small architectural workshop near Venice, a group of par-

ticipants proposed a term, microservices [10], to describe a software ar-

chitecture pattern. Although the phrase was new, similar architectural

concepts have been present for some time in the field. Most notably, Net-

flix followed an approach labeled as fine-grained service-oriented architec-

ture (SOA). Indeed, microservices are founded on SOA principles. SOA

[13] refers to the segregation of systems into individual services, avail-

able on the network for other modules to use. Due to their resemblance,

microservices are often recognized as a subclass of SOA. However, in a

recent article by IBM [17], a clear distinction is made between these two

approaches. It revolves around the scope: while SOA is concerned with

enterprise scope, microservices are focused on more lightweight architec-

ture concepts encountered in mundane applications.

Microservice architecture [15] decomposes older, monolithic systems into

a suite of small and independent units connected to User Interface (UI),

so-called services, as seen in Figure 2. Each service has a single purpose

and communicates with other services through network calls, most often

employing the HTTP protocol. They are loosely coupled, implying the least

possible dependency on each other, which further promotes autonomy and

ease in coordination. When designing a particular service, developers can

opt for the best suited technologies and tools (for example, programming

languages, database solutions and frameworks). Another benefit is the re-

silience of infrastructure since problematic modules can be confined and

mitigated, while the rest of the application continues running smoothly.

Similarly, this approach contributes to scaling efforts [5] in terms of size

and scope, while not hindering efficiency and load balancing.

In spite of all the advantages, microservices are not suitable for every-

Figure 2. Microservices Architecture

Source: Adapted from [3].

one [8]. Obstacles mostly arise from inadequate implementation that can

happen when the size of service is not predetermined, front-end integra-

tion is faulty, infrastructure is not monitored in its entirety, among others.

However, this paper addresses an even greater concern that has captured

the attention of cyber professionals as of recently. Due to the nature of

distributed systems, intrinsic security vulnerabilities in microservices are

omnipresent and are growing by the day.

4 Security Evaluation

With contemporary concepts and further improvements in the field of soft-

ware architecture, unfamiliar threats emerge all the time. Peers are fo-

cused on new features, while applications are becoming vulnerable to at-

tacks coming from all directions. As mentioned previously, some secu-

rity issues are recognized because of SOA and other approaches related

to distributed computing, but more problems were unraveled with recent

implementations of microservices. The following subsections cover differ-

ent aspects of security encountered in the above-mentioned architecture

approaches.

4.1 Authentication and Authorization of Users

When creating a secure environment for any distributed system, it is of

paramount importance to establish an all-encompassing authentication

and authorization process. Authentication validates someone’s identity,

while authorization refers to a mechanism for verifying whether that per-

son has sufficient privileges to access resources. This is an easy task for

applications following the principles of monolithic architecture [1] that

has a centralized signing-in point. With many pre-existing frameworks

and libraries, creating a login module is rather straightforward.

On the other hand, microservices are more troublesome because users

need to sign into multiple services. An almost universal approach to this

problem is a single sign-on (SSO) solution that would enable the utiliza-

tion of a single user ID for log-in purposes. In particular, frequently used

standards include Security Assertion Markup Language (SAML), OpenID

Connect [1, 15] and Open Authorization (OAuth) [14]. SAML is consid-

ered to be quite perplexing and favored in more centralized systems, while

other protocols have faced difficulties with the lack of identity providers

(i.e., official entities that manage digital identities). Yet, they are still pre-

ferred in the case of public-facing applications. Keeping this in mind, the

decision on protocol selection should be made in line with the application

and its properties.

4.2 Authentication and Authorization of Services

A monolithic approach creates a unified system whose components func-

tion in sync. Contrarily, services encountered in microservice architecture

need to act as a whole. In this ecosystem, they constantly communicate

with each other and there needs to be a mechanism in place for authen-

ticating and authorizing between services themselves. If services are not

repeatedly verified, they are susceptible to a man-in-the-middle (MitM)

attack [18] where the perpetrator intercepts the conversation and imper-

sonates services in both directions. A common way of combating this is by

switching from HyperText Transfer Protocol (HTTP) to Hypertext Trans-

fer Protocol Secure (HTTPS), however, this is does not offer enough protec-

tion [9]. It only contributes to higher security of communication channels

between two hosts that are authenticated through certificates.

Since servers manage their own Secure Sockets Layer (SSL) certificates

[11], there needs to be a procedure in place to regulate the certification of

multiple machines. This can be achieved by employing the existing pro-

tocols used for user authentication and authorization, such as SAML and

OAuth, but this raises the question of credential storage. Some opt for

distributing X.509 identity certificates [15] to services which also appears

to be arduous due to the complexities of certificate management. Another

option includes signing HTTP requests with a unique hash-based mes-

saging code (HMAC). Here, both sides involved in the conversation are

familiar with HMAC and this serves as means for authentication, while

providing an additional layer of protection against MitM attacks. Overall,

it is a concept that is up to the interpretation of developers who imple-

ment it. This includes tackling the topic of allocation of shared secrets

before the communication commences and the type of hash function used

to generate HMAC. Furthermore, API keys have recently gained signifi-

cant traction after being adopted by Google and Facebook. They identify

and authorize the service that is initiating the conversation and are con-

sidered to be unambiguous in terms of implementation and maintenance.

Over time, another threat to authentication was uncovered - the con-

fused deputy problem [18]. This attack can be executed in circumstances

where the perpetrator seizes control of at least one service. Additionally,

the system must be configured not to check the identity of the service is-

suing a call and the adversary is able to dispatch malicious requests to

other services. As a result, communication is being eavesdropped on, and,

sometimes, new messages are implanted and existing ones are altered.

Unfortunately, as of right now, the solution is not clear-cut and develop-

ers must rely on implicit trust between services.

4.3 Data Protection

Although authentication, authorization, and credential management are

the main focus of security studies of microservice systems [16], another

significant vulnerability is observed in so-called data at rest. Data at rest

refers to information that is not actively processed by the system. Of-

tentimes, this data is stored in an unencrypted state and can be easily

exploited by the perpetrators [15].

According to best practices, all data should be encrypted with well-known

and acclaimed encryption schemes such as Advanced Encryption Stan-

dard (AES), Rivest-Shamir-Adleman (RSA) and Triple DES (Data En-

cryption Standard). These encryption methods are frequently tested and

patched and are suitable for nearly all platforms. Since these algorithms

require private keys, developers should also consider how and where these

keys should be stored. Although this may point towards encrypting all

data, that should not be the case because some information can be valu-

able for logging purposes [11] in case of cyber attacks. Hence, this is where

the microservice architecture proves useful since it provides fine-grained

segregation of services that can later be evaluated for further protection

with encryption.

4.4 Defence Mechanisms

What differentiates microservices from the traditional monolithic appli-

cation is the addition of another vulnerable component – network. Mul-

tiple entry points (i.e. IP addresses) can cause traffic overload leading

to all kinds of security issues. Security threats can either emerge inter-

nally (caused by people who have developed or utilized them) or externally

(caused by third parties). If not detected and alleviated in time through

preventative measures, they are mitigated with reactive, defense mecha-

nisms.

A way to implement security from the start is through customized net-

work architecture. Depending on the number of services, their ownership,

and risk level, the network can be segregated into smaller subunits. These

segments are then easier to control and maintain. Due to increased expo-

sure to network threats, it is recommended to implement actively main-

tain a firewall solution [15]. A firewall is a software that provides filtering

of incoming and outgoing traffic. Its policies define the types of network

packets that are allowed to enter the network, considering the details

such as IP address, port and protocol. Then, monitoring solutions collect

activity logs from systems and can be used as both a proactive and reac-

tive measurement. They are specifically useful for controlling distributed

systems since they are able to centralize logs from multiple services in

a single application [2]. Monitoring should be implemented both at the

gateway and service level in order to detect a wider range of possible cy-

ber attacks including injection attack and reuse of the bearer token. Fur-

thermore, intrusion detection systems (IDS) and intrusion prevention sys-

tems (IPS) audit the network and its hosts for malicious activity. In the

case of IPS, it can also mitigate the uncovered threats, thus, providing

another layer of security. These systems are universally acclaimed and

recommended to have. Finally, regardless of other solutions, all applica-

tions and software should be regularly patched and updated. Outdated

systems are highly susceptible to malware and unauthorized intrusions.

Therefore, companies should invest in a comprehensive patch manage-

ment system, implemented over all software and middleware solutions,

ensuring they are up to date at all times.

5 Conclusion and Outlook

Microservices have given a great insight into the future capabilities of

software systems. The notion of scalability allows them to grow by adding

more services and tailoring them to personal needs. However, due to their

novelty, there are many obscure aspects, including the security of this ar-

chitectural approach. A study conducted by Hannousse et al. [7] revealed

that until 2019, there were only 46 available research papers that ex-

amined the security of microservices. Furthermore, it affirmed that these

papers were mostly concerned with threats that emerge internally, in con-

trast to a growing trend of cyber breaches.

This paper tackled aspects of microservices that are the most vulnera-

ble: the process of authentication and authorization of users and services,

protection of data at rest, and defense mechanisms against internal and

external threats. Although most of the hazards are familiar to applica-

tions based on a monolithic architecture, microservice architecture has

generated a variety of new threats owing to features inherited from dis-

tributed systems. With further implementations and expansions of this

concept, security practitioners should expect more and more problems

to arise. To combat this, the proposed proactive and reactive measures

should be widely adopted. Likewise, this field would greatly benefit from

further research efforts focused on providing security to microservice sys-

tems during the initial planning, development, utilization, and mainte-

nance of the system.

References

[1] A. Bánáti, E. Kail, K. Karoczkai, and M. Kozlovszky. Authentication and au-
thorization orchestrator for microservice-based software architectures. 2018.

[2] R. Chandramouli. Security Strategies for Microservices-based Application
Systems. 2019.

[3] H. Siebert Domareski. Monolithic & Microservices Architecture. [On-
line]. Available: https://henriquesd.medium.com/monolithic-microservices-
architecture-239e8799d3e1, 2021.

[4] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin,
and L Safina. Microservices: yesterday, today, and tomorrow. 2016.

[5] N. Dragoni, I. Lanese, S. Larsen, M. Mazzara, R. Mustafin, and L. Safina.
Microservices: How To Make Your Application Scale. 2017.

[6] M. Fowler. MonolithFirst. [Online]. Available:
https://martinfowler.com/bliki/MonolithFirst.html, 2015.

[7] A. Hannousse and S. Yahiouche. Securing microservices and microservice
architectures: A systematic mapping study. 2021.

[8] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov. Microservices:
The Journey So Far and Challenges Ahead. 2018.

[9] K. Jander, L. Braubach, and A. Pokahr. Defense-in-depth and Role Authen-
tication for Microservice Systems. 2018.

[10] J. Lewis and M. Fowler. Microservices, a definition of this new architectural
term. [Online]. Available: https://martinfowler.com/articles/microservices.html,
2014.

[11] N. Mateus-Coelho, M. Cruz-Cunha, and L. Ferreira. Security in Microser-
vices Architectures. 2021.

[12] F. Ponce Mella, Gastón G. Márquez, and H. Astudillo. Migrating from mono-
lithic architecture to microservices: A Rapid Review. 2019.

[13] N. Naghmeh, I. Waidah, G. Imran, N. Behzad, B. Mahadi, and H. Ab Razak Bin
Che. Understanding Service-Oriented Architecture (SOA): A systematic lit-
erature review and directions for further investigation. 2020.

[14] A. Nehme, V. Jesus, K. Mahbub, and A. Abdallah. Securing Microservices.
2019.

[15] S. Newman. Building Microservices. O’Reilly Media, Inc., 1st edition, 2015.

[16] A. Pereira-Vale, G. Márquez, H. Astudillo, and E. B. Fernandez. Security
Mechanisms Used in Microservices-Based Systems: A Systematic Mapping.
2019.

[17] IBM Cloud Team and IBM Cloud. SOA vs. Microservices: What’s the
Difference? [Online]. Available: https://www.ibm.com/cloud/blog/soa-vs-
microservices, 2021.

[18] T. Yarygina and A.H. Bagge. Overcoming Security Challenges in Microser-
vice Architectures. 2018.

Asymmetric Multi-core Scheduling

John Wickström
john.wickstrom@aalto.fi

Tutor: Jaakko Harjuhahto

Abstract

The growing market for long-lasting, battery-powered devices, such as smart-

phones or the Internet of Things, created a demand for a new type of pro-

cessor with the capability of dynamically transitioning between modes of

operation. This new architecture increased the complexity of task schedul-

ing by transforming previously independent properties, such as through-

put and fairness, to now be mutually exclusive. Such limitations neces-

sarily introduce an unprecedented blind spot for scheduling policies that

may be used to circumvent intended behaviour, and thus warrants further

exploration. In this review paper, we discuss the implications, limitations

and subsequent problem formulation of asymmetric multi-core scheduling

to establish a baseline. Afterward, we analyze a handful of practical ex-

amples of scheduling policies and transformation compilers with unique

aspirations. By understanding these contrasting approaches, we gain a

greater understanding of how this problem plays out in practice, and what

the current state of research is.

KEYWORDS: asymmetric systems, multi-core processors, scheduling

1 Introduction

Scheduling problems are part and parcel of nearly all facets of modern

life, but rarely is the degree of complexity as prolific as it is for modern

operating systems. With millions of interwoven or independent tasks to

consider at any given point in time, the state space quickly becomes in-

feasible to fully explore, thus making heuristic accuracy imperative [12].

While hardware manufacturers include some built-in safety measures to

prevent cascading system-wide failures, the resolution to the scheduling

problem is delegated to the operating system.

Over time, Central Processing Units (CPU) have evolved and become ex-

ponentially more powerful and complex with the capability of concurrent

multitasking, parallel execution and arbitrary combinations of both [10].

However, the advent of battery-powered smart devices created a market

for a CPU with the adaptive capability of switching between modes, such

as energy conservation or high throughput. This architecture was real-

ized by equipping a CPU with different types of cores that each special-

ized in their own niche, in contrast to standard processors that have mul-

tiple instances of the same core type [11]. However, with core asymmetry,

the scheduling problem grows in complexity due to the inherent need to

match specific tasks with specific cores to emulate a desired behaviour. To

reduce the search space, scheduling algorithms commonly maximize one

primary property and set strict limitations for others [12, 3]. By defini-

tion, limitations represent an algorithm’s blind spot which makes them a

candid target for entities who may want to circumvent normal behavior.

This distinction implies that both positive and negative effects should be

considered when evaluating the efficacy of a scheduling policy. The pro-

liferation of Internet of Things-based fog and edge applications as well as

the societal reliance on smartphones warrants further investigation into

these aspects of scheduling.

This review paper is structured as follows. Section 2 starts with a

brief overview of processors as well as establishing the implications of

core symmetry (or lack thereof) with respect to scheduling. This section

also details how our collective understanding of Asymmetric Multi-core

Processors (AMP) has evolved, and how conventional computational as-

sumptions may not apply to them. Section 3 starts by defining operating

system-level scheduling for AMPs through its problem formulation and

limitations. Afterward, we review some state-of-the-art scheduling poli-

cies and transformation compilers that have been designed for a partic-

ular purpose. Section 4 continues with a contrasting discussion regard-

ing the implications of policy unfairness. Finally, section 5 concludes this

review-paper with a summary.

2 Background

The processor is generally considered to be the brain of a machine, as it

is the component that coordinates the order of operations on an excep-

tionally low level. To formulate how machine code is handled, we use an

abstract model called an Instruction Set Architecture (ISA). An operating-

system capable processor, such as a Central Processing Unit (CPU), is a

typical example of an active enforcer of this ISA, in contrast to a Graphics

Processing Unit (GPU) which is not.

Historically, processors only contained one "core" which limited them to

working on a single process at any point in time. However, in 2001, IBM

released the first processor with two separate cores, meaning that it was

capable of working on two processes in parallel [10]. The number and

complexity of processor cores have kept increasing ever since, to which

operating systems and programs have adapted and consequently become

more complex.

2.1 Core Symmetry

Multi-core processors were initially homogeneous, meaning that each core

was identical, and tasks could therefore be scheduled to the first available

core without any greater consideration. However, this locked processors

into a single modus operandi that was designed for devices that had a con-

stant source of power, which was less than ideal for the growing market

of battery-powered handheld devices. Thus, the notion of processors with

a heterogeneous core setup was suggested to give these devices an on-

demand capability to transition between modes. Today the former type is

known as Symmetric Multi-core Processors (SMP) and the latter as Asym-

metric Multi-core Processors (AMP).

One prominent AMP breakthrough was the ARM big.LITTLE [11] pro-

cessor that was designed for portable handheld devices in the early 2010s.

It came equipped with slower, energy-efficient cores (LITTLE) as well as

fast, energy-hungry cores (big) that nevertheless abide by the same ISA.

The implications of these distinctions are imperative to understand as

they fundamentally change the dynamics of scheduling by making core se-

lection non-trivial [21, 20, 17]. In practice, a well-designed AMP schedul-

ing policy allows a device to adapt to its current circumstances by balanc-

ing or maximizing properties such as throughput, energy conservation or

fairness.

2.2 Heuristics and Inference

While historically cited computational theories such as Amdahl’s Law [1]

(AL) and Gustafson’s Law [7] (GL) still roughly represent a correct trend

for SMPs, numerous works have proven that they overlook many nuanced

properties of AMPs. For example, Eyerman et al. [5] created a schedul-

ing policy that assigns memory-bound tasks to LITTLE cores, and CPU-

bound tasks to big cores, as this methodology minimizes the penalty for

cache misses. Although this premise is central to both of the aforemen-

tioned laws, Van Craeynest et al. [18] found that the approach was too

naive and extended it with a heuristic estimator. Eyerman and Eeckhout

[4] present a version of AL that incorporates the notion of critical sections

and their synchronization to the formula. Juurlink and Meenderinck [9]

propose a hybrid equation that assumes that the truth lies somewhere

in-between AL and GL.

The use of these laws is primarily to evaluate the general complexity of

the architecture rather than to obtain a truthful and precise reading of a

scheduling policy. To accomplish that, highly sophisticated parsing tools,

such as QuickIA [2], are used to retroactively explore large state spaces

with the intent of gaining insights through static analysis.

3 Operating System-level Scheduling

Hardware components, such as the processor and its ISA, have a physical

limitation that dictates their upper boundary of performance. No schedul-

ing policy can raise this threshold, and the goal is merely to come as close

to the upper boundary as possible by intelligently sorting and executing

processes. Changdae et al. [12] emphasize that a clever and efficient

scheduling policy is what elevates the diverse potential of AMPs above

SMPs, whilst a bad policy does the inverse. Due to how nuanced the

problem of arranging millions of individual tasks is in real-time, these

scheduling strategies are delegated to the operating system rather than

being inherited from the hardware and enforced by manufacturers.

3.1 Problem Formulation

The decision state space of an AMP scheduler can be both enormous and

non-convex [17]. Thus, the continuous traversal of said space is unfeasi-

ble for the purpose of computing an optimal solution quickly. On the other

hand, an exhaustive search can be performed retroactively to find a lower

bound of performance to strive for [2]. The complexity of this problem

makes the ideal lower bound effectively impossible to realistically reach,

so solutions are generally compared to each other rather than a hypothet-

ical.

While a primitive queue, such as FIFO, can be used to obtain a triv-

ial solution to this problem, heuristic estimation allows us to produce

a specialized solution even on large-scale systems. Naturally, primitive

queues seldom schedule tasks in an optimal order, however, they can still

be competitive exactly because time is not wasted on computing an or-

der. Specialized scheduling algorithms need a brief moment to consider

the options before assembling an order that results in a shorter cumula-

tive turnaround time on average, and therefore an overall superior policy.

Complexity is a point of contention because it can prevent an algorithm

from functioning at scale while still being perfectly suitable for small sys-

tems. To circumvent this problem, contributions such as [17, 15] present

both greedy and non-greedy versions of their algorithms intended for dif-

ferent systems.

3.2 Policy Limitations

Scheduling policies for AMPs generally prioritize one of three properties:

Throughput, Fairness or Energy conservation. Increasing throughput nec-

essarily increases a device’s energy consumption and vice versa. Per-

haps due to how central these two properties are for the big.LITTLE core

paradigm, there exists an abundance of research that addresses the bal-

ance between them. The dynamic transition from prioritizing one to the

other is crucial for any modern battery-powered smart device [21].

For SMPs with homogeneous cores, fairness and throughput are inde-

pendent problems and can therefore be maximized simultaneously. How-

ever, for AMPs, there is a drastic performance difference between cores,

therefore absolute fairness and maximum performance become two mutu-

ally exclusive properties [12]. Fairness is a particularly deceptive problem

because the lack of it, meaning the unequal treatment of processes, opens

up the possibility of Starvation [3]. For example, if a process is not guar-

anteed its timeshare on the processor within a finite amount of time, there

exists a hypothetical scenario where this process awaits its turn infinitely.

The probabilistic nature of this problem makes it relatively abstract and

difficult to evaluate in comparison to throughput or energy efficiency.

3.3 Scheduling Policies

Tsai et al. [17] present AMS, an adaptive scheduler for parallel process-

ing with an awareness of both cache hierarchies as well as core types.

The authors prove that an application’s initial preference toward a deep

or shallow cache hierarchy is often temporary. By re-mapping threads

periodically (50 ms) according to a cache-specific miss curve, their algo-

rithm can quickly adapt to a program’s new phase and schedule it appro-

priately. AMS has two optimization alternatives, greedy and non-greedy.

The non-greedy optimizer leverages dynamic programming to efficiently

explore a large state space by recursively solving and memoizing smaller

and smaller sub-problems. While the greedy optimizer is not as thor-

ough, it performs within 1% of the non-greedy optimizer by utilizing es-

tablished cache partitioning techniques and consequently has a smaller

overhead. With respect to average throughput, AMS performs 18% better

than asymmetry unaware schedulers, such as Linux CFS [19], and 6%

better than other similar previous works, such as PIE [18].

Yu et al. [20] present COLAB, a collaborative scheduler for multi-threaded

processes that utilizes three separate heuristics: thread criticality, core

sensitivity and fairness. The performance of multi-threaded processes is

often tied to critical sections that manipulate a shared resource. Thus,

the authors argue that an optimal scheduling policy needs to accelerate

threads that handle these segments of a process first, as they are the pri-

mary bottleneck. Raw metrics, such as thread speedup or blocking factors,

are obtained from the Linux kernel with low overhead, and are used on a

pre-trained linear regression model to predict an outcome. Threads with

high prediction scores are prioritized for big cores, whilst low predictions

are prioritized for LITTLE cores. The remainder of threads can be sched-

uled for either core type, so the decision is left for a load balancer. Evalua-

tions show that COLAB produces a 10% reduction in process turnaround

time on average, compared to the Linux CFS [19] and ARM GTS [8].

3.4 Transformation Compilers

Sreelatha et al. [16] present CHOAMP, a compiler that probabilistically

optimizes and transforms SMP software to run efficiently on AMPs, with

respect to performance profiles. Contrary to most other previous works,

the authors don’t intend to reinvent the wheel and instead leverage the

vast knowledge of SMP scheduling to achieve their goal. The compiler an-

alyzes programs written in OpenMP pragma notation, which is a popular

C/C++ extension that greatly reduces the complexity of creating software

intended for parallel processing. The output of this analytical process is

first optimized for an SMP before finally being transformed to run effi-

ciently on an AMP. While the experimental evaluations of CHOAMP look

promising, its value is further amplified by its relative simplicity as well

as the ease in which it can be realistically adopted.

Krishna et al. [14] conducted experiments using graph algorithms that

frequently entail workloads with irregular parallelism, in contrast to Sree-

latha et al. [16] who only explored patterns of regular parallelism. The

primary concern for irregular workloads is to identify and schedule large

workloads to big cores in order to achieve a shorter cumulative turnaround

time. However, the authors take this one step further by transforming

the input graph to maximize cache utilization, as well as the subsequent

OpenMP program to gain a longer than average timeshare on the big

cores. The effects of the transformation are decided by a two-step predic-

tion by a multi-variable regression model which takes graph features and

hardware configurations as input and locates an optimal solution in ac-

cordance with a knowledge base. Results show a near 43% improvement

in the energy-delay-product (duration× energy) compared to unoptimized

base-cases.

4 Discussion

Since the schedulers’ job is integral for enforcing a certain behaviour, its

decisions are intentionally abstracted away from programs running on

a machine. Tsai et al. [17] argue that it would be unreasonable, per-

haps even dangerous, to let programmers affect this decision-making pro-

cess directly. However, this does not mean that programmers cannot af-

fect it indirectly by exploiting the limitations of the underlying algorithm

through software design.

Many prior works [13, 6, 12] detail how Linaro, the Linux kernel sched-

uler, generally does a good job regarding fairness through its Completely

Fair Scheduler [19] (CFS) policy, but it lacks the granularity to enforce

this on an AMP thread level. In fact, one clock tick on the big core is con-

sidered equivalent to one clock tick on the LITTLE core [6], which obvi-

ously cannot equate to the same amount of progression for a process. This

inequality opens the possibility for a program to get preferential treat-

ment by exploiting some arbitrary pattern that the scheduler frequently

assigns to the big core. Such a program would be unfair by definition, as

it would spend a higher percentage of time on the big core compared to

other programs [14].

5 Conclusion

In summary, task scheduling for processors with asymmetric cores presents

a very complex but necessary problem to solve. In the case studies, we ob-

served monumental improvements in metrics such as energy efficiency,

which indicates that we are far from reaching a convergence and there

are plenty of strides to be made. The concept of fairness remains prob-

lematic due to its constraining effect on throughput and its ambiguous

nature which makes it difficult to measure.

While this scheduling research is gaining more traction as of late, it

still does not seem even remotely proportional to its potential impact on

prominent industries, such as Big Data or Distributed Computation. A

slight increase in throughput or energy efficiency via smart scheduling

may seem like a ripple in the ocean when applied to a singular device.

However, when applied on a scale that is equivalent to the Internet of

Things, a ripple turns into a tidal wave. Since scheduling policies are

intrinsically tied to the operating system of these devices, the existing in-

frastructure already supports massive scale distribution of such improve-

ments via firmware updates. Regardless, there is ample room for research

of various levels of granularity as well as for general-purpose tools that

allow us to explore and analyze the vast search space of schedulers more

efficiently.

References

[1] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference, AFIPS ’67 (Spring), page 483–485, New
York, NY, USA, 1967. Association for Computing Machinery.

[2] Nagabhushan Chitlur, Ganapati Srinivasa, Scott Hahn, P K Gupta, Dheeraj
Reddy, David Koufaty, Paul Brett, Abirami Prabhakaran, Li Zhao, Nelson
Ijih, Suchit Subhaschandra, Sabina Grover, Xiaowei Jiang, and Ravi Iyer.
Quickia: Exploring heterogeneous architectures on real prototypes. In
IEEE International Symposium on High-Performance Comp Architecture,
pages 1–8, 2012.

[3] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Fairness
via source throttling: A configurable and high-performance fairness sub-
strate for multicore memory systems. ACM Trans. Comput. Syst., 30(2),
apr 2012.

[4] Stijn Eyerman and Lieven Eeckhout. Modeling critical sections in amdahl’s
law and its implications for multicore design. In Proceedings of the 37th
Annual International Symposium on Computer Architecture, ISCA ’10, page
362–370, New York, NY, USA, 2010. Association for Computing Machinery.

[5] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith.
A mechanistic performance model for superscalar out-of-order processors.
ACM Trans. Comput. Syst., 27(2), may 2009.

[6] Adrian Garcia-Garcia, Juan Carlos Saez, and Manuel Prieto-Matias. Contention-
aware fair scheduling for asymmetric single-isa multicore systems. IEEE
Transactions on Computers, 67(12):1703–1719, 2018.

[7] John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532–533,
may 1988.

[8] Brian Jeff. big. little technology moves towards fully heterogeneous global
task scheduling. ARM white paper, 2013.

[9] B.H.H. Juurlink and C. H. Meenderinck. Amdahl’s law for predicting the
future of multicores considered harmful. 40(2):1–9, may 2012.

[10] Ronald N. Kalla, Balaram Sinharoy, and Joel M. Tendler. Ibm power5 chip:
a dual-core multithreaded processor. IEEE Micro, 24:40–47, 2004.

[11] Shubham Kamdar and Neha Kamdar. big. little architecture: Heteroge-
neous multicore processing. International Journal of Computer Applica-
tions, 119:35–38, 2015.

[12] Changdae Kim and Jaehyuk Huh. Exploring the design space of fair schedul-
ing supports for asymmetric multicore systems. IEEE Transactions on
Computers, 67(8):1136–1152, 2018.

[13] Myungsun Kim, Soonhyun Noh, Sungju Huh, and Seongsoo Hong. Fair-
share scheduling for performance-asymmetric multicore architecture via
scaled virtual runtime. In 2015 IEEE 21st International Conference on Em-
bedded and Real-Time Computing Systems and Applications, pages 60–69,
2015.

[14] Jyothi V.S. Krishna and Rupesh Nasre. Optimizing graph algorithms in
asymmetric multicore processors. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(11):2673–2684, 2018.

[15] Lei Mo, Angeliki Kritikakou, and Olivier Sentieys. Approximation-aware
task deployment on asymmetric multicore processors. In 2019 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), pages 1513–1518,
2019.

[16] Jyothi Krishna Viswakaran Sreelatha, Shankar Balachandran, and Rupesh
Nasre. Choamp: Cost based hardware optimization for asymmetric multi-
core processors. IEEE Transactions on Multi-Scale Computing Systems,
4(2):163–176, 2018.

[17] Po-An Tsai, Changping Chen, and Daniel Sanchez. Adaptive schedul-
ing for systems with asymmetric memory hierarchies. In 2018 51st An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 641–654, 2018.

[18] Kenzo Van Craeynest, Aamer Jaleel, Lieven Eeckhout, Paolo Narvaez, and
Joel Emer. Scheduling heterogeneous multi-cores through performance im-
pact estimation (pie). In 2012 39th Annual International Symposium on
Computer Architecture (ISCA), pages 213–224, 2012.

[19] C.S. Wong, I.K.T. Tan, R.D. Kumari, J.W. Lam, and W. Fun. Fairness and
interactive performance of o(1) and cfs linux kernel schedulers. In 2008
International Symposium on Information Technology, volume 4, pages 1–8,
2008.

[20] Teng Yu, Runxin Zhong, Vladimir Janjic, Pavlos Petoumenos, Jidong Zhai,
Hugh Leather, and John Thomson. Collaborative heterogeneity-aware os
scheduler for asymmetric multicore processors. IEEE Transactions on Par-
allel and Distributed Systems, 32(5):1224–1237, 2021.

[21] Yuhao Zhu and Vijay Janapa Reddi. High-performance and energy-efficient
mobile web browsing on big/little systems. In 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA), pages 13–
24, 2013.

Intelligent Character Animation with
Deep Reinforcement Learning

Daniel Zsemberi
daniel.zsemberi@aalto.fi

Tutor: Nam Hee Kim

Abstract

Virtual character animation is crucial in the entertainment industry,

such as virtual reality, computer games, and animated movies. Physics-

based techniques provide an excellent framework to produce realistic and

physically accurate animations. To this end, deep neural networks through

reinforcement learning (RL) is one of the go-to methods to drive recent ad-

vances. This survey puts forward a study of recent approaches to physics-

based character animation. First, physics-based animation and RL are

introduced. Second, state-of-the-art animation methods with and without

motion capture data are discussed. Finally, the limitations and possible

future work are reviewed.

KEYWORDS: Deep reinforcement learning, Physics-based character ani-

mation

1 Introduction

Various challenges in computer graphics involve characters and objects

engaging with each other or their environment. Producing these anima-

tions to be true to life and responsive is difficult for human experts since

the number of possible interactions is immense.

Programmatically, character animation can be solved by two main ap-

proaches: kinematics-based and physics-based animation frameworks. The

objects are moved according to a set of given velocity and acceleration

equations in the former. In the latter, the characters automatically in-

teract in a physically accurate manner by utilizing a physics simulator.

Physics-based methods may automate work in the current animation pipelines.

However, this method has several challenges. The first problem is the lack

of user control due to physical forces being the primary control method

for characters. Second, although physically accurate, the animation style

might appear robotic or stiff. Finally, it is expensive computationally.

This paper aims to review the deep reinforcement learning approach to

solving the above problems in physics-based character animation.

This survey is constructed in the following manner. Section 2 intro-

duces computer and physics-based animation. Section 3 dives deeper into

deep reinforcement learning (DRL) intricacies, Section 4 describes data-

driven DRL animation techniques, and Section 5 discusses the data-free

versions. Section 6 discusses the current state of physics-based animation

and provides concluding remarks.

2 Character animation

Character animation is the process of generating digitally animated im-

ages where digital characters are moved and rendered to create a motion

picture. Presently, digital characters require control by human experts to

make their movements believable, which is a time-consuming process that

various computational techniques, such as kinematics-based and physics-

based animation methods, have sped up. This section explores where

physics-based animation originated and how it can be formalized.

2.1 History of computer animation

Hand-drawn animation has evolved immensely from the late 1890s to

the early 1990s, including feats like the 12 principles of animation [26],

Technicolor animation, Disney’s well-known characters, and anime from

Japan. This period also included some partly animated movies, e.g., Tron,

Jurassic Park, and Terminator. Eventually, with the success of Toy Story

(1995) and Shrek (2001), computer animation started dominating the field

of commercial animation.

2.2 Animation research history

Computer animation research gained traction in the 1960s: Nikolai simu-

lated and rendered a walking cat [30], and Special Interest Committee on

Computer Graphics (SICGRAPH), now known as ACM SIGGRAPH, was

established (1967). In the 1980s, research towards producing animation

via simulated characters was on the rise with kinematic constraints and

reverse kinematics [11] [7], dynamic analysis using torques and forces

[29], and attempts to make these more lifelike with optimization [31]. In

the late 1990s, neural networks were introduced to replace cost-heavy

simulations of physics [8]. By the late 2010s, the spread of deep neu-

ral networks (DNN) also influenced animation by, e.g., learning low-level

representations of motion data using autoencoders [10] or unsupervised

learning from unstructured quadruped data [35]. Furthermore, during

this period, deep reinforcement learning (DRL) was also employed to gen-

erate character animation by, e.g., using references to mimic motions and

learning to recover [21] and utilizing hierarchical DNN policy that learns

physics-based locomotion skills [22].

2.3 Physics-based animation

Physics-based animation is a highly multidisciplinary field based on physics,

mathematics, and engineering. Three components are necessary for physics-

based character animation: a physics-based character (robotic creature),

a physics simulator, and a control policy that controls the character. This

section introduces these three in detail.

Physics simulator

Standard physics simulators include soft-body simulators, cloth/hair sim-

ulators, and the one detailed in this survey: constrained rigid body sim-

ulators. "Rigid" refers to objects being non-elastic. A rigid object has

geometry, mass, a center of mass, position, orientation, linear velocity,

and angular velocity. "Constrained" denotes that the object’s parts, called

links, are connected through joints. A joint might have several degrees of

freedom (DoF) - one, two, or three - both in rotation and translation.

Forward dynamics is the process of calculating the acceleration of a

rigid-body system given the applied forces and torques. This topic is be-

yond the context of this paper, and the reader may refer to [4] for more

information.

Animated character

Building an animated character means using links and joints to model a

real-life creature or build a fictional one. In the former case, the joints

need to be carefully chosen to reflect real-life limitations. For instance,

hip joints often use ball-and-socket joints.

The physics simulator requires torques and forces to move the char-

acter, while the actuator is used to generate those torques and forces.

Most applications use internal forces to control the character, but exter-

nal forces may be used for additional support such as balance skills [32] as

well. However, real-life robots cannot leverage external forces. Further-

more, some papers have also shown interest in muscle-based actuators

where muscles and tendons are simulated to apply forces and torques to

physically-based characters [6] [27] [17].

Control policy

A control policy generates actuation patterns that help the character achieve

its goals in the same vein as how animal brains govern motor skills. For

example, goals might include reaching a coordinate or matching a refer-

ence motion.

According to robotics literature, there are two main types of controllers:

closed-loop controllers, which employ the current state of the environment

as input, and open-loop controllers, which optimize over an entire control

trajectory. The focus of this paper is closed-loop controllers, which model-

free DRL algorithms mainly employ.

A control policy might also expose high-level control parameters, such as

a label of the current task or desired character speed. Exposure of these

parameters is a popular technique to enable user control during runtime.

3 Deep reinforcement learning

Deep reinforcement learning (DRL) blends reinforcement learning (RL)

and deep learning. RL was inspired by behavioral psychology [25] and

solves the task of sequential decision-making: in an uncertain environ-

ment consisting of states s1, s2, ...sn ∈ S, an agent performs predefined

actions a1, a2... ∈ A according to a policy π : S ⇒ A. These actions move

the agent from state to state until it terminates or reaches its goal. Mean-

while, the environment provides a reward or punishment r1, r2, ... ∈ R

based on the quality of the action at each timestep according to some cri-

teria designed by an expert. The agent’s goal is to maximize the received

reward over its trajectory of states and actions.

Using RL to automate laborious animation tasks is a promising method

over others. The structure of RL provides an abstraction that can fit task

animation naturally. RL agents use trial-and-error to explore the action

space and have dynamic interactions with the environment, making its

policy more sound to previously unseen states.

Deep neural networks were introduced to RL tasks to establish the pol-

icy function π as a learnable function. Usually, the policy function is

parameterized as πθ(a|s) and it outputs the probability density function

from which actions will be sampled. These techniques can address high

dimensional-space problems like playing Atari games [15], mastering Go

[24] or even autonomous driving [18]. For a more thorough overview, refer

to [5].

3.1 RL and physics-based animation

This section discusses how RL and physics-based animation are connected

and the crucial considerations one must take while designing an RL algo-

rithm: state representation, action space concerns, and reward engineer-

ing.

Actions

In physics-based character animation, the actions describe how a char-

acter may move. Due to the characters being physics-based, the actions

must be incorporated into the simulated physical system, which means

that the actions might be actual physical intrinsic forces or, more com-

monly, some target orientation for the joints. In the latter case, the physics

engine takes care of moving the joints: the engine actuates (moves) the

joints based on the desired joint torques, typically utilizing a position-

derivative controller method. A more complicated but also more life-like

character can be designed with virtual muscles that have been modeled

as part of the physics-based character [28]. Muscle simulations, however,

instill a more complicated action space.

States

In the case of animation, the state commonly describes the configuration

of the character’s body. Essential features that describe a character in-

clude root link orientation, joint angles, and joint velocities.

The state might also include other values that help interact with the

environment, such as whether any body part is touching the ground. A

phase variable ∈ [−1, 1] using a sinusoid as a function of timesteps might

also be added to describe the character’s state in the walking cycle. This

phase variable helps the agent perceive the relative place in the walking

cycle more explicitly.

The state might also include information about the environment sur-

rounding the agent, such as height maps, the position of the footsteps,

or the pose of other characters. These added variables help the agent in

perceiving the world.

Reward function

Reward engineering, meaning designing the reward function for a specific

task, is also a substantial part of DRL for physics-based character anima-

tion. Successful and efficient performance of DRL algorithms depends on

the clever choice of reward function to negate the effects of task difficulty

and high dimensionality. However, reward engineering is a long, precise,

and tedious process since developing a mathematical form of some task’s

desired goal is challenging and laborious. Reward engineering also limits

one agent to one specific task, making the eventual goal of a general agent

much harder to reach.

Reward functions are frequently broken into several terms that help

specify the task or the goal. Furthermore, regularization terms might

also be added to help the character, e.g., produce weaker movements or

walk symmetrically.

4 Data-driven DRL for character animation

In contrast to data-free animation methods, data-driven animation uti-

lizes reference motion either during the pre-training or the training phase

of learning, making use of imitation learning to mimic the motions. This

has the advantage of producing more life-like results, requiring less train-

ing time and simplifying the training. The disadvantages include needing

to collect motion data and being restrained to life-like characters. This

section introduces the latest advances in data-driven DRL animation,

starting with unstructured motion data and moving on to methods based

on Generative Adversarial Networks.

Unstructured motion data

Converting kinematic motion capture clips containing no information re-

garding forces and collision to a physically-based character has been a

longstanding goal in character animation. The aim is to make the charac-

ter execute the same motion while also withstanding perturbation. Peng

et al. [21] aims to solve this exact problem with DeepMimic. It incor-

porates a reward function where a step-wise reward is given when the

agent’s action results in a character state close to the corresponding frame’s

reference state. This reward is then used to train a separate policy for

each specific motion, forming a composite policy together. The result-

ing composite policy can perform a broad range of challenging skills like

spin-kick and backflip. Nevertheless, the training requires a significant

amount of time and extensive manual tuning, even for short clips, and

only demonstrates a few clips in the composite policy. Chentanez et al. [3]

builds upon DeepMimic [21] to address the limitation in terms of num-

ber of clips that may be used. The authors train a character on a mas-

sive dataset of animations by separating the character into two brains:

a tracking brain and a recovery brain. The two brains are trained sep-

arately with the aim of activating only one of them at a time, therefore

separating tracking and recovery skills into specific expert controllers.

The resulting policy learned more than 1300 motions, but the resulting

motions were not fully physically accurate.

DeepMimic [21] lacks user interaction during the runtime of the algo-

rithm. DReCon by Bergaming et al. [2] builds upon DeepMimic and tries

to solve this issue by training an additional feedback policy that reacts

to perturbations due to user input. The resulting policy is robust and

responsive with humanoid characters on flat terrains but is only capa-

ble of running and walking. Park et al. [19], concurrently to DReCon,

has shown an interactive character that is capable of not only locomotion

but jumping and rolling as well. Two networks are trained separately

for the kinematic and dynamic aspects of the motion data. The resulting

controllers are capable of a broad range of tasks, but in the presence of

perturbation, the characters become stiff, and the networks still require

multiple days to train.

GAN-based

To be effective, data-based methods using large datasets require carefully

designed objective functions and a separate component that selects the

appropriate motion for the character. Luo et al. [13] utilizes the idea of

Generative Adversarial Imitation Learning (GAIL) to combat these. A

separate neural network (discriminator) is trained to distinguish gener-

ated performances from expert demonstrations with supervised learning.

The DRL policy of the character is then encouraged to generate perfor-

mances that deceive the discriminator. This rids the algorithm of the

need for an objective function for learning how to respond to user input

during runtime. However, the agent is trained two more times: with DRL

for perturbation recovery and with imitation learning for an initial policy.

This results in long learning times and adds reward engineering, one of

the issues GAIL tries to eliminate. To this end, Peng et al. [20] introduces

AMP, an algorithm that removes the need for multiple training passes.

AMP uses two components in the reward function: one based on GAIL for

low-level control (joint movement) and one engineered by an expert for

high-level objectives. The results show the capabilities of combining vari-

ous motion data, even if the combination was not present in the training

dataset. The combinations may be quite extreme as well, such as zombie

walking combined with soccer dribbling.

5 Data-free deep reinforcement learning animation methods

While traditional and data-driven DRL methods involve using some kind

of reference motion to aid the animator, data-free DRL algorithms utilize

no reference motion for learning purposes. Unfortunately, this approach is

known to cause remarkably unnatural movements and therefore poses a

considerable challenge. Consequently, other types of assistance have been

employed to ease this pain point, such as reward engineering or hand-

crafted goals for the agent (e.g., pre-defined touchpoints). This section

examines a few of the latest methods in data-free DRL for physics-based

animation: TO-based and curriculum-based.

TO-based

Trajectory optimization (TO) [31] can be used for physically-based charac-

ter animations. TO finds a numerical solution to a large user-constrained

optimization problem. Solving a TO problem results in a motion trajec-

tory and a trajectory that controls the character (e.g., forces), therefore

essentially simulating the movement of a character. However, a detailed

explanation of the underlying mathematics is out of the scope of this pa-

per.

TO may also be employed to constrain characters such that their move-

ments are physically accurate. For example, joints should not bend too

much, and the movements should not be too convulsive. These constraints

are often called spacetime constraints. Spacetime constraints bound the

components of the character in state space and time, e.g., touching the

ball with the hand at the peak of the ball’s movement.

The output trajectories of TO can be employed to augment data-free

learning methods with a synthetic database. Mordatch et al. [16] suc-

cessfully parameterized TO as a learned generative process with a neural

network. However, well-known problems with TO (gradient discontinu-

ity, contact constraints, slow compute) prevented its wide adoption, and

the expressivity was limited compared to deep RL methods that followed

suit. Liu et al. [12] takes this idea further to simulate ball movement

for basketball dribbling and use it as an input for a DRL algorithm. This

methodology rids the practitioners of the cumbersome process of recording

motion capture data for the ball. Furthermore, the developed methodol-

ogy addresses the problem of learning only from TO motions by using TO

as only a sub-component of their system. The resulting agent is capable of

complicated and realistic-looking dribbling skills. The above papers show

that TO can be a valuable tool for producing a synthetic animation that

an advanced algorithm may use for motion imitation, but additional input

data might be required for more realistic visuals.

Reward engineering is a long, precise, and tedious process in state-of-

the-art physics-based animation work since specific tasks require special

reward functions. Ma et al. [14] addresses this by proposing an objective

function that employs spacetime constraints which leads to a more intu-

itive view of reward functions. For example, to make a character learn to

jump, the algorithm is the instructed to have both feet of the character in

the air (space constraint) for some time (time constraint) and nothing else

touching the ground (space constraint). This work substantially stream-

lined the reward design process and showed a robust way to learn motion

skills without motion capture data.

Curriculum-based

Learning complicated tasks is a challenging problem for RL agents due

to the extreme size of the state-action space. Exploring this space naively

is naturally time-consuming and ineffective. The core idea of curriculum-

based reinforcement learning (CB-RL) is to increase the task difficulty

gradually throughout the learning process. Put differently, the agent

starts with a small optimization landscape, which is extended to a more

demanding one as the agent acquires experience. As a result, CB-RL fa-

cilitates faster and more effective learning. In this section, recent devel-

opments in CB-RL for physics-based character animation are discussed.

Long learning times are frequent in DRL due to the complexity of the

task. Babadi et al. [1] proposes a unique CB method called Termination

Curriculum (TC) to attempt to resolve the issues of learning efficiency.

TC forces the agent to terminate when the instantaneous reward is below

the hyper-parameter threshold, which is lowered throughout the learning

process. The results show that TC decreases sample complexity and train-

ing time. However, the agent is only capable of flat terrain movement. The

ALLSTEPS algorithm presented by Xie et al. [33] makes the terrain un-

even, meaning that it solves the stepping stone and continuous terrain

problems in addition to flat-terrain locomotion. The algorithm uses no

reference motion but relies on CB-RL and heavy reward engineering. The

resulting policies are robust and capable of walking the varying terrains

but would require more stylistic rewards for natural-looking hand move-

ments.

Heess et al. [9] poses the challenge of using only simple rewards, less

reward engineering, and no reference motion to learn locomotion. There-

fore, the authors employ a simple reward function, consisting of only a few

generic components (e.g., speed, deviation from the center of path). The

resulting policy demonstrates that an elementary reward function might

be adequate for producing a physically-based character that is proficient

at walking. However, the agent had overly exaggerated movements with

high oscillations in actuations, exposing challenges in the regularization

of character strengths and action magnitudes. Yu et al. [34] used the same

notion of basic reward but used a virtual assistant that is capable of apply-

ing assistive forces to the character, which helped the agent learn balance

and forward movement, therefore making the motion more realistic. The

amount of assistive forces was steadily reduced as the agent gained expe-

rience (CB-RL), which encouraged the agent to discover optimal motions

in a data-efficient manner. The resulting motions are relatively natural.

However, the quality was still not on par with data-based methods.

Mimicking characters with a form not present in real-life creatures (e.g.,

12 legs and five heads) is an issue for data-based algorithms. However, it

is instrumental in robotics, where robots may take any shape or form. Ro-

drigez et al. [23] present an omnidirectional walking controller for robots

that uses CB-RL to control a real-life robot. The agent is encouraged to

reach a given velocity, and throughout the training process, the desired

velocity is increased. This makes learning easier since slower walking

requires less balance. The resulting policy is demonstrated on a real-life

humanoid robot but is easily extendable to other archetypes.

6 Discussion

In this paper, we explored some of the latest techniques in physics-based

character animation with RL. These included TO-based, curriculum-based,

DeepMimic-like, and GAN-based approaches. In this section, some of the

the future paths and limitations for the field are discussed.

First, heuristics in reward engineering such as energy minimization,

symmetry, and stability may improve realism, but these are not widely

applicable to all animations and require clever expert tuning and trial-

and-error, which are time-consuming. Data-driven approaches attempt

to resolve this issue by using reference motion. Nevertheless, extending

these methods to leverage a large variety of motions is still challenging,

as these methods cannot express the motion distribution in the desired

range. This is partly due to the deficit of non-laboratory motion data.

Current motion capture methods exhibit hardware restrictions, as they

necessitate hardware to be installed on real-life characters with a multi-

camera arrangement. In the future, markerless data might aid in collect-

ing varied motion data. By combining in-the-wild and controlled motion

data, one may design a curriculum-based algorithm where controlled mo-

tion data is employed first, and then a diverse range of in-the-wild data is

utilized to make the model more data-efficient and robust.

Second, the regularization of naturalness as perceived by humans is an-

other challenge. Reward engineering is presently unfit to capture this

because of the lack of its quantifiable measure. Currently, regularizations

such as energy minimization or symmetry are used. However, these do

not capture the fundamental nature of human motion. This challenge

is yet to be tackled and prevents data-free methods from reaching their

full potential. One approach to solving this would be to employ synthetic

data generation and motion matching - as seen with some methods - but

the quality of this data for complex motions is still lacking. Human in-

teraction during training could be harnessed to provide keyframes that

could be used as sparse data for motion matching. Furthermore, dense

motion data from keyframes provided by humans could be generated with

in-betweening algorithms and used in imitation learning.

Third, motion editing is yet to be scrutinized comprehensively despite

the topic being essential to enable animators to utilize these novel tech-

niques. One interesting approach could be for neural networks to learn

low-level latent motion parameters which human experts can later con-

trol. However, this requires both interpretability and controllability. The

former refers to establishing an association between the physical control

and latent representation. The latter refers to direct handle of animations

with some latent model.

Fourth, the interactivity of controllers, meaning models dynamically re-

sponding to user inputs while maintaining realistic and physics-based

movement, is yet to be explored thoroughly. As of today, controllers can

manage complicated motions such as jumping, cartwheeling, or pushing

objects. However, in my opinion, these controllers often fail to capture

human naturalness. The techniques close to achieving organic human

motion are data-based ones. However, these are still too unpredictable

and low-quality compared to traditional real-world animation pipelines

and thus not well-utilized in practice. I would expect advancements in

character animation to growingly depend on data-driven approaches in

the future.

Fifth, training times for DRL algorithms are long, and researchers gain

feedback on their training days after starting it. This could be resolved by

harnessing the power of GPUs. Recent methods have started utilizing the

GPU for RL (GA3C), and future methods running fully on GPU without

any interaction of the CPU ought to speed up the process.

To conclude this survey, character animation is a fruitful field of DRL

and will certainly grant DRL the ability to solve movement problems in

the real world, especially in the entertainment and robot industry. It is

an actively researched field with very fast progress, therefore future work

will resolve limitations listed in this survey rapidly.

References

Babadi. Self-imitation learning of locomotion movements through termination
curriculum. 2019. doi: 10.1145/3359566.3360072. URL https://doi.org/10.
1145/3359566.3360072.

et al. Bergamin. Drecon: data-driven responsive control of physics-based charac-
ters. ACM Transactions On Graphics (TOG), 38(6):1–11, 2019.

Nuttapong Chentanez and et al. Müller. Physics-based motion capture imita-
tion with deep reinforcement learning. MIG ’18. Association for Computing
Machinery, 2018. doi: 10.1145/3274247.3274506.

Roy Featherstone. Rigid body dynamics algorithms. Springer, 2014.

et al. François-Lavet. An introduction to deep reinforcement learning. arXiv
preprint arXiv:1811.12560, 2018.

et al. Geijtenbeek. Flexible muscle-based locomotion for bipedal creatures. ACM
Transactions on Graphics (TOG), 32(6):1–11, 2013.

Michael Girard and Anthony A Maciejewski. Computational modeling for the
computer animation of legged figures. ACM SIGGRAPH Computer Graphics,
19(3):263–270, 1985.

et al. Grzeszczuk. Neuroanimator: Fast neural network emulation and control
of physics-based models. In Proceedings of the 25th annual conference on CG
and IT, pages 9–20, 1998.

et al. Heess. Emergence of locomotion behaviours in rich environments. arXiv
preprint arXiv:1707.02286, 2017.

et al. Holden. A deep learning framework for character motion synthesis and
editing. ACM Transactions on Graphics (TOG), 35(4):1–11, 2016.

Paul M Isaacs and Michael F Cohen. Controlling dynamic simulation with kine-
matic constraints. ACM SIGGRAPH Computer Graphics, 21(4):215–224, 1987.

Libin Liu and Jessica Hodgins. Learning basketball dribbling skills using tra-
jectory optimization and deep reinforcement learning. ACM Transactions on
Graphics (TOG), 37(4):1–14, 2018.

Ying-Sheng Luo and et al. Soeseno. Carl: Controllable agent with reinforcement
learning for quadruped locomotion. 2020.

Li-Ke Ma and et al. Yang. Learning and exploring motor skills with spacetime
bounds. In Computer Graphics Forum, volume 40, pages 251–263. Wiley On-
line Library, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, and et al. Silver. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Igor Mordatch and et al. Lowrey. Interactive control of diverse complex charac-
ters with neural networks. Advances in neural information processing systems,
28, 2015.

Akihiko Murai and Katsu Yamane. A neuromuscular locomotion controller that
realizes human-like responses to unexpected disturbances. IEEE, 2011.

Xinlei Pan and et al. You. Virtual to real reinforcement learning for autonomous
driving. arXiv preprint arXiv:1704.03952, 2017.

Soohwan Park and et al. Ryu. Learning predict-and-simulate policies from unor-
ganized human motion data. 2019.

et al. Peng. Amp: Adversarial motion priors for stylized physics-based character
control. ACM Transactions on Graphics (TOG), 40(4):1–20, 2021.

Xue Bin Peng and et al. Abbeel. Deepmimic: Example-guided deep reinforce-
ment learning of physics-based character skills. ACM Transactions on Graph-
ics (TOG), 37(4):1–14, 2018.

Xue Bin Peng and et al. Berseth. Deeploco: Dynamic locomotion skills using hier-
archical deep reinforcement learning. ACM Transactions on Graphics (TOG),
36(4):1–13, 2017.

Diego Rodriguez and Sven Behnke. Deepwalk: Omnidirectional bipedal gait
by deep reinforcement learning. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 3033–3039. IEEE, 2021.

David Silver, Aja Huang, Chris J Maddison, and et al. Guez. Mastering the game
of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

Richard Stuart Sutton. Temporal credit assignment in reinforcement learning.
PhD thesis, University of Massachusetts Amherst, 1984.

Frank Thomas and et al. Johnston. The illusion of life: Disney animation. Hype-
rion New York, 1995.

Jack M Wang and et al. Hamner. Optimizing locomotion controllers using
biologically-based actuators and objectives. ACM Transactions on Graphics
(TOG), 31(4):1–11, 2012.

J. Wilhelms. Animals with anatomy. IEEE Computer Graphics and Applications,
17(3):22–30, 1997. doi: 10.1109/38.586015.

Jane P Wilhelms and Brian A Barsky. Using dynamic analysis to animate ar-
ticulated bodies such as humans and robots. In Computer-Generated Images,
pages 209–229. Springer, 1985.

Booth Wilson. Computer animation across the iron curtain: Early digital char-
acter design in kitty. Animation Journal, 21:4–25, 2013.

Andrew Witkin and Michael Kass. Spacetime constraints. ACM Siggraph Com-
puter Graphics, 22(4):159–168, 1988.

Pawel Wrotek and et al. Jenkins. Dynamo: dynamic, data-driven character con-
trol with adjustable balance. In Proceedings of the 2006 ACM SIGGRAPH
symposium on Videogames, pages 61–70, 2006.

Zhaoming Xie, Hung Yu Ling, and et al. Kim. Allsteps: Curriculum-driven learn-
ing of stepping stone skills. 2020.

Wenhao Yu, Greg Turk, and C Karen Liu. Learning symmetric and low-energy
locomotion. ACM Transactions on Graphics (TOG), 37(4):1–12, 2018.

He Zhang and et al. Starke. Mode-adaptive neural networks for quadruped mo-
tion control. ACM Transactions on Graphics (TOG), 37(4):1–11, 2018.

Industrial Applications of Federated
Learning: Google Keyboard query
suggestions and next-word predictions

Dan Suman
dan.suman@aalto.fi

Tutor: Alexander Jung

Abstract

Machine Learning is at the heart of innovations that drive our day to day

life, ranking search results, recommending videos from streaming service

as YouTube or Netflix, as well as helping to drive cars and more. Equally

important is the quality and the quantity of data that these models rely

on in order to produce accurate predictions. In many industries, such as

healthcare, GDPR and personal data concerns play a big role in the qual-

ity of the datasets, respecting user’s choice for opt-in. To address these con-

cerns, Federated Learning has surfaced as a viable approach of distributed

ML, by training central models on decentralized data. In these paper we

will explore methods on how to select the data, as well as implementation

of Federated algorithms into everyday products.

KEYWORDS: federated learning, google keyboard, LSTM

1 Introduction

Federated learning is a method of distributed computation where the sen-

sitive is stored on client device rather than being collected directly. In-

stead, model updates are sent using secure computation and differential

Figure 1. Device trains the FL model locally (A). User updates are collected (B), and if
the consensus threshold is reached (C), the shared model is updated and the
lifecycle continues.

privacy approaches [5]. The optimal application of federated learning is

verified where one of the following propositions is true:

1. User interaction determines the task labels.

2. Datasets are confidential and/or expose sensitive information.

3. The size of the training dataset is too vast to be examined centrally.

In essence, Federated Learning works through a series of rounds in

which a a subset of clients, depending on the population heterogeneity

and clients available, will participate in the overall model training. Each

client gets a copy of the current model parameters and updates it using

local training data, such as by running a mini batch stochastic gradient

descent epoch. The client then uploads their model update, which the

server then averages before combining into a global model. Model lifecy-

cle is better illustrated in Figure 1.

Unlike the traditional way of sending training data to a server, the Fed-

erated Learning approach specifies that only the bare minimum of data

required for model training (deltas) is sent [3]. There will never be more

information in the updates than is required. This decreases the danger of

deanonymization through correlation with other datasets, in particular.

Furthermore, approaches such as secure aggregation and differential

privacy can be used to improve Federated Learning [1].

Figure 2. Example of Google Keyboard next word prediction feature. Given the context
the keyboard suggests the next words.

2 Google Keyboard Next-Word Prediction

This section will introduce and explore a Google Keyboard Federated Learn-

ing application. A server-based stochastic gradient descent is compared

against Federated Averaging algorithm, the latter achieving better pre-

diction recall [?]. The federated context gives the user better control over

their own data, while providing privacy by default and reducing the risk

of exposing sensitive data that could be correlated directly to the user.

2.1 Model Architecture

The next word prediction model uses a variant of LSTM (Long Short Term

Memory) called the CIFG (Coupled Input and Forget Gate). This archi-

tecture has the advantage of reducing the amount of computations and

parameter sizes while maintaining performance. On the server, the Fed-

eratedAveraging algorithm is used to integrate client updates and create

a new global model. A global model wt is delivered to a subset K of client

devices during training round t. In the special case of t = 0, client de-

vices start from the same global model that has either been randomly

initialized or pre-trained on proxy data [4]. The client computes one or

more SGD (Stochastic Gradient Descent) steps with a pre-defined learn-

ing rate. SGD updates are computed locally by the clients and then re-

ported to the server and aggregated. Hyperparameters such client batch

size, number of client epochs, and number of clients per round (global

batch size) are modified to improve the model. Client updates are never

kept on the server; instead, they are processed in memory and deleted as

soon as a weight vector has accumulated. In keeping with the principle

of data reduction, the submitted content is confined to model weights. Fi-

nally, only the aggregated findings are used: the global model is enhanced

by merging updates from several client devices. Users must trust that the

aggregate server will not investigate individual weight uploads in order

to apply the federated learning technique described here.

2.2 Experiments and Results

Starting with random weight initializations, on-device federated learn-

ing and server-based SGD are used to train the CIFG model described in

the paragraph above.The models are evaluated using server-based logged

data, on-device datasets as well as in production scenario (model is de-

ployed to live clients). The findings shows that the FL model outperforms

server-trained model on recall metrics. Data shows that federated CIFG

improves top-1 recall by a relative 5 percent when evaluated on client

cache [4]. In the production context, FL model also improves top-1 and

top-3 recall by 1 percent. The authors mention that, while this compari-

son isn’t exactly fair as multiple SGD flavors have been used, the results

show that federated learning models represents a viable and preferred

solution for neural language models.

3 Google Keyboard Query Suggestions

In this section an application of Federated Learning will be explored in

context of Google Keyboard, where the FL trained model is used as a trig-

gering model in additional to a baseline Google Keyboard model. The

baseline model provides a series of suggestions as next word suggestion,

and the FL model determines if this word is to be shown to the user or

not.

Figure 3. Architecture overview of the Gboard query suggestions.

3.1 Baseline Model

For query suggestions, a baseline model is utilized first, which has been

pre-trained using typical machine learning techniques. The model began

by comparing user input to a pre-loaded on-device subset of GKG (Google

Knowledge Graph) to create query recommendation candidates. To de-

tect probable question candidates, the recommendations are subsequently

graded using a LSTM network trained on conversation data. When the

Knowledge Graph category of a word in a sentence matches the expected

category, the LSTM provides higher scores. The user is shown the can-

didate with the highest score from the baseline model. The user has the

option of implementing or ignoring the proposal. These impressions and

clicks are subsequently employed in the Federated Learning model’s on-

device training.

3.2 Federated Model

The task of the federated model is to take the query candidate from the

baseline model and determine whether or not it should be delivered. The

model is a logistic regression model that was trained to estimate the like-

lihood of a click, and the output is a score for each query. A higher score

indicates greater confidence in the outcome. A threshold tau is chosen

while deploying the model in order to achieve the appropriate triggering

rate. By adjusting the threshold, one may strike a balance between deliv-

ering value to the user and degrading the user experience. The score is in

logit space in a logistic regression model, and the anticipated probability

of a click is the logistic sigmoid function applied to the score. The features

used as an input to the Federated Model are [6]:

1. Previous Impressions and Clicks are log converted real numbers that

represent the current user’s number of impressions on past suggestions.

The model takes into account clicks and impressions broken down by

Knowledge Graph category. As a result, the model can tailor triggering

based on previous user behavior.

2. Initial Score, whether or not to show the candidate based on the score

generated by the baseline model. Binned, real-valued features are repre-

sented. This score is calculated using an LSTM model that incorporates

context into the input text.

3. The model can capture patterns in query suggestion click behavior

using temporal information stored as one-hot vectors.

4 Conclusion

Federated Learning represents a significant move from traditional Ma-

chine Learning in order to address the ongoing concerns around data

ownership, GDPR and privacy of sensitive data points. However, the

implementation of Federated Learning algorithms at scale in terms of

applications is still rather in its infancy. Implementation of such algo-

rithms requires significant re-thinking in terms of existing tools, data

models as well as model deployment lifecycle with communication cost

as a limiting factor. The set of problems that it can aim to solve is still

rather small considering that the majority of state-of-the-art models, as

the Gmail spam filters, are still trained fully on cloud because of dataset

type, size and computational availability. Federated Learning works best

when on-device data is more relevant than data on servers (e.g., the de-

vices generated the data in the first place), is private, or is otherwise un-

wanted or difficult to transfer to servers. The present applications of FL

are for supervised learning problems using labels derived from user be-

havior (e.g., clicks or typed words) [2]. The user benefits and the overall

Federated Learning model performance compared to traditional models

make it worth to continue exploring this emerging field while contribut-

ing to the Machine Learning community in tackling the challenges that

this new approach poses.

References

[1] Muhammad Ammad-ud din, Elena Ivannikova, Suleiman A. Khan, Were Oy-
omno, Qiang Fu, Kuan Eeik Tan, and Adrian Flanagan. Federated collabo-
rative filtering for privacy-preserving personalized recommendation system.

[2] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečný, Stefano Mazzoc-
chi, H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ra-
mage, and Jason Roselander. Towards federated learning at scale: System
design.

[3] Adrian Flanagan, Were Oyomno, Alexander Grigorievskiy, Kuan Eeik Tan,
Suleiman A. Khan, and Muhammad Ammad-Ud-Din. Federated multi-view
matrix factorization for personalized recommendations. 12458:324–347.

[4] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ra-
mage. Federated learning for mobile keyboard prediction.

[5] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H. Yang, Farokhi Farhad,
Shi Jin, Tony Q. S. Quek, and H. Vincent Poor. Federated learning with
differential privacy: Algorithms and performance analysis.

[6] Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas
Kong, Daniel Ramage, and Françoise Beaufays. Applied federated learning:
Improving google keyboard query suggestions.

Object tracking for mobile augmented
reality

Sami Mairue
sami.mairue@aalto.fi

Tutor: Ashutosh Vaishnav

Abstract

This paper will introduce and evaluate mobile augmented reality object

tracking methods that utilize machine learning and traditional tracking

methods. The methods presented are divided into three groups: solutions

utilizing only the mobile device, solutions using edge and device, and ones

using cloud and device. The paper analyzes these methods based on track-

ing accuracy and latency, bandwidth consumption and battery consump-

tion.

KEYWORDS: mobile augmented reality, object tracking, combined meth-

ods, deep learning, edge, cloud

1 Introduction

Over the recent years, augmented reality (AR), and especially its vari-

ant that utilizes mobile devices, known as mobile AR, has gained a wide

range of use cases from entertainment, such as Pokemon GO, to medical

training [8]. Augmented reality is the process of adding virtual elements

to a real-life scene taken, for example with a mobile phone camera. This

is accomplished by tracking the position and orientation of a plane or an

object, to which the virtual object is then placed. In order to maintain

a believable representation, the tracking must occur in real time, which

means that the position should be updated tens of times per second [5].

This poses an issue for mobile AR, as mobile devices are typically con-

strained by processing power and battery consumption, thus limiting the

amount of computational resources that can be allocated to tracking. Sev-

eral solutions have been proposed for this issue. Some utilize external

resources, such as cloud computing or edge nodes, but this generates addi-

tional latency, which is unwanted [11]. Others have proposed algorithms

which run solely on mobile devices [3], but they have to work within the

constraints of the mobile hardware. In addition, the object tracking may

be implemented in several different ways. Some solutions measure move-

ment by utilizing features in the video codec, such as motion vectors [13],

while others take advantage of machine learning [12], or a combination of

the two [4].

In order to evaluate the strengths and weaknesses of the different ap-

proaches of the combined methods, this paper reviews object tracking ap-

proaches that utilize a combination of machine learning and traditional

methods. This paper discusses methods that utilize solely the mobile de-

vice, and ones that take advantage of external cloud or edge resources. In

addition, this paper summarizes the different trade-offs in the methods.

The paper is structured as follows. Section 2 introduces concepts related

to object tracking, while Section 3 discusses current solutions. Section 4

analyzes the strengths and weaknesses between the different solutions,

and discusses possibilities for future research. Finally, Section 5 provides

concluding remarks.

2 Background

Placing virtual objects into the scene in AR typically consists of two phases:

object detection and object tracking. Object detection occurs when a new

object enters the scene. Object tracking, on the other hand, is performed

for every frame that the device captures in order to maintain a correct

orientation for the virtual object.

2.1 Object detection

Object detection is the process of estimating bounds for an object or area

from the captured video footage, which is then used for overlaying virtual

data or objects on it. The bounds can be either two-dimensional, in which

case the tracked area can be visualized as a square (e.g., [6]) or three-

dimensional, in which case the visualization can be represented by a cube

(e.g., [3]). Recent approaches regarding object detection have typically

utilized machine learning algorithms for this problem (e.g., [3], [11]).

2.2 Object tracking

Object tracking is performed once the bounds for the virtual object have

been determined. Traditional methods for object tracking include motion

vectors, which indicate the magnitude of movement of one or more points

between two consecutive frames of video. However, this method does not

provide reliable tracking over a long period of time, as was noted by Liu et

al. [11]. In order to improve accuracy, solutions utilizing machine learn-

ing, such as neural networks have emerged over the recent years (e.g., [9]).

However, utilizing only them is not feasible in a mobile device, as running

a neural network model is computationally intensive, and as a result, run-

ning the model for every frame leads to very poor battery life (see [4]). As

a natural follow-up, solutions utilizing both motion vectors and machine

learning have emerged (e.g., [4], [3]). These utilize traditional tracking

for a large part of the tracking process, but occasionally run the neural

network model in order to make sure that the object bounds are correct.

3 Implementations

This section introduces in more detail the different types of implementa-

tions of object tracking with hybrid methods and evaluate them. Section

3.1 focuses on implementations that run only on the mobile device, Section

3.2 inspects solutions that move the deep learning models slightly further

away to edge resources while keeping traditional tracking in the device,

and Section 3.3 inspects solutions that utilize cloud resources, thus mov-

ing the deep learning model even further away from the mobile device.

The evaluation will be performed based on the following criteria: track-

ing accuracy, tracking latency, and battery consumption. For the solutions

utilizing external resources, network bandwidth consumption will also be

examined. For tracking accuracy, the intersection over union (IoU) met-

ric will be used. IoU is calculated based on the volume, or area that the

bounding box of the detected object, and the ground truth box share. If

the two boxes are similar enough, the detection is considered successful.

However, different papers use different metrics for determining, whether

tracking or detection is successful. For example, Ahmadyan et al. [3] used

0.5, while Liu et al. [11] used a more strict 0.75 as the limit. As such,

these should be taken as guiding values that indicate trends between the

different methods. In addition, some papers have not measured the bat-

tery consumption of their solution.

3.1 Mobile device-only solutions

Solutions utilizing only the mobile device are self-explanatory, they only

run solely on the mobile hardware with no need for external resources.

The hybrid solutions rely on both traditional methods and deep learning

([3], [4], [10]). The basic idea for these tracking methods is to run the

lightweight traditional tracking methods for most of the time, and invoke

the deep learning model for only some of the frames. As the processing

power of mobile devices has only recently reached a level where running

neural network models on them is viable, these are a fairly new field, and

as such, research on them is still quite limited.

The working principle of traditional tracking

The traditional tracking part typically analyzes the location of a few key

points of the image between consecutive video frames [14]. This can be

implemented in several different ways. For example, Ahmadyan et al.

[3] utilize the 3D coordinates of the previous frame, and based on them,

captured 2D coordinates of the current frame are transformed into 3D

coordinates, representing the object in the new frame. As an alternative,

Li et al. [10] utilize ARCore for object tracking, which takes advantage of

the device’s motion sensors for tracking [1]. In addition, Apicharttrisorn

et al. [4] included an additional module in the tracking pipeline that keeps

track of the changes between frames, and invokes the deep learning model

only, if the changes between two subsequent images are too significant.

Results

In terms of accuracy, Ahmadyan et al. [3] were able to reach an accuracy

of 0.59 at 0.5 IoU. However, when Li et al. [10] tested the same object

detection with their own dataset, they were only able to reach an accuracy

of 0.14 at 0.5 IoU, implying that the results are highly situational. With

their own solution, Li et al. reached an average accuracy of 0.20, but they

did not state which limit was used for IoU. Meanwhile, Apicharttrisorn et

al. [4] reached an accuracy of approximately 0.37 IoU. This is based on

the provided graphs, as the actual figure was not explicitly stated.

For latency, the solutions are capable of real-time tracking. Ahmadian

et al. stated that the object tracking runs at above 30 frames per second,

which translates to approximately 30 ms. Similarly, Apicharttrisorn et

al. also stated that their solution runs at 30 frames per second. Both of

these can be considered good enough for real-time object tracking. Li et al.

stated that their neural network object recognition runs at approximately

7 frames per second, but the ARCore tracking runs in real time.

In terms of effects on battery life, only Apicharttrisorn et al. reported

it. This was measured by testing battery drop with the optimized solution

and comparing it to a baseline solution that executes the neural network

constantly. Each test lasted for 30 minutes on a Google Pixel 2 phone, and

it only included battery consumption caused by the object tracking. For

all test cases, the baseline consumed 11% of battery. For the optimized so-

lution, battery consumption was 3% in a situation when the network was

invoked rarely, and 5% when the network was invoked more frequently

due to more movement.

3.2 Edge solutions

Figure 1. A diagram of an edge solution architecture. Source: [11]

Over the recent years, the popularity of edge computing has increased

dramatically, and mobile AR solutions utilizing edge resources have nat-

urally emerged as well. Unlike in traditional cloud computing, edge com-

puting resources are typically close to the user, which in turn leads to a

relatively low latency, making it ideal for use cases that have strict latency

requirements, such as AR. Object tracking in edge solutions is character-

ized by offloading the computationally intensive machine learning parts

to the edge resources, and maintaining the less demanding traditional

tracking methods on the device (e.g., [11]). As the computing power of

a typical edge resource can be considered to be approximately equal to a

modern desktop PC, it is, at least in theory, capable of running more com-

putationally demanding models, which in turn should lead to a higher

accuracy.

Determining when to offload

In general, the tracking process works similarly to the solutions using

only the mobile device. The traditional tracking methods utilize motion

vectors [11], or other methods of keeping track of key points in the image

[15]. Moreover, sending the current frame, and thus invoking the machine

learning model can occur for every frame of the video feed [15], or by

keeping track of the differences between the last offloaded frame, and only

sending the frame, if the differences are large enough [11]. This works

similarly to the change detector in the solution by Apicharttrisorn et al.

[4], where the motion vectors of the image frames are compared. If the

motion vectors are large, meaning that either the camera or objects move

rapidly, or a high number of pixels have changed, the image is offloaded

to the server.

Results

The main point of concern in both edge and cloud solutions is latency

between sending the image to the server and receiving the result with

identified objects. This is known as offloading latency [11]. If the image

is not processed and sent back to the device quickly enough, the detected

points may have moved, potentially leading to inaccurate tracking. In

addition, as the edge resources are shared and not scalable, the number of

simultaneous users may also affect latency, as the time required to process

an image increases.

When testing with no background traffic, Liu et al. [11] were able to

reach a latency of approximately 15 ms, depending on the used WiFi fre-

quency, with the higher 5 GHz frequency having a slightly lower latency

compared to the 2.4 GHz frequency. This is equivalent to approximately

60 frames per second. While they did not utilize machine learning in their

solution, Zhang et al. [15] highlighted the latency advantage of employ-

ing edge computing instead of cloud computing. With edge resources, they

were able to reach a latency of approximately 33 ms, or 30 frames per sec-

ond. This is significantly lower than the 100 ms that was achieved with

cloud resources.

When testing the impact of background traffic, Liu et al. did not simu-

late traffic at the server. Instead, they simulated background traffic that

does not necessarily reach the edge server by increasing traffic load at the

router. The effects were reported in terms of false detection rate. With no

background traffic, the false detection rate was 4.68% when using 5 GHz

WiFi frequency, and 10.68% with 2.4 GHz WiFi. When increasing the traf-

fic load of the router to 90%, false detection rate increased to 19.92% for 5

GHz frequency and 32.65% for 2.4 GHz frequency.

In terms of accuracy, Liu et al. were able to reach an accuracy of 0.9

with 0.75 IoU. For battery consumption, Liu et al. did not measure it

separately, only stating that the program utilized 15 percent of CPU re-

sources and 13 percent of GPU resources during a 20 minute test session.

However, on the device side, Zhang et al. also rely on lightweight tracking

and sending data to the edge server. As such, it can be used to roughly

estimate battery consumption in edge solutions. In a 10 minute session,

when using a fully charged Samsung Galaxy S8, battery consumption was

4.71%.

For network bandwidth usage, Liu et al. tested two methods: their opti-

mized solution that does not send every frame and varies the encoding bi-

trate for different frames, and a baseline that sends every frame encoded

at the same bitrate. For the optimized solution, to reach an accuracy of

0.9 at 0.75 IoU required approximately 55 Mbps of bandwidth. With the

baseline solution, reaching the same result required a bandwidth of 150

Mbps. Both cases utilized an image that has a resolution of 1280x720.

3.3 Cloud solutions

Figure 2. A diagram of a cloud solution architecture. Source: [6]

Utilizing cloud computing in mobile AR has been a popular topic in the re-

search community, starting from the early days of smartphones (e.g., [7]),

when the processing power of smartphones was not sufficient to run de-

manding tracking algorithms locally. The main benefit of utilizing cloud

resources instead of edge resources is that the processing time should not

depend on traffic load, as unlike in edge servers, the cloud servers do not

need to be close to the user, and as such, large datacenters with effectively

unlimited processing power can be utilized. However, this comes with the

drawback of significantly increased latency (see [15]). As a result, offload-

ing every frame to the server is not possible, and because of this, recent

research has mainly focused on determining which frames to offload, as

demonstrated in the solution by Chen et al., known as Glimpse [6]. An-

other key issue in offloading parts of tracking to cloud is how to match the

more accurate result received from the cloud, to the current local result

that is most likely several frames ahead of the cloud result.

Managing the offloading process

Glimpse [6] aims to solve the issue of matching the results by maintain-

ing a cache of intermediate frames between the current frame and the

processed frame received from the server. Once the frame is received, the

object tracking is performed from the received frame to the current frame

via the cached frames. The main issue is to determine, how many and

which frames should be cached. The percentage of cached frames is deter-

mined by the end-to-end processing time of a frame, and the time it takes

to compute tracking for one frame on the device. If the processing time

is small, more intermediate frames can be cached. Conversely, if comput-

ing the tracking requires more time, the number of intermediate frames

should be lower. Naturally, increasing the percentage increases accuracy,

but also increases the time that it takes to track the changes from the

received frame to the current frame. Determining, which frames should

be cached, is measured by the differences between two frames. The cur-

rent frame is cached, if there are significant changes between the previous

and current frame. In addition, Glimpse also supports the ability to send

only certain trigger frames to the server, in order to reduce the number of

frames sent to the server, and thus required bandwidth.

Results

The performance of Glimpse was tested with three different network schemes,

two different datasets, and two different configurations of Glimpse. The

network schemes consisted of WiFi, Verizon LTE, and AT&T LTE network

connections. Of the datasets, one consisted of human faces and the other

consisted of roadsigns, while one configuration used trigger frames, while

the other did not. Finally, two different configurations that only used

server-side tracking were also tested.

When measuring latency, WiFi was the most consistent and fastest,

reaching an end-to-end latency of 425-455 ms on face tracking and 510-

548 ms on road sign tracking. Verizon LTE had a latency of 656-721 ms

on the face tracking, and 901-963 ms on face tracking, and AT&T had a

latency of 927-1041 ms on face tracking, while road sign tracking was not

tested due to high latency.

For accuracy, when testing without trigger frames and tracking faces,

Glimpse was able to reach an accuracy of 92.1% at 0.5 IoU when using

WiFi. This decreased to 90.7% when using Verizon LTE network, and

further down to 82.6% when using the slower AT&T LTE network. With

the roadsign dataset, accuracy was approximately 60% with WiFi, and

approximately 38% with Verizon LTE network. Utilizing trigger frames

had a slight negative impact on accuracy, with the face tracking accuracy

decreasing to approximately 90% on WiFi, approximately 88% on Verizon

LTE, and approximately 81% on AT&T LTE. With road signs, the decrease

was similar, being approximately 55% on WiFi, and approximately 32% on

Verizon LTE. In the server-only configurations, accuracy for face tracking

was at most approximately 59%, 40%, and 30% for WiFi, Verizon LTE,

and AT&T LTE respectively. For road sign tracking, the accuracy is under

1%.

Battery consumption was tested on a Samsung Galaxy Nexus, which is

a significantly older phone than the ones in other solutions. In addition,

battery consumption was only estimated based on power consumption of

different operations, and the results were reported in terms of estimated

battery life and not percentage. Based on the estimations, battery life for

running Glimpse is 1.9 hours with WiFi and 1.5 hours with Verizon LTE.

Network bandwidth was consistent between the two different datasets.

When trigger frames were not used, bandwidth was approximately 900

kbps for WiFi and Verizon LTE, and approximately 400 kbps for AT&T.

With trigger frames, bandwidth decreased to approximately 500 kbps for

WiFi and Verizon LTE, and approximately 300 kbps for AT&T.

4 Discussion

Solution Accuracy Latency Bandwidth

consump-

tion

Expected

battery

life

Mobile device only 20% [10]

- 60% [3]

(0.5 IoU)

30 ms [3] none 10 hours

[4]

Edge approx.

90% (0.75

IoU) [11]

approx.

30 ms [11]

approx.

55 Mbps

[11]

3.5 hours

[15]

Cloud [6] at most

92% (0.5

IoU)

(WiFi)

425-455

ms (WiFi)

approx.

900 Kbps

(WiFi)

2 hours

Table 1. A table summarizing the key metrics of the different methods

Based on the results, there are clear trends between the different meth-

ods: device-only methods have the lowest and the most predictable la-

tency, but this comes at a fairly significant cost to accuracy. On the other

hand, edge and cloud solutions provide higher accuracy, but latency is

higher and more unpredictable. This is to be expected, as even the most

high-end mobile devices still have less processing power than a modern

PC. As a result, mobile devices are unable to take advantage of more ac-

curate deep learning models, thus hampering accuracy. However, as all of

the computation occurs within the device, it does not suffer from delays

that may occur during data transfer. In addition, edge solutions may also

affected by other load at the server, as the resources cannot be scaled, as

is the case with cloud resources.

The battery consumption provided more interesting results, as device-

only solutions had significantly lower battery consumption than edge or

cloud versions. However, it should be noted that Glimpse [6] used signif-

icantly older hardware than the other tests. Regardless, assuming that

the battery consumption stays constant in longer sessions, battery life

for device-only solutions can be estimated to be approximately 10 hours,

while the edge solution should have a battery life of approximately 3.5

hours. The cloud solution has the shortest expected battery life, at ap-

proximately 2 hours. However, at 1850 mAh, the battery size of Samsung

Galaxy Nexus [6] is approximately half of the battery size of Samsung

Galaxy S8 [2] which was used when testing the edge cloud solution [15].

Thus, if the experiments were performed on equivalent devices, the bat-

tery life of the cloud solution can be estimated to be roughly similar to the

edge solution, which is somewhat unsurprising, as both solutions have the

basic operating principle.

Possibilities for future research

Based on these trends, future research could be divided into two different

focus areas: improving the accuracy of device-only solutions, and reducing

the effects of latency in edge and cloud solutions. For device-only tracking,

the deep learning models that modern devices are capable of running in

real time are clearly less accurate than the ones that edge solutions are

capable of running. Thus, a possible avenue might be to investigate, if it

is viable to run a more demanding model, possibly for only a part of the

frames, along a lightweight tracking method, and then merge the results.

Continuing research into solutions utilizing external resources is also

necessary, as not all devices, especially lower end models, can be expected

to be able to run complex deep learning models on the device. Thus, in-

specting how to reduce the deteriorated accuracy in situations, where the

result is not received before the next frame should be investigated. Imple-

menting a cache, as was done in Glimpse [6], might be a viable way for-

ward. Alternatively, as suggested by the difference in accuracy between

the measurements of Ahmadyan et al. [3] and Li et al. [10], the com-

plexity of the tracked object may affect the tracking accuracy, especially

when using only the mobile device. As such, this would be an interest-

ing topic to explore further, and if the effects are significant, solutions

that utilize device-only tracking for simple targets, while offloading more

complex tasks might be a viable way forward.

5 Conclusion

This paper reviewed and evaluated various implementations of object

tracking for mobile augmented reality utilizing deep learning and lightweight

traditional tracking methods. Each solution has its clear benefits and

drawbacks: device-only implementations do not need a network connec-

tion, and they have the lowest latency, but they are the least accurate.

Edge solutions provide a relatively low latency and good accuracy, but

they require a network connection, and their accuracy may be degraded,

if the server is congested. Cloud implementations are not affected by traf-

fic as significantly, but they have the highest latency, which means that

methods for hiding the latency from the user must be implemented for a

smooth user experience.

References

[1] Fundamental concepts | ARCore | Google Developers. https://developers.
google.com/ar/develop/fundamentals. Accessed 5.03.2022.

[2] Samsung Galaxy S8 - Full phone specifications. https://www.gsmarena.
com/samsung_galaxy_s8-8161.php. Accessed 17.03.2022.

[3] Adel Ahmadyan, Tingbo Hou, Jianing Wei, Liangkai Zhang, Artsiom Ablavatski,
and Matthias Grundmann. Instant 3d object tracking with applications in
augmented reality. CoRR, abs/2006.13194, 2020.

[4] Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen, Srikanth V. Krishnamurthy,
and Amit K. Roy-Chowdhury. Frugal following: Power thrifty object detec-
tion and tracking for mobile augmented reality. SenSys 2019 - Proceedings
of the 17th Conference on Embedded Networked Sensor Systems, pages 96–
109, 11 2019.

[5] Ronald T. Azuma. A survey of augmented reality, volume 6. MIT Press
Journals, 8 1997.

[6] Citation Chen, Tiffany Yu-Han, Lenin Ravindranath, Shuo Deng, Paramvir
Bahl, Hari Balakrishnan, and Tiffany Yu-Han Chen. Glimpse: Continuous,
Real-Time Object Recognition on Mobile Devices. 2015.

[7] Bai Ruei Huang, Chang Hong Lin, and Chia Han Lee. Mobile augmented
reality based on cloud computing. Proceedings of the International Confer-
ence on Anti-Counterfeiting, Security and Identification, ASID, 2012.

[8] Pier Luigi Ingrassia, Giulia Mormando, Eleonora Giudici, Francesco Strada,
Fabio Carfagna, Fabrizio Lamberti, and Andrea Bottino. Augmented reality
learning environment for basic life support and defibrillation training: Us-
ability study. Journal of Medical Internet Research, 22(5):e14910, 5 2020.

[9] Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. Overlay: Prac-
tical mobile augmented reality. In Proceedings of the 13th Annual Interna-
tional Conference on Mobile Systems, Applications, and Services, MobiSys
’15, page 331–344, New York, NY, USA, 2015. Association for Computing
Machinery.

[10] Xiang Li, Yuan Tian, Fuyao Zhang, Shuxue Quan, and Yi Xu. Object Detec-
tion in the Context of Mobile Augmented Reality. 2020.

[11] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge assisted real-time ob-
ject detection for mobile augmented reality. Proceedings of the Annual In-
ternational Conference on Mobile Computing and Networking, MOBICOM,
8 2019.

[12] Nguyen Loc HUYNH, Youngki Lee, Rajesh Krishna BALAN, Nguyen Loc,
Rajesh Krishna, Loc N Huynh, and Rajesh Krishna Balan. DeepMon:
Mobile GPU-based deep learning framework for DeepMon: Mobile GPU-
based deep learning framework for continuous vision applications contin-
uous vision applications Citation Citation DeepMon: Mobile GPU-based
Deep Learning Framework for Continuous Vision Applications. 2017.

[13] Gabriel Takacs, Vijay Chandrasekhar, Bernd Girod, and Radek Grzeszczuk.
Feature tracking for mobile augmented reality using video coder motion
vectors. pages 141–144, 12 2007.

[14] Jianing Wei, Genzhi Ye, Tyler Mullen, Matthias Grundmann, Adel Ah-
madyan, and Tingbo Hou. Instant motion tracking and its applications
to augmented reality. CoRR, abs/1907.06796, 2019.

[15] Wenxiao Zhang, Bo Han, and Pan Hui. Jaguar: Low latency mobile aug-
mented reality with flexible tracking. MM 2018 - Proceedings of the 2018
ACM Multimedia Conference, pages 355–363, 10 2018.

Bitrate Adaptation Algorithms in
Multimedia Streaming

Timo Laalo
timo.laalo@aalto.fi

Tutor: Esa Vikberg

Abstract

Bitrate adaptation algorithms can be utilized to switch up or switch down

the bitrate. Switching the bitrate comes into question when bandwidth

fluctuation is detected. With bitrate adaptation the next video segment can

be send in different quality than the previous segment. Bitrate is chosen

based on bandwidth estimations. Estimations can be done by measuring

throughput or by detecting changes in buffer occupancy. Some algorithms

measure both throughput and buffer occupancy.

KEYWORDS: bitrate, algorithms, multimedia

1 Introduction

Cisco has estimated that video traffic formed 81% of consumer Internet

traffic and 70% of business Internet traffic in 2021 [1]. This number

is expected to grow in 2022. Bitrate adaptation algorithms can be uti-

lized during video streaming events. Additionally, same algorithms can

be applied for other kinds of multimedia streams. Bitrate can be scaled

up or scaled down when the amount of available bandwidth fluctuates

[2]. Bandwidth fluctuation can happen for a variety of reasons. Some of

the reasons include changes in signal strength or in network congestion

[2]. Bitrate adaptation algorithms operate by adapting to these changes.

Bitrate adaptation algorithms provide the best possible bitrate for the

client, given the circumstances, such as the network congestion in any

given time. Streaming service providers use these algorithms to ensure

high quality of experience for their customers [2]. The purpose of this

work is to introduce bitrate adaptation algorithms and compare them. In

this work the form of multimedia discussed is video. Video stream is more

bandwidth intensive compared to other forms of media such as audio mak-

ing the bitrate adaptation for video particularly beneficial.

In the second section we will overview streaming multimedia content

from the server to the client. Third section introduces different types of

bitrate adaptation algorithms. In forth section bitrate algorithm testing

is done with Sabre. Additionally, other research findings related to algo-

rithms introduced in this work will be further discussed.

2 An overview of streaming multimedia from server to the client

When video is sent from the server to the client, the video is first encoded

[6]. Encoding compresses the video to bitstream, which is is transmit-

ted over the network [6]. Multimedia content, such as video is sent from

server to the client in segments [17]. The client uses a decoder to decode

the encoded bitstream back to the original form. This process is done con-

tinuously as the video stream is requested from server to client.

Client utilizes a playback buffer to store the downloaded video segments.

Video segment can be played by the client when certain number of bytes of

the current segment is downloaded [17]. During this download and play

process, bitrate adaptation algorithms are needed. In the case that the

available bandwidth is reduced, the client’s playback buffer starts to fill

and if the playback buffer is full client will experience events of rebuffer-

ing and stops in video playback [4]. The reduction of available bandwidth

occurs when network congestion is increasing [2]. Transrating can be

used to reduce the bitrate of the video [6]. After transrating the video will

still have the same media format. That is, the encoding remains the same

[6]. Transrating makes the live video stream more scalable. Additionally,

the amount of required bandwidth can be reduced by using transrating

[6].

Adaptive bitrate algorithms for live streaming have not been researched

as much as bitrate algorithms for video on demand streaming [10]. De-

veloping bitrate adaptation algorithms for live video streaming is harder

than developing these algorithms for video on demand streaming. Live

streaming bitrate adaptation has additional requirements such as main-

taining low latency [18]. In live streaming latency is caused by events

such as uploading, encoding, downloading and decoding the source stream

[10]. When we compare this process on video on demand streaming, there

are additional events. Video on demand streams are already uploaded

to the server and each video segment is already encoded with different

bitrates. Figure 1 encapsulates the idea of bitrate adaptation.

Figure 1. Screenshots taken from a couple second video record of Aalto course CS-E4260.
Original bitrate in the left most picture was approximately 420 kbits. To
demonstrate the bitrate adaption the screenshot in the center was taken from
a video which was transrated to 90 kbits. The right most screenshot is taken
from video transrated to 40 kbits. During video stream, bitrate is reduced from
left to right as the network congestion increases. When network congestion is
decreased from right to left, available amount of bandwidth increases, and the
bitrate of the video is increased.

3 Types of bitrate adaptation algorithms

3.1 Throughput-based adaptation

Throughput-based bitrate adaptation considers only the amount of through-

put when deciding in which bitrate the next video segment will be send

[11]. Throughput is calculated as a ratio of size of the video segment and

delivery time of this segment [11]. Throughput-based adaptation works

by estimating the available throughput between the server and client [16].

At the most basic level, the initial throughput for some interval i can be

used to estimate the throughput for the next (i+ 1) segment of the video:

T (i) = T e(i+ 1) [11].

This measurement produces instant throughput [11]. Since this defini-

tion is too sensitive to any bandwidth fluctuation, which might be very

short-termed, other types of throughput estimation is usually used, such

as smoothed throughput [11]. Throughput is used to estimate amount

of network bandwidth to obtain sustainable bitrate and as a metric to

detect network congestion [12]. Based on the average throughput, the

bitrate can be either switched up if the available bandwidth exceeds the

bitrate of the media, or the bitrate can be switched down if the fetch time

for current media segment is less than the switch down threshold [12].

Having switch down threshold enables to detect network congestion be-

fore the client’s playback buffer is fully filled [12]. This prevents buffer

overflows and helps the client to save network bandwidth [12]. Exam-

ples of throughput-based algorithms include Squad, Festive and PANDA

[16][19].

Festive algorithm promotes fairness in addition to bitrate selection [21].

When multiple clients are competing for bottlenecked link, network re-

sources should be allocated equally [21]. Festive computes harmonic mean

of the latest throughput estimates to find the amount of available band-

width after which reference bitrate is computed [21]. The bitrate can

be decreased after a chunk of the next video segment is downloaded for

clients which have higher bitrate and increased for clients which have

lower bitrate [21]. The idea is that bitrate for each client will converge to

amount which is allocated fairly [21].

3.2 Buffer-based adaptation

Clients have playback buffer where downloaded segments are stored. Buffer

occupancy is measured in seconds of video [14]. Each second one second

is played to the user [13]. This video second is then removed from the

buffer [13]. The rate in which the buffer occupancy develops depends on

video rate R(t) of the segment and on the download rate C(t) [13][14].

When the ratio of download rate C(t) and video rate R(t) is less than one

the playback buffer shrinks and when the ratio is greater than one buffer

occupancy grows [13][14]

C(t)/R(t) < 1 decrease

C(t)/R(t) > 1 increase

Buffer-based adaptation selects the bitrate for the next video segment

based on the buffer occupancy level. In buffer-based adaptation there ex-

ists multiple thresholds. Clients buffer occupancy amount is somewhere

between these thresholds. An example of thresholds for playback buffer:

0 < B1 < B2 < B3 < Bmax [11]

Bitrate can be scaled up or down or it can remain the same as the buffer

occupancy level develops between these thresholds. Suitable bitrate and

state of the network can be determined from the speed in which the play-

back buffer is filling up [19]. Thus, the estimation of the current through-

put is obtained from buffer level [11]. When the buffer has become full

the estimation of throughput is set to equal the previous estimation of

throughput and it will be multiplied by down-scaling factor [11]. Some

buffer-based algorithms are BBA, BOLA and ELASTIC [16][19]. BBA al-

gorithm decides which bitrate will be selected based on Quality of Expe-

rience metrics, which are used as coefficients for the mapping function

which does the bitrate selection [19]. The amount of current throughput

is determined indirectly [19]. This is generally true for all buffer-based

adaptation algorithms. BOLA algorithm inspects two performance met-

rics: time-average expected playback utility and expected time that is not

spend rebuffering [20]. Time-average expected playback utility is a func-

tion of the segments, which has already been viewed by the client [20].

Expected time that is not spend rebuffering can be seen as a metric of

video playback smoothness [20]. Algorithm works by maximizing these

metrics using Lyapunov optimization [20]. Video playback is divided in

time slots [20]. For each timeslot the decision is made whether to down-

load the next video segment or not. When the playback buffer is full the

next segment won’t be downloaded. When the playback buffer has avail-

able space the bitrate of next segment is decided using stochastic opti-

mization between previously mentioned time-average expected playback

utility and expected time that is not spend rebuffering [20].

Buffer-based adaptation is also used in live streaming in addition to

video on demand streaming. However, there is one key difference: in-

stead of having fixed thresholds for buffer level, the algorithm uses dy-

namic thresholds [10]. For live streamed multimedia, dynamic threshold

usage offers some advantages [10]. Because the buffer is not bound to

fixed thresholds, some drawbacks associated with having too long thresh-

old length can be avoided [10]. Mainly, having a too large length would

cause initial buffering delays and when the bandwidth fluctuates, more

frequent stops in video playback would occur [10]. Algorithm prevents

buffer starvation by setting bitrate to equal estimated bandwidth when

buffer occupancy is less than dynamic underflow-threshold θ [10]. When

the buffer occupancy is higher than dynamic overflow-threshold, higher

bitrate than estimated bandwidth is selected [10]. Unlike in video on

demand streaming, in live streaming the buffer will never overflow [10].

This is simply because the server can produce only t seconds of video at

startup and the client can only download the amount, which has already

been produced, namely the amount of t seconds [10]. In live streaming

overflow-threshold is used to utilize fully the available amount of band-

width and to maximize Quality of Experience by selecting the best bitrate

rather than detecting actual buffer overflows [10]. In essence the dynamic

threshold algorithm can be summarized in the following idea: When there

are fluctuations in bandwidth the goal is to ensure continuous playback

and when the state of the network can be considered stable, the focus is

to provide best quality in terms of bitrate [10].

3.3 Hybrid adaptation

3.3.1 Conventional algorithms

Throughput algorithms and buffer-based adaptation algorithms both have

their drawbacks [27]. Throughput algorithms make the bitrate selection

based on the most recent bandwidth estimation [27]. This can lead to

overestimating the amount of bandwidth and lead to selection of too high

bitrate [27]. This tends to happen when the amount of available band-

width varies often [27].

Buffer-based adaptation is relying on estimating the bandwidth and bi-

trate based on the occupancy of the buffer [27]. Buffer-based adaptation

estimates the bandwidth based on the source of the stream [27]. As an

example, the source can be Content delivery network (CDN) or a peer.

Content delivery network will probably provide higher bandwidth than a

peer in network would [27]. This will affect the rate in which the buffer

is filling making it possible to miscalculate the amount of available band-

width [27].

Hybrid adaptation combines throughput-based adaptation and buffer-

based adaptation. Bitrate selection is done by Throughput Module and

Buffer Module. When buffer level drops below minimum threshold, Buffer

Module starts requesting next video segments with lower bitrate regard-

less of throughput algorithms estimations [27]. When buffer level is above

the minimum threshold, Throughput Module will select the bitrate for

next video segment instead of the Buffer Module [27].

Model Predictive Control (MPC) is one example of Hybrid adaptation al-

gorithm utilizing throughput estimates and buffer occupancy level when

selecting the bitrate for next video segment [28]. When playback bitrate

equals the average download bitrate, bitrate for the next segment is se-

lected to equal the bitrate of previous segment [28]. When playback bi-

trate is more than download bitrate, the algorithm idles for t seconds [28].

Otherwise, the algorithm executes rate adjustment [28].

A variation of MPC algorithm named iMPC is also used in live stream-

ing in addition to video on demand streaming [22]. Algorithm inspects

network conditions in sliding horizons [22]. Length of one horizon is set

to m = 3 for 3 next video segments [22]. At the beginning of the live

stream system is in initial state x0 [22]. Each state is represented as

xi = [bi-1, ui-1]
T where bi is the buffer length and ui is the bitrate selec-

tion action [22]. For each state the throughput is estimated in horizon m.

Based on this prediction, optimal bitrate ui for each next video segment m

in the horizon is estimated [22]. Quality of Experience metrics are used

throughout the execution of the algorithm [22]. These metrics penalize

rate fluctuations, high latency and video freezes [22]. Reward is given for

high bitrate [22]. By utilizing these Quality of Experience metrics, bitrate

selection action ui for each state xi can be considered as an optimization

problem to maximize Quality of Experience by minimizing the associated

cost function

min
{ui}

m∑

i=1

c(xi, ui)

which is subject to

xi+1 = f(xi, ui)

This process is repeated for all video segments during the playback of the

live stream. To summarize, algorithm predicts the throughput for each

next m segments in horizon [22]. Then algorithm finds the optimal bi-

trate for m given the network conditions [22]. Optimal bitrate is selected

and system is driven to the next state xi+1 [22].

Congestion control adaptation is another type of hybrid adaptation. Al-

gorithms such as Google Congestion Control can adjust sending rate when

congestion is detected at link [3]. Multimedia applications such as Google

Hangouts utilize Google congestion control algorithm [3]. Additionally,

same algorithm is used in other real-time communication applications

and in Chrome web browser in general [3][9]. One-way delay of the trans-

mission is used to infer congestion [3]. Queuing delay is used to estimate

delay variations [3]. Queuing delay q(t) represents time it takes for packet

to reach the receiver once the sender has transmitted said packet. One-

way queuing delay gradient is obtained from the derivative of queuing

delay T q(t) [3]. Formally queuing delay gradient can be represented as

Tq(t) =
q(t)

C
[3]

where C is the link capacity [3]. Buffer q(t) with queue filling rate r(t) is

q̂(t) =




R(t)− C 0 ≤ q(t) ≤ qM
0 otherwise

[3]

To ensure continuous uninterrupted multimedia stream the queue should

be kept small while avoiding the situations where the link C would be

underutilized at the same time. Network congestion is detected when

T̂ q(t) > 0 [3]. When T̂ q(t) = 0 the length of the queue is constant [3]. This

might refer to link underutilization or that queue filling rate is higher

than the capacity of the link [3]. Third option is that the filling rate equals

the link capacity.

For multimedia streams such as video streams the one-way queuing

measurement between sender and receiver can be found by inspecting the

transmission of some video frame i [3]. At the beginning the first packet

which forms this video frame i is send [3]. Each of these packets that

form video frame i has a timestamp T i [3]. Time ti is the time when the

last packet for the ith frame is obtained by the receiver [3]. From this the

one-way delay variation dm(ti) is derived as

dm(ti) = (ti − ti-1)− (T i − T i-1) [3]

3.3.2 Reinforcement learning based algorithms

Reinforcement learning is used to deploy bitrate adaptation policies [23].

Similarly, to throughput and buffer-based adaptation, throughput and

buffer occupancy are points of interest. Reinforcement learning of bi-

trate adaptation utilizes states to learn bitrate adaptation policies [23].

Each state is represented as st = (xt, ot, ~nt) for all steps t where x is the

estimated bandwidth available for downloading next video chunk, o rep-

resents buffer occupancy and ~n contains sizes for next chunk [23]. Addi-

tionally, the action a is defined for bitrate selection action [23]. At each

step t video chunk is downloaded [23]. Reward mechanism used is defined

as weighted combination of the selected bitrate and stall time of previous

chunk [23]. States s are used as input for neural networks referred as

policy neural networks [23]. The output value of policy neural network is

a priority value qi
t for selecting associated bitrate i [23]. Priority values

are mapped to probability distribution pi
t [23]. From p for bitrate selection

action at the parametrized policy is obtained

πδ(at|st) = [0, 1] [23]

Deploying this kind of bitrate adaptation policy for clients is suggested

to be done in front end service on streaming platforms instead of server

applying these rules for each client [23]. Clients will fetch the most recent

bitrate adaptation policy [23]. Quality of Experience metrics are closely

related for training the model for bitrate adaptation [24]. When video

chunk is played for user either reward is given, or penalty is applied [24].

Reward is given based on segment quality [24]. Penalty is applied based

on quality fluctuations and rebuffering events [24].

4 Testing bitrate adaptation algorithms and comparing them

4.1 Network simulation and bitrate adaptation with Sabre

Testing bitrate adaptation would require setting up hardware to simulate

network or at least setting up virtual machines. To emulate these condi-

tions software called Sabre has been developed [25]. In this section some

algorithms provided by Sabre will be tested, including buffer-based adap-

tation algorithm BOLA, throughput-based network probing bitrate adap-

tation algorithm and hybrid algorithm dynamic. First test had higher

amount of bandwidth ∼ 1,5 Mbps - 5 Mbps. The results of first test are in

first table. Second test was done in more limited network where capacity

ranged from∼ 0.125 Mbps - 1 Mbps. Test results for second test are in sec-

ond table. None of the algorithms required rebufferings during the first

test. Highest average bitrate was achieved with hybrid algorithm in first

test. Second highest was obtained with BOLA algorithm and throughput

algorithm had the lowest average bitrate. During the first test dynamic

algorithm overestimated the bandwidth exactly as often as throughput

algorithm having 103 overestimations. BOLA algorithm had 99 overes-

timations. All algorithms required rebufferings during the second test.

The amount of required rebuffering events for both BOLA and Through-

put algorithms were almost identical with BOLA algorithm requiring 30

rebuffering events and throughput algorithm requiring 32. Dynamic al-

gorithm required most rebufferings having total amount of 39 rebuffering

events. In second test highest average bitrate was obtained with BOLA

algorithm. However, dynamic algorithm obtained almost same average

bitrate. Throughput algorithm had lowest average bitrate. BOLA and dy-

namic had less bandwidth overestimations during the second test. BOLA

did 29 overestimations and dynamic did 49 overestimations. Throughput

algorithm overestimated the bandwidth in 180 occasions. Problem with

Sabre testing was algorithm availability. Sabre had only one implemen-

tation for throughput-based adaptation algorithm and limited amount of

hybrid adaptation algorithms. This made the comparison inconclusive.

Algorithm Time average bitrate Rebuffering events Bandwidth

overesti-

mation

Throughput 1964 0 103

BOLA 2877 0 99

Dynamic 2905 0 103

Algorithm Time Average bitrate Rebuffering events Bandwidth

overesti-

mation

Throughput 296 32 180

BOLA 455 30 29

Dynamic 449 38 49

4.2 Bitrate adaptation comparisons

In research it has been found that buffer-based BOLA algorithm, ELAS-

TIC and PANDA had similar accuracy when estimating throughput [20].

In the same research it was found that hybrid algorithm MPC had more

oscillation in bandwidth prediction than BOLA, ELASTIC and PANDA

[20]. ELASTIC ensures fair bandwidth allocation with network assis-

tance. However, ELASTIC does not consider Quality of Experience met-

rics. When bandwidth fluctuations happen multiple bitrate switches might

happen making the Quality of Experience poor [2]. MPC and BOLA achieved

similar average bitrate, but at times MPC had higher bitrate [20]. How-

ever, more events of rebuffering were observed with MPC than with BOLA

[20]. Like in the test which were conducted in section 4.1, in this re-

search also different network profiles were used. The most noticeable ob-

servation is that MPC had highest amount of rebuffering events in most

of the network test profiles [20]. During Sabre testing hybrid adapta-

tion also had highest amount of rebufferings. However, verifying that

rebufferings are more prevalent in hybrid bitrate adaptation would re-

quire implementing the actual MPC algorithm in Sabre and compare it

with dynamic hybrid algorithm and eventually against throughput and

buffer-based adaptation. Buffer-based BOLA algorithm required rebuffer-

ings only in limited 3g based network [20]. In 3g network measurement

throughput-based PANDA algorithm required even less rebufferings than

BOLA [20]. Even though MPC had most rebufferings in 3g network, MPC

achieved the highest average bitrate [20]. However, the difference be-

tween the average bitrate was very small [20]. It is debatable whether

such a small bitrate gain justifies many more rebufferings compared to

other algorithms.

5 Conclusion

Bitrate adaptation is needed to provide continuous video playback when

the network conditions are fluctuating. When network conditions are sta-

ble bitrate adaptation can be used to maximize the Quality of Experience

for users. Quality of Experience is important metric when bitrate adapta-

tion algorithm is designed. Sometimes the trade-off between high bitrate

and rebufferings must be made. Especially when the amount of avail-

able bandwidth is not enough to ensure both. In reinforcement learning

for bitrate adaptation models are trained based on Quality of Exprerience

metrics. Rewards are given for high bitrate and penalties are applied for

events of rebufferings and for other aspects that affect Quality of Expre-

rience negatively.

Bitrate adaptation can be done as video and other forms of multime-

dia can be streamed from the server to the client in segments. When the

amount of bandwidth changes, bitrate adaptation algorithms react to this

by sending the next segment in different bitrate. Bitrate adaptation for

live streaming is more challenging than bitrate adaptation for video on

demand streaming. In live streaming the video segments are not yet gen-

erated. As the stream is played these segments will be uploaded and en-

coded after which they can be send to the clients. These additional events

will increase latency. Major challenge for live streaming bitrate adapta-

tion is to achieve low latency.

Bitrate adaptation algorithms can be divided in subsections of throughput-

based adaptation, buffer-based adaptation and Hybrid adaptation algo-

rithms. Throughput-based adaptation considers only the estimated amount

of throughput when deciding the bitrate for the next video segment. Buffer-

based adaptation selects the bitrate based on the occupancy level of client’s

playback buffer. Hybrid bitrate adaptation combines throughput-based

and buffer-based bitrate adaptation algorithms. In Sabre testing it was

found that Hybrid adaptation algorithm dynamic had the best average bi-

trate in first test. BOLA and dynamic had almost same average bitrate

in second test when bandwidth was more limited. However, dynamic re-

quired most rebufferings of all algorithms. Throughput-based adaptation

algorithm had worst average bitrate in both tests.

6 References

1. United States 2021 Forecast Highlights - Cisco 2021, accessed 11 Jan-

uary 2022, https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/

vni-forecast-highlights/pdf/Global_2020_Forecast_Highlights.pdf

2. A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer and R. Zimmer-

mann, "A Survey on Bitrate Adaptation Schemes for Streaming Media

Over HTTP," in IEEE Communications Surveys & Tutorials, vol. 21, no.

1, pp. 562-585, Firstquarter 2019, doi: 10.1109/COMST.2018.2862938.

3. Carlucci, Gaetano & De Cicco, Luca & Holmer, Stefan & Mascolo,

Saverio. (2016). Analysis and design of the google congestion control for

web real-time communication (WebRTC). 1-12. 10.1145/2910017.2910605.

4. Jabbar, Saba & Kadhim, Dheyaa & Li, Yu. (2018). An Adaptive Bi-

trate Algorithm Based on Estimation and Video Adaptation for Improving

QoE in DASH. 10.2991/csece-18.2018.41.

5. Saamer Akhshabi, Ali C. Begen, and Constantine Dovrolis. 2011.

An experimental evaluation of rate-adaptation algorithms in adaptive

streaming over HTTP. In Proceedings of the second annual ACM confer-

ence on Multimedia systems (MMSys ’11). Association for Computing Ma-

chinery, New York, NY, USA, 157–168. DOI:https://doi.org/10.1145/1943552.1943574

6. B. Jedari, G. Premsankar, G. Illahi, M. D. Francesco, A. Mehrabi

and A. Ylä-Jääski, "Video Caching, Analytics, and Delivery at the Wire-

less Edge: A Survey and Future Directions," in IEEE Communications

Surveys & Tutorials, vol. 23, no. 1, pp. 431-471, Firstquarter 2021, doi:

10.1109/COMST.2020.3035427.

7. D. Madhuri and P. C. Reddy, "Performance comparison of TCP, UDP

and SCTP in a wired network," 2016 International Conference on Commu-

nication and Electronics Systems (ICCES), 2016, pp. 1-6, doi: 10.1109/CESYS.2016.7889934.

8. D. Sisalem and A. Wolisz, "LDA+: a TCP-friendly adaptation scheme

for multimedia communication," 2000 IEEE International Conference on

Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the

Fast Changing World of Multimedia (Cat. No.00TH8532), 2000, pp. 1619-

1622 vol.3, doi: 10.1109/ICME.2000.871080.

9. G. Carlucci, L. De Cicco, S. Holmer and S. Mascolo, "Congestion Con-

trol for Web Real-Time Communication," in IEEE/ACM Transactions on

Networking, vol. 25, no. 5, pp. 2629-2642, Oct. 2017, doi: 10.1109/TNET.2017.2703615.

10. L. Xie, C. Zhou, X. Zhang and Z. Guo, "Dynamic threshold based

rate adaptation for HTTP live streaming," 2017 IEEE International Sym-

posium on Circuits and Systems (ISCAS), 2017, pp. 1-4, doi: 10.1109/IS-

CAS.2017.8050574.

11. T. C. Thang, H. T. Le, A. T. Pham and Y. M. Ro, "An Evaluation of

Bitrate Adaptation Methods for HTTP Live Streaming," in IEEE Journal

on Selected Areas in Communications, vol. 32, no. 4, pp. 693-705, April

2014, doi: 10.1109/JSAC.2014.140403.

12. Chenghao Liu, Imed Bouazizi, and Moncef Gabbouj. 2011. Rate

adaptation for adaptive HTTP streaming. In Proceedings of the second

annual ACM conference on Multimedia systems (MMSys ’11). Association

for Computing Machinery, New York, NY, USA, 169–174. DOI:https://doi-

org.libproxy.aalto.fi/10.1145/1943552.1943575

13. Y. Sani, A. Mauthe and C. Edwards, "Adaptive Bitrate Selection: A

Survey," in IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp.

2985-3014, Fourthquarter 2017, doi: 10.1109/COMST.2017.2725241.

14. Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trun-

nell, and Mark Watson. 2014. A buffer-based approach to rate adaptation:

evidence from a large video streaming service. SIGCOMM Comput. Com-

mun. Rev. 44, 4 (October 2014), 187–198. DOI:https://doi.org/10.1145/2740070.2626296

15. Z. Li et al., "Probe and Adapt: Rate Adaptation for HTTP Video

Streaming At Scale," in IEEE Journal on Selected Areas in Communica-

tions, vol. 32, no. 4, pp. 719-733, April 2014, doi: 10.1109/JSAC.2014.140405.

16. Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2019. From

Theory to Practice: Improving Bitrate Adaptation in the DASH Reference

Player. ACM Trans. Multimedia Comput. Commun. Appl. 15, 2s, Article

67 (April 2019), 29 pages. DOI:https://doi.org/10.1145/3336497

17. K. Miller, E. Quacchio, G. Gennari and A. Wolisz, "Adaptation algo-

rithm for adaptive streaming over HTTP," 2012 19th International Packet

Video Workshop (PV), 2012, pp. 173-178, doi: 10.1109/PV.2012.6229732.

18. Huan Peng, Yuan Zhang, Yongbei Yang, and Jinyao Yan. 2019. A Hy-

brid Control Scheme for Adaptive Live Streaming. In Proceedings of the

27th ACM International Conference on Multimedia (MM ’19). Association

for Computing Machinery, New York, NY, USA, 2627–2631. DOI:https://doi-

org.libproxy.aalto.fi/10.1145/3343031.3356049

19. Jessica Chen, Henry Milner, Ion Stoica, and Jibin Zhan. 2021.

Benchmark of Bitrate Adaptation in Video Streaming. J. Data and Infor-

mation Quality 13, 4, Article 22 (December 2021), 24 pages. DOI:https://doi-

org.libproxy.aalto.fi/10.1145/3468063

20. K. Spiteri, R. Urgaonkar and R. K. Sitaraman, "BOLA: Near-Optimal

Bitrate Adaptation for Online Videos," in IEEE/ACM Transactions on

Networking, vol. 28, no. 4, pp. 1698-1711, Aug. 2020, doi: 10.1109/TNET.2020.2996964.

21. J. Jiang, V. Sekar and H. Zhang, "Improving Fairness, Efficiency,

and Stability in HTTP-Based Adaptive Video Streaming With Festive," in

IEEE/ACM Transactions on Networking, vol. 22, no. 1, pp. 326-340, Feb.

2014, doi: 10.1109/TNET.2013.2291681.

22. L. Sun, T. Zong, S. Wang, Y. Liu and Y. Wang, "Towards Optimal

Low-Latency Live Video Streaming," in IEEE/ACM Transactions on Net-

working, vol. 29, no. 5, pp. 2327-2338, Oct. 2021, doi: 10.1109/TNET.2021.3087625.

23. Mao, Hongzi & Chen, Shannon & Dimmery, Drew & Singh, Shaun

& Blaisdell, Drew & Tian, Yuandong & Alizadeh, Mohammad & Bakshy,

Eytan. (2020). Real-world Video Adaptation with Reinforcement Learn-

ing.

24. Y. Zhang and Y. Liu, "Buffer-Based Reinforcement Learning for

Adaptive Streaming," 2017 IEEE 37th International Conference on Dis-

tributed Computing Systems (ICDCS), 2017, pp. 2569-2570, doi: 10.1109/ICDCS.2017.146.

25. Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2018. From

Theory to Practice: Improving Bitrate Adaptation in the DASH Reference

Player. In MMSys ’18: 9th ACM Multimedia Systems Conference, June

12-15, 2018, Amsterdam, Netherlands. https://doi.org/10.1145/3204949.3204953

26. Hiba Yousef, Jean Le Feuvre, Paul-Louis Ageneau, and Alexandre

Storelli. 2020. Enabling adaptive bitrate algorithms in hybrid CDN/P2P

networks. In Proceedings of the 11th ACM Multimedia Systems Confer-

ence (MMSys ’20). Association for Computing Machinery, New York, NY,

USA, 54–65. DOI:https://doi-org.libproxy.aalto.fi/10.1145/3339825.3391859

27. M. Aguayo, L. Bellido, C. M. Lentisco and E. Pastor, "DASH Adapta-

tion Algorithm Based on Adaptive Forgetting Factor Estimation," in IEEE

Transactions on Multimedia, vol. 20, no. 5, pp. 1224-1232, May 2018, doi:

10.1109/TMM.2017.2764325.

28. C. Zhou, X. Zhang, L. Huo and Z. Guo, "A control-theoretic approach

to rate adaptation for dynamic HTTP streaming," 2012 Visual Communi-

cations and Image Processing, 2012, pp. 1-6, doi: 10.1109/VCIP.2012.6410740.

29. Te-Yuan Huang, Chaitanya Ekanadham, Andrew J. Berglund, and

Zhi Li. 2019. Hindsight: evaluate video bitrate adaptation at scale. In

Proceedings of the 10th ACM Multimedia Systems Conference (MMSys

’19). Association for Computing Machinery, New York, NY, USA, 86–97.

DOI:https://doi-org.libproxy.aalto.fi/10.1145/3304109.3306219

Firewalls and filtering policies for small
networks

Martin Spiering – martin.spiering@aalto.fi

Tutor: Aura Tuomas

Abstract

With the rise of cyberattacks, it is necessary to correctly protect one netwrok

against external threats and attacks. But setting up efficient filtering rules

and firewalls is not that easy. There is, however, a common basis from

which one can start and this is what this article aims to provide: what

common basis can be used for firewall and filtering rules.

KEYWORDS: network, firewall, security

1 Introduction

Cyber-attacks have risen sharply in 2021. 2021 saw a lot of DDoS attacks

[10, 12] and saw a lot of new vulnerabilities: 18,000 at the beginning of

December 2021 and 55% of them requires no privileges to be exploited

[8]. Allianz, a major European insurance company, stated in its last Risk

Barometer that cyber incidents were the most important risks for busi-

nesses in 2022.[1]

IoT is also another threat for companies as they are often poorly secured.

They often used default passwords that are more often than not let as they

are. [9] This means they can be easily compromised and this has lead

to some big DDoS attacks: for instance OVH suffered a 1.5Tbps DDoS

attacks due to more than 150,000 IoT devices in 2016. [5] They can also

be leverage to have an easy access to the internal network of a company.

Companies need to protect their network against these external threats

and firewalls and filtering rules are the first step to that. We will more

study those in the context of small networks.

2 Context

In this article, we will study a practical case: see what the current rules

are, what can be improved and if we can use that specific case to draw

some general rules that can be applied for all small networks.

We will study the firewall and filtering policies set up by MiNET. MiNET

is a student non-for profit association of the computer science engineering

school Telecom SudParis located in Evry, France. They specialize in net-

work as their goal is to provide a working Internet connection to all the

students in their student room on the campus. They have set up over the

years a fully working infrastructure in order to achieve that goal includ-

ing security measures such as firewall and filtering policies. It is fully

managed by around 20 students and provide approximately 700 students

with a fiber connection. We will study what kind of firewall and filtering

policies they have set up, see if they can improve and finally try to draw

some general conclusions for firewall and filtering policies in the context

of small networks.

We will see in section 3 the existing protections measures, what can be

improved in section 4, what are the challenges posed by IPv6 in section 5

and finally draw some general rules about firewalls and filtering rules in

section 6.

3 Existing protection measures

3.1 Network overview

Before we start to analyze the already existing firewall rules and protec-

tions existing, I must first give an overview of how our network is struc-

tured.

Telecom SudParis has allocated a /16 subnet of IPv4 and /48 subnet of

IPv6. That allowed the IT department of the school who gives us the

Internet connection to allocate us quite a substantial amount of IPv4 and

IPv6 addresses to use and to give to our subscribers. We have a fiber

connected to the IT department with a bandwidth of 1 Gbps currently but

it will be upgraded very soon to 10 Gbps in order to adapt to the growing

bandwidth demand of our subscribers mainly due to streaming.

We have a /21, /23 and a few /24 of IPv4 subnets and a /57 and a /63

IPv6 subnets. That means around 3,000 IPv4 addresses and a virtually

unlimited amount of IPv6 addresses for us to use. They are allocated as

follow :

• There are 7 student buildings. Each of them has a /24 IPv4 subnet and

a /64 IPv6 subnet for wired connections.

• The Wi-Fi is separated from that and has 3 /24 IPv4 subnets and no

IPv6 subnet.

• Our production servers have a /25 IPv4 subnet and a /64 IPv6 subnet.

• Our development servers have a /26 IPv4 subnet and a /64 IPv6 subn.et

• Our network equipment such as switches, routers, etc. are on a private

IPv4 network that has no Internet connection and is not reachable from

outside.

• We also propose a hosting service that is on its own /24 IPv4 subnet and

/64 IPv6 subnet.

We require each student to register each of their device using their MAC

address to be able to connect to our network. When they register their

devices, each device is allocated an IPv4 and IPv6 address that they will

use when they connect to our network. We also require them to keep their

devices up to date.

3.1.1 Internet access

The IT department of Telecom SudParis provides us with an Internet

connection. They are connected to the Internet through Internet Service

Providers – Zayo and Renater – and an Internet Exchange Point – France

IX. We are connected to the IT department through a fiber between their

router and ours.

3.1.2 Wired connections

For the wired connections, as they are less and less used, we are able to

provide an IPv4 and an IPv6 address by device. The device can connect to

our network using the 802.1X protocol and using PEAP-MSCHAPV2 as

the authentication protocol.

Having public addresses, the devices are reachable from the Internet.

This allow our subscribers to host their web server for instance with prior

agreement from us.

3.1.3 Wi-Fi connections

For the Wi-Fi connections, as they are widely used today, we are not able

to do as for the wired connections and provide each device an IPv4 and

an IPv6 address. Instead, we provide each subscriber with a unique IPv4

address for all of their device. Their devices are then in a private isolated

network and are behind a NAT to reach the Internet. We do not use IPv6

addresses for the Wi-Fi connections.

To connect to our Wi-Fi protocol, the devices have to support WPA2-

Enterprise with 802.1X using PEAP-MSCHAPV2 as the authentication

protocol.

3.1.4 Production servers

For our production servers, the default rule is that they have no public

IPv4 or IPv6 address unless they need it. They are in a private IPv4 net-

work not reachable from the Internet. If they need access to the Internet,

there is a proxy for them to use.

If they need to be reached from the Internet, we have a public reverse

proxy for all kind of web services and it covers more than 75% of our needs.

For the servers that need a direct Internet connection and be reachable

from the Internet such as our email servers, they are allocated a public

IPv4 and IPv6 address. That explains why we only need a /25 IPv4 subnet

for our productions servers as most of them does not require a public IPv4

address.

3.1.5 Development servers

The same default rule applies for our development servers: they have no

public IPv4 or IPv6 address. That rule is even stricter has they can have a

public IP address only if the service they are running requires it to behave

correctly. For instance, when we installed a Matrix instance, we needed

a public IP address for the federation to be able to work properly. Apart

from that, only very specific servers have a public IP address such as

the proxy server to allow our server to reach the Internet. That explains

why we are only using a /26 IPv4 subnet as servers that have a public IP

address are the exception.

3.1.6 Hosting service

We provide our subscribers with up to 2 Linux VMs for their personal

or student. Each have an IPv4 and an IPv6 public address to have a

full Internet access and be fully reachable from the Internet to meet the

various needs.

3.2 Firewall

Our network is behind two firewalls. The first one is the firewall of the

IT department which is located at the limit of their network with the

Internet. We do not have access to their firewall rules, but they filter

any incoming connections on any ports <= 1024 unless we ask them to

not filter those ports with good justifications – for instance, to host a web

service. The justification of that firewall rule is that any port <= 1024 is a

privileged port that needs admin privileges to be used. It reduces the risk

of someone gaining full access of a machine that is running a compromised

service publicly reachable from the Internet. The attacker would need to

do a privilege escalation to gain an admin access.

Then, there is our own firewall between our router and theirs with our

own firewall rules. We rely on a Linux distribution and iptables [6] as

a firewall. We could have also used pfSense [2], but we preferred to use

iptable as it works with any Linux distributions whereas pfSense is based

on FreeBSD and we are more comfortable with Linux.

We filter packets that have an invalid state using the conntrack module

of iptables. We also drop any TCP packet that have an anormal combina-

tion of flagged raised:

• NEW without SYN

• various combination of christmas tree scans used by software such as

Nmap: FIN,SYN,RST,PSH,ACK,URG for instance [11]

• FIN,SYN or SYN,RST or no flag at all that are used for port scanning

We drop SYN TCP packets after too many of them have been sent by the

same source in a small amount of time to avoid SYN flooding.

We also drop packets that we know have a spoofed IP or that are using

a private IP as a source for incoming traffic.

We have more precise rules based on the destination or the source of the

traffic.

3.2.1 Wired and Wi-Fi connections

For our subscribers, we drop any entering connection on port <= 1024 for

the same reason as the IT department. But for the remaining entering

connections, whether there are new or already established connections,

they are not filtered.

We filter a few ports based on the fact that they are more often that

not used for malicious intents and should not be exposed to the public

Internet. We filter the following ports:

• ports 135 and 1025: used for RPC

• ports 137 to 139: used for Netbios

• ports 445: used for microsoft-ds

• ports 3450 and 5000: used by various trojans

• ports 5554 and 9996 used by the Sasser Worm

We are also filtering common P2P ports as the French law requires us to

do so. As such, ports 1214, 4672, 6346, 6347 and 6881 to 6999 are filtered.

We do not filter any outgoing traffic.

3.2.2 Production and development servers

By default, any incoming traffic is dropped. We allow incoming traffic

based on a whitelist that correspond with the services that we are pro-

vided. For instance, traffic related to web for our reverse proxy is accepted.

Same for the traffic related to email for our mail server.

We have a VPN server in order to reach our network from the outside

and it relies on a key authentication.

Outgoing traffic is not filtered.

3.2.3 Hosting service

We do not filter any kind of traffic for the VMs that we host for our sub-

scribers. They are required to properly secure their own VMs and to im-

plement their own firewall if needed.

3.2.4 Mitigation of DoS and DDoS attakcs

We already have been subject to DoS attacks that have completely satu-

rated our bandwidth and firewall. The solution for that is quite simple:

blacklist the IP of attacker and ask the IT department to do the same on

their firewall to reduce the charge on the network of the school. The IT

department also ask the Internet provider to blacklist the IP to reduce the

bandwidth used at the highest point possible.

As for DDoS attacks, we have not been a subject of one, but if one would

happen, the only thing we could do is to hope our network and firewall

will sustain the attack until it stops as there is not much to do expect ban

some recurring IPs.

3.3 VLANs

We make a heavy usage of VLANs to isolate different kind of traffic.

3.3.1 Wired and Wi-Fi connections

Each building has its own VLAN. The Wi-Fi has also its own VLAN. The

goal is not to isolate the traffic as it is only public Internet traffic but

rather to be able to see easily the destination or the source of the traffic.

3.3.2 Production and Development servers

Each have their own VLAN with a private network in order to isolate

them from the Internet as much as possible and to isolate them from other

kind of internal traffic.

3.3.3 Hosting service

It has its own VLAN to isolate it from the rest of our network as virtually

any kind of traffic can go and come from there. It is up to the users to cor-

rectly secure their VMs, including deploying a firewall to filter the traffic

of their VMs.

3.4 NAT

We only use NATs for the Wi-Fi connection. The main goal is to reduce

the number of IPv4 addresses used but it allows us also to isolate devices

by subscriber and reducing the risk for a poorly protected IoT device to

be reached and compromised from the Internet. And even if it is com-

promised, it can only reach the device from the same subscriber, not the

devices of other subscribers. But that isolation is only available for Wi-Fi

connection and not wired connection even if IoT devices relies rather on

Wi-Fi than on wired connections.

4 Improvements

4.1 Firewall

We could filter any new incoming connections as it is only useful and le-

gitimate if you are hosting a service. Even if we want to allow our sub-

scribers to host their own service, we could always allow new incoming

connections on a case by case basis.

There is no need to filter the outgoing traffic as we do not want to restrict

the usage of our subscribers. Furthermore, such restriction are quite easy

to circumvent using HTTP for instance which cannot be blocked for obvi-

ous reasons.

4.2 NAT

We could also implement a NAT for the wired connection to have a com-

plete isolation of devices by subscribers. So if a device is compromised,

it cannot reach the other subscribers and it is restrained to its own NAT

and private network even if it can still reach the Internet. That would

also make any IoT device connected using a wired connection not directly

reachable from the Internet. Knowing that quite some of them have de-

fault admin passwords, it would be better for them not to be reachable

from the Internet.

5 The challenges posed by IPv6

The issue with IPv6 vs IPv4 is that we do not own the IP address block.

Our Internet provider – the IT department for MiNET or Renater for

the university, Zayo does not provide the university with IPv6 capabil-

ity – could change our IP address block or we could change our Internet

Provider. For MiNET, the last option is not possible but the university

could theoritically change its Internet provider.

That is really unlikely as Renater is the national Internet provider for

all public universities in France. And as their is no shortage of IPv6 ad-

dresses and there will not be one most likely – with 264 /64 IPv6 blocks,

we should be fine –, it is also very unlikely that Renater would change the

IPv6 block of the university.

The next issue is that, by default, devices are only communicated the

IPv6 prefix and then the IPv6 address is selected by the device passively.

There is no active attribution. We could not let that default behaviour

as we are required by the law, that is why we give a fixed IPv6 address

for each device registered when it is registered as describe is section 3.1.

The devices can get their attributed IPv6 address by DHCP. And for our

servers, we fixed their IPv6 addresses once and for all at the installation

of the OS. So we know exactly to which part of our network correspond

which IPv6 address.

Furthermore, the IT department gave us enough IPv6 blocks to clearly

separate the different parts of our network as describe in section 3.1 too.

Finally, our firewall rules are based on where the packet is inbound in our

network.

So we just had to copy the IPv4 rules, change the IPv4 addresses to

their corresponding IPv6 addresses in our network map and we were able

to setup IPv6 filtering rules quite easily when we deployed IPv6 almost a

decade ago.

6 Conclusion

A set of general rules that could be applied as a base for firewalls and

filtering rules would be the following:

• filter every incoming new connection by default

• authorize case by case any new connection and the strict minimum, only

for services that really need to be reachable from the Internet

• no need to block outgoing traffic as it is very easy to circumvent these

rules using HTTP for instance

• use VLANs and NATs to isolate different parts of the network according

to the needs

• isolate completely IoT devices if you cannot change the default pass-

word. In general, IoT devices should be rather isolated from the rest of

the network as we have less control over it as over computers

It could be summarized like this: only expose the bare minimum and

have a structured network.

The following references were used to analyze and make improvements

to the study case. [3, 7, 4]

References

[1] Allianz. Allianz risk barometer 2022. 2022. https://www.agcs.allianz.com/news-
and-insights/reports/allianz-risk-barometer.html.

[2] Electric Sheep Fencing LLC and Rubicon Communications LLC. pfSense Documentation,
16th of February 2022. https://docs.netgate.com/pfsense/en/latest/.

[3] Craig Hunt. TCP/IP Network Administration. O’Reilly, 3rd edition, 2002.

[4] LLC NetCitadel. Firewall Builder Cookbook. 2011.

[5] Pierluigi Paganini. 150,000 IoT Devices behind the 1Tbps DDoS attack
on OVH . 2016. https://securityaffairs.co/wordpress/51726/cyber-crime/ovh-
hit-botnet-iot.html.

[6] Gregor N. Purdy. Linux iptables Pocket Reference. O’Reilly, 1st edition,
2004.

[7] Michael Rash. Linux Firewalls, Attack, Detection and Response. O’Reilly,
2007.

[8] RedScan. Redscan analysis of NIST NVD reveals record number of vulner-
abilities in 2021. 2021. https://www.redscan.com/news/nist-nvd-analysis-
2021-record-vulnerabilities/.

[9] Silviu Stahie. Common Credentials Criminals Use in IoT Dictionary At-
tacks Revealed. 2016. https://www.bitdefender.com/blog/hotforsecurity/common-
credentials-criminals-use-in-iot-dictionary-attacks-revealed/.

[10] Alethea Toh. Azure DDoS Protection—2021 Q3 and Q4 DDoS attack trends.
2022. https://azure.microsoft.com/en-us/blog/azure-ddos-protection-2021-
q3-and-q4-ddos-attack-trends/.

[11] Wikipedia. Christmas tree packet, 9th of March 2022.

[12] Omer Yoachimik and Vivek Ganti. DDoS Attack Trends for Q4 2021. 2022.
https://blog.cloudflare.com/ddos-attack-trends-for-2021-q4/.

Approximation Algorithms for Clustering
Problems

Kasper Henriksson
kasper.henriksson@aalto.fi

Tutor: Kamyar Khodamoradi

Abstract

This paper presents the k-median problem with focus on approximation

algorithms solving a set of problems called facility location problems. The

main intention is to compare and show the different approximation ratios

and approaches of the local search algorithms used in capacitated, unca-

pacitated and mobile facility location problems.

This shows that few advancements have been made in the area of lo-

cal search algorithms during the past twenty years, although recent pa-

pers do show a slight improvement in the approximation ratio, achieving a

(2.836 + ϵ) approximation scheme using a fixed number of p swaps. Many

of the improvements do combine several approximation techniques, such

as linear programming and greedy heuristics, to achieve better results.

Future research should could focus on the mobile facility location prob-

lem and achieving improved approximation schemes, as it could help solve

and further refine the response to environmental disasters and crises, to

better accommodate the needs of humans.

KEYWORDS: k-median problem, approximation algorithms, local search,

location problem

1 Introduction

Approximation algorithms are a set of algorithms that aim to solve NP-

hard problems by approximating them instead of producing an optimal

solution, and they are used when the optimal solution is not known or

cannot be computed in polynomial time.

Approximation algorithms are popular in solving the clustering k-median

problem, and Arora et al. [2] define the problem as where a set S of n

points in a metric or Euclidean space is given, in addition to a positive

integer k. The k-median problem is then to locate k medians, while mini-

mizing the sum of the distances from each of the points of S. The problem

is considered a clustering problem, where objects in a set with the same

characteristics are grouped together, such that similar objects and char-

acteristics are clustered together.

The k-median problem is closely related to the k-means problem. How-

ever, the k-median problem does not take into account the cost of each

point in the set S. One popular set of algorithms for solving the k-median

problem are the local search algorithms.

The algorithms that solve the k-mediam problem can be applied to sev-

eral different areas, such as pattern classification and data mining, and

more practically the facility location problem [2]. The facility location

problem relates to finding the optimal location of a facility, such as a ware-

house, while satisfying the clients needs and minimizing the cost [8]. By

finding an efficient algorithm, businesses can optimize for profit.

This paper examines local search algorithms, a type of algorithm used to

solve the k-median problem, in facility location problems. The outline is

as follows. Section 2 presents the k-median problem and algorithms more

in depth and variations of it. Section 3 discusses the usage of k-median

algorithms in local search problems for facility location problems. Section

4 discusses the findings in the paper. Section 5 concludes the paper with

remarks and conclusions.

2 K-median problem

This section discusses and introduces the K-median problem in general,

and gives several examples for different algorithms with different run-

times.

2.1 Introducing the k-median problem

The k-median problem is a commonly researched clustering problem, that

aims to partition a set of points into clusters that have more in com-

mon with respect to a defined characteristic [5]. This problem can be

approximated by using a set of algorithms called local search algorithms.

Charikar et al. [4] further state that out of the points, a fixed number

of k-points are chosen to be the centers of their respective clusters. The

algorithm then goes through the rest of the points in the set S assigning

each point to its respective cluster, measuring the distance between each

point and the center. The distance between the point and the center is

defined as the cost, where the goal is to find an optimal k that minimizes

the sum of the costs. The k-median problem and algorithms that solve

the problems using local search algorithms, also solve the facility location

problem, where the optimization problem is more practical and refers to

locations in a metric space.

When discussing the k-median problem and the related approximation

algorithms, one refers to the cost of the algorithm as how close the solution

is to the optimal solution as a factor of OPT. For example, in a minimiza-

tion problem, a ρ − approximation algorithm, where ρ > 1, computes a

reasonable solution with cost at most ρ times OPT in the input size and in

polynomial time [10]. Furthermore, an approximation schemes computes

a reasonable solution in polynomial time as a (1+ ϵ)-approximate scheme,

where ϵ is any arbitrary ϵ > 0.

Whelan et al. [14] defined the problem mathematically as follows in

Equation 1.

argmin
y∈Rn

∑

j=1

||xi − y||2 (1)

Megiddo and Supowith [12] define their k-median algorithm as follows

in Equation 2.

n∑

i=1

min
1≤j≤p

{|xi − zj |+ |yi − tj |} (2)

They further prove that the k-median problem is NP-hard to within 50%

and that the time complexity of the solution is in O(n2p) time.

There also exists a version of the k-median problem where the the facil-

ities must be located at input points, called the discrete k-median prob-

lem. However, this is out of the scope for this paper. Wang et al. [13] also

present two local search algorithms for the k-median problem with linear

penalties (k-MPLP) and k-facility locations problem with linear penalties

(k-FLPLP), where if a client is denied service it incurs a linear penalty,

though these two problems are also out of scope for this paper.

2.2 Initializing cluster centers

There exists several approaches to initialize centers in k-median algo-

rithm [14]. One possible initialization is by randomly choosing k-points

from the cluster. Another way to initialize the centers is by analyzing the

density and finding high density areas, and selecting a point from this

area. This is called density analysis, which differs from choosing points

according to single dimension subsets, where column vectors are exam-

ined independently, thereafter choosing the vector with the largest vari-

ance and dividing the points inside into k-subsets. Diagonal initialization

instead creates 2d-grid where the points in the data is split into k-rows

and k-columns. We then weigh the points on the diagonal that is created

in the 2d-grid by their density, then applying random initialization for the

k-centers while taking the density into account. A lightweight initializa-

tion is sampling, where we take small samples from the set and apply the

k-median algorithm on the samples.

3 Application of Local Search algorithms on FLPs

This section introduces the application of local search algorithms on fa-

cility location problems, and in short compares the approximation ratios

of the found algorithms. The approximation scheme for local search algo-

rithms have improved substantially, with different variations and depen-

dencies.

Cohen-Addad and Mathieu [7] defined a local search algorithm that has

a cost within (1 + ϵ) of the optimal, with a few caveats where the local

search algorithm swaps up to 1/ϵc points, further stating that the algoritm

reaches the solution for the travelling salesman problem (TSP) with fever

iterations. The algorithm achieves a similar result by using (1 + ϵ)k, as

opposed to using only k.

A polynomial-time local search algorithm was defined by Cohen-Addad

and Mathieu [7] as follows in Algorithm 1, this definition is confirmed by

Wang et al. [13].

Algorithm 1 Local Search(C)
S ← Random feasible solution

while ∃ S’ s.t. Condition(S’, ϵ) and cost(S′) ≤ (1−1/n)cost(S) do S ← S′

end while

return S

3.1 Capacitated facility location problem

In the capacitated facility location problem, the facility is associated with

a capacity that is the maximum number of clients it can serve [3], which

can further be extended to the k-capacitated facility location problem,

where we can open a maximum of k-facilities in any location. Cornue-

jols et al. [8] refer to this as the maximum demand that each facility can

supply.

For solving the capacitated facility location (CFL) problem, Arya et al.

[3] use a method called the single swap, where each swap closes a facility

s ∈ S and opens a new facility s‘ ∈ S. Their results show that a single

swap local search has an approximation ratio (locality gap) of 5, which is

further improved to a 3+2/p+ϵ = 3+ϵ approximation algorithm if closing

and opening a number of p facilities.

As recently as in 2022, Cohen-Addad et al. [6] present a (2.836 + ϵ)-

approximation, further improving on the result by Arya et al., where they

introduce a new approach that uses a potential function built on the facil-

ities closest and second-closest to the client. This potential function is the

sum over all clients, and the addition of distance to its closest facility and

the truncated second closest times a small constant. They further state

that the facilities are only swapped if and only if we can obtain the latter

solution by swapping a constant number of facilities, and the solution has

a smaller potential than the earlier solution.

3.2 Uncapacitated facility location problem

In the uncapacitated facility location (UFL) problem [10], for each point i

in set S there is also a cost ci defined, and the goal is to minimize the sum

of the cost cI of opening the facilities in addition to the cost of assigning

each point to the closest open facility. In the UFL problem, the capacity

that is used in the CFL problem is not used [8].

Cornuejols et al. [8] formalize the problem by considering a set I of

customers, that all have a demand. Furthermore, we have a set J of sitese

that is the facilities and the locations of them, and let fj be the cost of

opening facility j, cij the profit that we can gain from client i. They further

define cij to be a function with parameters such as the price per unit and

transportation cost.

Korupolu et al. [11] analyse local search heuristics for facility location

problems, and for the UFL problem, they present a proof that the local

search algorithm has the approximation ratio 5 + ϵ. They prove the fol-

lowing theorem:

Theorem 1 Let S be any subset of F such that C(S) > F (5 + ϵ)C(S∗) for

some constant ϵ > 0. Then there exists T ⊆ C such that |S − T ≥ 1|,
|T − S ≤ −1|, and C(S)− C(T) ≥ C(S)

p(n) .

By proving this theorem, they form a corollary stating that the approxi-

mation ratio for the local search algorithm is 5 + ϵ.

Charikar et al. [4] present a greedy local search algorithm that uses

several techniques to achieve the approximation ratio of (2.414 + ϵ), such

as cost scaling and greedy local improvement. The approximation ratio

can be achieved with a runtime of O(n2(log n+ 1
ϵ).

3.3 Mobile facility location problem

One variation of the facility location problem is the mobile facility location

problem. Halper et al. [9] summarize the problem as seeking to relocate

existing facilities, simultaneously assigning customers to the new relo-

cated facilities while minimizing the facility relocation cost and customer

travel cost. In essence, the problem differs from the regular facility lo-

cation problem as the algorithm decision takes into account the cost of

moving a location from one place to another [1]. Therefore, the total in-

curred cost of the solution S becomes as below in Equation 3:

MFL(S) =
∑

i∈F
c(i, si) +

∑

j∈D
djc(j, σ(j)) (3)

The main results from Ahmadian et al. [1] is a local-search algorithm

using combinatorial techniques with a (3 + ϵ) approximation ratio, im-

proving on earlier approximations using LP-rounding. To achieve this,

Ahmadian et al. allow a fixed number of swaps p, and for any fixed p the

optimal local move can be achieved in polynomial time.

Halper et al. [9] introduce the n-OptSwap and n-SmartSwap heuristics

for the MFL problem. These two new heuristics improve on the earlier

local search heuristics, since they terminate when the facilities and clients

have been assigned optimally. As a matter of fact, n-OptSwap is what

Ahmadian et al.’s [1] analyze, and showed the approximation ratio (3 + ϵ)

when n is large enough. Unfortunately the paper does not examine the

approximation ratio for the n-SmartSwap heuristic, however the runtime

of their algorithm is O(n3), which is less than for the O()n|F |2 n-OptSwap.

Less research can be found on the mobile facility location problem and

the usage of local search algorithms on it. There are several practical

needs for efficient solutions, such as determining the locations of distribu-

tion centers during disasters. [9]

3.4 Comparison

Table 1 shows the main approximation ratios achieved with CFL, UFL

and MFL papers discussed in this paper. Cohen-Addad et al. [6] achieve

the currently best possible approximation ratio for the capacitated facil-

ity location problem, with an approximation ratio of (2.836 + ϵ), slightly

improving on Arya et al.’s [3] single swap solution. For the uncapacitated

facility location problem, Charikar et al [4] achieve a (2.414+ϵ) approxima-

tion ratio with a greedy local search algorithm, and for the mobile facility

location problem, Ahmadian et al [1] achieve a (3+ϵ) approximation ratio.

Problem Author Approx. ratio Swaps

CFL Arya et al. (5 + ϵ) Single

Arya et al. (3 + ϵ) Single

Cohen-Addad et al. (2.836 + ϵ) Fixed p swaps

UFL Korupolu et al. (5 + ϵ) [Unknown]

Charikar et al. (2.414 + ϵ) [Unknown]

MFL Ahmadian et al. (3 + ϵ) Fixed p swaps

Table 1. Comparisons of problems and approximation ratios

4 Discussion

The approximation ratios for the local search algorithms have improved

during the past decades. Arya et al. [3] show that the approximation ratio

for the capacitated facility location problem is (5 + ϵ) with single swaps,

however, this can further be improved by opening and closing set number

of p facilities. Furthermore, Cohen-Addad et al. [6] further improve this

approximation ratio to (2.836 + ϵ), where they introduce a new function

involving the closest and second closest facilities.

For the uncapacitated facility location problem, Korupolu et al. [11]

present an approximation ratio of (5+ϵ). However, Charikar et al. [4] have

already presented an extended local search algorithm that introduces a

greedy property, improving the approximation to (2.414+ϵ), although their

approach combines a local search and greedy approach. Furthermore,

they introduce a 4-approximation to the k-median problem

For the mobile facility location problem, little can be found related to

local search algorithms. As we notice from many of the references, much

of the research around local search algorithms stems from more than 20

years back with one of the few major later contributiosn being the im-

proved CFL algorithm introduced by Cohen-Addad et al. [6]. One inter-

esting space that is fairly open and less researched is as mentioned the

MFL problem, where there could be room for improvement and new find-

ings.

Much of the research also combines numerous different algorithmic tech-

niques, instead of focusing solely on local search heuristics, some com-

bines linear programming and greedy heuristics. These could offer pos-

sibilities for improving approximation algorithms for the k-median prob-

lem.

5 Conclusion

This paper has presented and discussed the k-median problem with fo-

cus on local search algorithms related to the capacitated, uncapacitated

and mobile facility location problems. The k-median problem is a well-

researched clustering problem that can be approximated using local search

algorithms. These approximation algorithms are commonly used for solv-

ing the facility location problem, where the optimal solution seldom can

be found, although it exists.

Few new findings have emerged during the past twenty years, although

Cohen-Addad et al. [6] do present new research that improves on the more

than twenty year old approximation ratio of 3+ ϵ, to an improved 2.836+ ϵ

for the capacitated facility location problem. A sub-area of local search

research focuses on combinatorial techniques, combining approximation

techniques from numerous frameworks instead of only focusing on local

search.

Future research could include focusing on the mobile facility location

problem or the differences in runtimes between algorithms and approaches.

References

[1] Sara Ahmadian, Zachary Friggstad, and Chaitanya Swamy. Local-Search
based Approximation Algorithms for Mobile Facility Location Problems: (Ex-
tended Abstract), pages 1607–1621.

[2] Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation
schemes for euclidean k-medians and related problems. In Proceedings of
the thirtieth annual ACM symposium on Theory of computing, pages 106–
113, 1998.

[3] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Mu-
nagala, and Vinayaka Pandit. Local search heuristics for k-median and
facility location problems. SIAM Journal on computing, 33(3):544–562,
2004.

[4] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for
the facility location and k-median problems. In 40th Annual Symposium
on Foundations of Computer Science (Cat. No. 99CB37039), pages 378–388.
IEEE, 1999.

[5] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A
constant-factor approximation algorithm for the k-median problem. Jour-
nal of Computer and System Sciences, 65(1):129–149, 2002.

[6] Vincent Cohen-Addad, Anupam Gupta, Lunjia Hu, Hoon Oh, and David
Saulpic. An improved local search algorithm for k-median. CoRR, abs/2111.04589,
2021.

[7] Vincent Cohen-Addad and Claire Mathieu. Effectiveness of Local Search for
Geometric Optimization. In Lars Arge and János Pach, editors, 31st Inter-
national Symposium on Computational Geometry (SoCG 2015), volume 34
of Leibniz International Proceedings in Informatics (LIPIcs), pages 329–343,
Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

[8] Gérard Cornuéjols, George Nemhauser, and Laurence Wolsey. The uncapic-
itated facility location problem. Technical report, Cornell University Oper-
ations Research and Industrial Engineering, 1983.

[9] Russell Halper, S. Raghavan, and Mustafa Sahin. Local search heuristics
for the mobile facility location problem. Computers Operations Research,
62:210–223, 2015.

[10] Stavros G Kolliopoulos and Satish Rao. A nearly linear-time approximation
scheme for the euclidean k-median problem. SIAM Journal on Computing,
37(3):757–782, 2007.

[11] Madhukar R Korupolu, C Greg Plaxton, and Rajmohan Rajaraman. Anal-
ysis of a local search heuristic for facility location problems. Journal of
algorithms, 37(1):146–188, 2000.

[12] Nimrod Megiddo and Kenneth J Supowit. On the complexity of some com-
mon geometric location problems. SIAM journal on computing, 13(1):182–
196, 1984.

[13] Yishui Wang, Dachuan Xu, Donglei Du, and Chenchen Wu. Local search
algorithms for k-median and k-facility location problems with linear penal-
ties. In Zaixin Lu, Donghyun Kim, Weili Wu, Wei Li, and Ding-Zhu Du,
editors, Combinatorial Optimization and Applications, pages 60–71, Cham,
2015. Springer International Publishing.

[14] Christopher Whelan, Greg Harrell, and Jin Wang. Understanding the k-
medians problem. In Proceedings of the International Conference on Sci-
entific Computing (CSC), page 219. The Steering Committee of The World
Congress in Computer Science, Computer . . . , 2015.

3D Object Tracking for Mobile
Augmented Reality using Deep Learning
Methods

Valtteri Valtonen
valtteri.valtonen@aalto.fi

Tutor: Ashutosh Vaishnav

Abstract

Object tracking systems produce object state measurements (position, ro-

tation) from incoming data, and update this state over time, thus achiev-

ing tracking. Real-time 3D object tracking systems are necessary for aug-

mented reality (AR) applications on mobile devices, as the information they

provide of the physical world is needed to construct a convincing AR over-

lay on a camera image. Recent object tracking systems for mobile AR use

deep learning methods to achieve tracking. This paper is a literature sur-

vey of such recent systems. It aims to discover how the deep learning meth-

ods are used in the systems, and how they perform. As an end result, the

paper presents two functional convolutional neural network based real-

time tracking systems for mobile AR applications. Two additional systems

are also presented that use deep learning methods in interesting alterna-

tive ways compared to the first systems. These methods might be usable

with mobile AR applications in the future. The overall conclusion about

the state of the art is positive.

KEYWORDS: Computer vision, Augmented reality, Artificial Neural Net-

work, Object tracking, Object detection

1 Introduction

Object tracking is an important problem in the field of computer vision.

In the last few decades, it has been the topic of much research. In ob-

ject tracking, object state (position, orientation) is inferred from an im-

age frame, and this information is maintained over subsequent frames.

An object is something that is of interest in the data [17]. Traditionally,

object tracking has been useful in tasks, such as air space monitoring,

weather monitoring, traffic monitoring and video indexing [17], [2]. How-

ever, more recent advances in smartphone technology have enabled a new

interesting application area for object tracking: mobile augmented reality

applications.

Mobile augmented reality (AR) applications overlay computer-generated

graphics on top of the view of the smartphone camera. This AR view

is built based on the 3D positions of real life objects [15], meaning that

tracking them is important for a realistic experience. These applications

present interesting new possibilities for object tracking, but there are also

new challenges. One such challenge is the need to function in real-time

on the relatively lightweight smartphone hardware.

Recent studies on mobile AR applications have been able to achieve real-

time 3D tracking using deep machine learning methods [1]. These meth-

ods are able to learn complex nonlinear relations from data, using a trial

and error approach. In the case of object tracking, this involves inferring

object state from image frame data.

This paper surveys recent deep learning methods for object tracking

that are either directly or potentially usable for mobile AR applications.

It is organized as follows. Section 2 discusses the basic principles and

challenges related to object tracking. Section 3 discusses the principles

of machine learning and related challenges. Section 4 presents recent

tracking systems and their results. Section 5 discusses these systems and

the state of object tracking for mobile AR applications. Lastly, section 6

concludes the paper.

2 Object tracking systems

This section discusses object tracking systems in more detail. It presents

the properties and stages of a typical object tracker. Finally, it discusses

challenges related to object tracking systems.

2.1 Properties and stages

A general object tracking system accepts data as input and produces ob-

ject state data (position, orientation) as output. Many recent mobile ob-

ject tracking systems are computer vision based, so they use image data

as input. This is natural, as modern smartphones have powerful cameras.

Object tracking systems are not limited to just one type of input at a time.

An old hybrid system by Ribo et. al. [11] combines video data with mo-

tion sensor data, for instance. The object state data that is output by the

system can take different forms. 3D bounding box data is most suitable

for AR, as it allows the digital elements of the AR-scene to be placed re-

alistically in relation to real-world objects. However, other types of data,

such as 2D bounding box data, are usable as well. It is also possible to

convert 2D object state data to 3D form. The EPnP algorithm can be used

for this purpose [1]. A tracking system commonly functions in two stages:

a detection stage and an update stage.

The detection stage

In the detection stage, one or many objects are detected in the input data,

and initial object state is inferred [17]. This is done using features in the

data. Features such as color, edges, optical flow and texture are used in

computer vision based trackers [17].

Machine learning methods as well as more traditional methods can be

used for detection. Recent work [1], [7], [18], [9] uses deep machine learn-

ing methods in this phase, but other machine learning methods, such as

support vector machines, have also been viable in the past [17]. Yilmaz et.

al. [17] discuss three categories of more traditional object detection meth-

ods that do not involve machine learning: point detectors, segmentation

methods and background modelers. Point detectors, such as the Harris de-

tector [4], Kanade-Lucas-Tomasi detector (KLT) [14] and scale invariant

feature transform detector (SIFT) [8], find image interest points at loca-

tions that contain some expressive texture. Segmentation methods split

the image and produce data on seemingly similar regions. Background

modelers construct a model of the image scene, and connect deviations

from this model to moving objects.

The update stage

In the update stage, an object tracking system updates the state of known

objects. This allows the system to have up-to-date information on the ob-

jects over time, so that tracking is achieved. Different paradigms exist for

implementing the update stage, but these are not always exactly followed.

One popular paradigm is tracking-by-detection. In this paradigm, an

object detection method is used every frame to produce new object state

measurements [15]. If multiple objects are tracked, an object correspon-

dence method is used either jointly or separately with detection to decide,

which new measurement corresponds to which old measurement [17].

Another paradigm is simultaneous tracking and detection. In this paradigm,

the object detection and update steps are combined inside a single end-to-

end method or framework [18]. This helps reduce system complexity com-

pared to tracking-by-detection, which uses potentially slow and complex

association strategies [18].

Tracking systems can also utilize motion models to update old state

measurements [16]. Motion models contain different rules that are used

to produce predictions of the movement of an object soon in the future.

They can be used to produce state updates in the time interval between

firings of the object detection method, for instance.

Machine learning methods as well as more traditional methods have

been used for the update stage. In their survey, Yilmaz et. al. [17] discuss

deterministic and statistical point tracking methods, kernel (object shape

and appearance) tracking methods and silhouette tracking methods. De-

terministic point tracking calculates costs for associating new measure-

ments to known objects. Statistical point tracking methods, such as the

Kalman filter, model object state and take data noise and uncertainty into

account. Kernel tracking methods do object motion computation. Silhou-

ette methods track complex shapes from one frame to another using an

object model generated based on previous frames. Recent work [1], [7],

[18], [9] uses deep artificial neural networks in this stage.

2.2 Challenges

Computer vision based object tracking is a challenging problem. Clas-

sical challenges include noisy image data, object occlusions, complex ob-

ject movements and illumination changes [17]. 3D tracking methods that

use monocular RGB images have suffered from complex initialization for

depth estimation, lacking robustness and the need for heavy computation

[1]. The mobile AR environment brings additional challenges, such as the

need to function in real-time on limited smartphone hardware. This in-

creases the difficulty of using machine learning methods, as they can be

computationally expensive [7].

3 Basic principles of machine learning

This section discusses the basic properties of machine learning methods

as well as challenges related to them. After the basic properties, deep

learning methods are discussed. This provides background for further

discussion on how deep learning methods are used with object tracking.

Machine learning methods are powerful tools for predicting useful prop-

erties from data [6], such as object locations from image data. They

have become popular in different fields because of their useful properties.

One such field is computer vision, where deep learning has been used to

achieve great performance increases in tasks such as object classification

[13].

Machine learning methods operate using the principle of trial and er-

ror [6]. They accept data as input. This data consists of so called “data

points” that are comprised of easily measurable and available properties

“features” and the properties of interest that the method tries to predict,

“labels”. The final aim of machine learning methods is to find a relation

between data features and labels, that produces correct predictions as

often as possible. This optimal “hypothesis function” is found by enumer-

ating through different function candidates and measuring the error they

produce. The function with the minimum error is chosen in the end. This

is the training process, and there are different algorithms for it. The train-

ing process uses a subset of all possible candidate functions. This subset

is the model the machine learning method uses. The error measurement

is done using an error function. Different methods can use different error

functions.

An example of this process could be found in linear regression, which is

a method for fitting a straight line into a collection of data points [6]. In

this case, the model would be the set of all possible lines. The training

process would enumerate through these lines and measure the goodness

of each fit using the square error loss. The line with the smallest loss

value is chosen.

A great strength of machine learning methods is their ability to capture

complex nonlinear relations between the properties of interest and the

generated data using previously generated data [13]. However, challenges

are related to the use of these methods as well. It can be difficult to gather

enough data to use with the machine learning method. The data can also

include biases that affect the predictions of the method.

Deep learning methods are machine learning methods that use so called

artificial neural networks as their hypothesis function. Artificial neu-

ral networks consist of nodes that are also called "artificial neurons" [3].

These neurons are connected to each other, and they form layers. The

input given to the network propagates through the neurons and is mod-

ified, eventually producing output. Deep learning methods include con-

volutional neural networks (CNN) and recurrent neural networks (RNN)

among others. CNNs include convolution and pooling layers to extract

high-level features from low-level ones, thus reducing the amount of fea-

tures [12]. RNNs function in iterations [9]. At least a part of the output

of one iteration is fed as input to the next iteration.

4 Deep learning based 3D object tracking

This section discusses object tracking systems that use deep learning

methods to perform their task. System operating principles, as well as

results are presented.

Deep learning methods have been widely used in recent object tracking

work [1], [18], [7]. They can capture relations between image features

and objects, as well as previous and new measurements. As long as there

is enough training data, deep learning methods are able to handle noisy

data and different illuminations. This makes deep learning methods use-

ful in comparison to more traditional methods.

Object tracking systems can use deep learning methods to perform only

some part or parts of their task, or the full task [13]. In the object detec-

tion stage, they can recognize image features and produce initial object

state measurements. In the update stage, the methods can produce ob-

ject state predictions, as well as do object correspondence. In many cases,

tracking systems that utilize deep learning follow the tracking by detec-

tion or simultaneous detection and tracking paradigms [18]. In the follow-

ing, recent deep learning based tracking systems are described. The first

two systems are mobile AR tracking systems. The following two systems

could potentially be used for mobile AR applications with some modifica-

tion. The systems discussed are summarized in table 1.

Name Year Type Deep learning method Performance

System of Ahmadyan et. al. [1] 2020 3D-tracker (Detection plus tracking) CNN Real time in mobile AR

System of Liu et. al. [7] 2019 2D-tracker (Motion vectors + tracking by detection) Cloud edge CNN Real time in mobile AR

CenterTrack [18] 2020 3D-tracker (Simultaneous detection and tracking) CNN Real time on desktop computer

System of Milan et. al. [9] 2017 2D-tracker (Motion model + tracking by detection) RNN and LSTM Real time on desktop computer

Table 1. Deep learning object tracking systems discussed in this study

Tracking system of Ahmadyan et. al.

The system by Ahmadyan et. al. [1] is a multiple-object 3D bounding-

box tracker meant for mobile AR applications. It tracks unseen objects

without prior shape size or model knowledge, if the object belongs to a

category the tracker has been trained to recognize. The tracker follows a

model called detection plus tracking, where objects are not detected every

frame [1]. This helps it achieve real-time performance on mobile.

The system detects objects using MobilePose [5], a CNN based object

detector. This detector estimates the 3D bounding boxes of the objects.

The 3D bounding boxes are projected to 2D and given as input to a planar

tracking method. The method [16] fits a parametric model to motion vec-

tors, and produces updated 2D measurements. These measurements are

again brought to 3D using the EPnP algorithm, and tracking is achieved.

Ahmadyan et. al. [1] tested the system on a smartphone. It managed

to track objects at above 26 frames per second [1]. Objects were detected

quickly, without need for initializing movement. However, tracking the

movement of symmetric objects was difficult, as rotating symmetric ob-

jects look the same regardless of rotation. A different tracking system

called BB8 uses an additional machine learning classifier to solve this

problem [10].

Tracking system of Liu et. al.

The system by Liu et. al. [7] is a multiple-object 2D bounding box tracker

meant for mobile AR applications. The system achieves real-time perfor-

mance by combining a heavy object detector CNN at the cloud edge with

an on-device motion vector tracking method.

The system encodes incoming video frames with a novel encoding pro-

cess that provides a better encoding quality to potential regions of interest

[7]. This is done to reduce offloading latency to the cloud. An adaptive of-

floading mechanism then decides whether to offload frames to the cloud

edge. This decision is made on the basis of how much the frames have

changed since the last offloaded frame. It helps reduce bandwidth and

power consumption. If the frame is not offloaded, the on-device motion

vector method updates object state based on the latest detection result

that has been cached. If the frame is offloaded, it is sent in slices to the

detection CNN at the cloud edge. A detection result is sent back, cached

and used during later updates.

Liu et. al. [7] report that the system achieved a high level of accuracy in

the object detection task. It achieved latency results sufficient for 6o fps

AR on a Nvidia Jetson TX2 mobile development board based AR device.

An unstable or slow network might cause trouble for the system, as the

latency between the AR device and the cloud server increases.

CenterTrack

CenterTrack by Zhou et. al. [18] is a multiple-object 3D bounding box cen-

ter tracking system, that follows the simultaneous detection and tracking

paradigm. It utilizes heatmaps produced by a CNN.

The system uses a modified version of the CenterNet [19] object detec-

tion system for object tracking. Centernet by itself accepts an input image

and produces a heatmap based on it, using a CNN. Peaks included in the

heatmap are interpreted as object centers. The system can also use image

features at these locations to predict object properties, such as bounding

box width and height [19]. In CenterTrack, the detector is modified to

accept two consecutive frames and a previous heatmap as input. An addi-

tional offset vector from current object center to object center in previous

frame is also computed as additional output. Object association is done

greedily using the distance between the predicted offset and the previous

frame center point. Thus, tracking is achieved with an end-to-end train-

able network.

The system was tested on the MOT, KITTI and nuScenes datasets [18].

The system was run on a powerful desktop computer, as well as testing

servers [18]. MOT relates to pedestrian tracking, and KITTI as well as

nuScenes are autonomous driving datasets. CenterTrack outperformed

prior state of the art on both the MOT and KITTI datasets. In the case

of nuScenes, a monocular baseline was outperformed. Reconnecting long

range tracks was challenging for the system [18].

Tracking system of Milan et. al.

The tracking system by Milan et. al. [9] is a multiple object 2D bounding

box tracking system. The system uses a recurrent neural network (RNN)

as well as a long-short term recurrence network (LSTM).

In their work, Milan et. al. [9] do not describe how objects are detected,

instead they only discuss updating existing measurements. These mea-

surements could presumably be produced by any object detection method.

Once object state measurements are available, they are fed to the RNN

along with network hidden state, possible new sensor measurements ob-

ject measurement associations and probability value and probability dif-

ference vectors. The RNN predicts new object state values using a learned

motion model based on hidden network state values. New hidden state

values are also produced and fed into the network at later iterations.

Oncenew sensor measurement data, as well as object-measurement as-

sociation data becomes available, the RNN corrects the motion model pre-

dictions and produces true updated object state.

The measurement-object association data is produced by the LSTM-

network based on training data [9]. The network accepts hidden state,

memory component state and pairwise-distance matrix state. The ma-

trix contains euclidean distance values between predicted object state and

measured state. The network utilizes non-linear transformations and a

memory component to predict object-measurement assignments step-by-

step one object at a time. In addition to the association data, the network

produces new hidden state and memory component state, that are fed to

the network again at the next iteration.

Milan et. al. [9] report that their system managed to track objects at

300 hZ on a standard CPU. In a pedestrian tracking test, their system did

not achieve top accuracy, but it was faster than the top accuracy system.

5 Discussion

This section presents findings made during the literature review. The

current state of object tracking for mobile augmented reality is discussed.

Potential solutions for current challenges are presented, and new research

directions are identified.

Based on existing literature, the state of object tracking for mobile aug-

mented reality is rather good. There is quality research on the topic, and

some functional systems have already been built. Deep learning methods,

especially CNNs, are popular in the field. Examples of functional CNN

systems include the ones by Ahmadyan et. al. [1] and Liu et. al [7].

Of course, the existing systems still face challenges. For instance, the

system by Ahmadyan et. al. [1] faced difficulties in tracking rotating

symmetrical objects properly. The size of the CNNs also needed to be con-

strained for performance reasons, and the system still reached only 26 fps

performance. In turn, the system by Liu et. al. [7] achieved 60 fps perfor-

mance, but potentially suffers from adverse network conditions. Some of

these challenges could potentially be alleviated by combining ideas from

different systems. For instance, offloading CNN computation to the cloud

could allow a tracking system to use more complex deep networks with-

out worrying too much about device performance. Including an on-device

tracking system as a reserve could help deal with adverse network condi-

tions. This problem could also be alleviated by time, as future networks

probably have better coverage and stability. An additional deep learning

classifier can help with rotational similarity [10].

Therefore, it seems possible that interesting new research could spring

from combining these different techniques with each other. For instance,

an Ahmadyan et. al. [1] -like system with an additional deep learning

classifier that uses heavier CNNs with cloud offloading might provide in-

teresting results. Cloud offloading also makes it possible to use methods

that were not originally designed with mobile AR in mind, such as Cen-

terTrack and the RNN system by Milan et. al. [9]

6 Conclusion

This paper has reviewed recent real-time object tracking systems that

are either directly usable for mobile AR applications, or could potentially

be used with slight modifications. These systems, like many others, are

based on deep learning methods that are used to good effect at different

parts of the object tracking pipeline.

Deep learning object trackers have already achieved good accuracy and

performance results in mobile AR applications [1], [7]. However, at least

in some cases the performance could still be better, and other challenges,

such as dealing with rotational similarity remain as well. These chal-

lenges could potentially be dealt with by applying a combination of exist-

ing techniques used in different research. For instance, offloading compu-

tation to the cloud edge seems to be a powerful technique that can help

waive some of the performance limitations the systems would otherwise

have to adapt to.

Object tracking for mobile AR is a challenging problem in the field of

computer vision, as it includes the challenges of classical object tracking

and introduces new ones, such as the real-time performance requirement

on limited hardware. The problem will be challenging in the future as

well, but good progress has already been made towards solving the prob-

lem. Thus, the overall state of object tracking for mobile AR seems posi-

tive. Research is active, and new methods are being proposed for solving

old challenges. Better functioning applications for the technology are not

too far from being implemented. These could help build a better more

positive future.

References

[1] Adel Ahmadyan, Tingbo Hou, Jianing Wei, Liangkai Zhang, Artsiom Ablavatski,
and Matthias Grundmann. Instant 3d object tracking with applications in
augmented reality. arXiv, 2020.

[2] Sudha Challa. Fundamentals of object tracking. Cambridge University
Press, 2011.

[3] IBM Cloud Education. Neural networks. https://www.ibm.com/cloud/learn/neural-
networks, 2020. Accessed: 3.3.2022.

[4] Chris Harris, Mike Stephens, et al. A combined corner and edge detector.
In Alvey vision conference, volume 15. Citeseer, 1988.

[5] Tingbo Hou, Adel Ahmadyan, Liangkai Zhang, Jianing Wei, and Matthias
Grundmann. Mobilepose: Real-time pose estimation for unseen objects
with weak shape supervision. arXiv, 2020.

[6] Alexander Jung. Machine Learning: The Basics. Springer, Singapore, 2022.

[7] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge assisted real-time object
detection for mobile augmented reality. Association for Computing Machin-
ery, 2019.

[8] David Lowe. Sift-the scale invariant feature transform. Int. J, 2004.

[9] Anton Milan, S Hamid Rezatofighi, Anthony Dick, Ian Reid, and Konrad
Schindler. Online multi-target tracking using recurrent neural networks.
In Thirty-First AAAI conference on artificial intelligence, 2017.

[10] Mahdi Rad and Vincent Lepetit. Bb8: A scalable, accurate, robust to partial
occlusion method for predicting the 3d poses of challenging objects without
using depth. In Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), 2017.

[11] Miguel Ribo, Peter Lang, Harald Ganster, Markus Brandner, Christoph
Stock, and Axel Pinz. Hybrid tracking for outdoor augmented reality appli-
cations. IEEE Computer Graphics and Applications, 22:54–63, 11 2002.

[12] Towards Data Science. A comprehensive guide to convolutional neural
networks – the eli5 way. https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53, 2018. Ac-
cessed: 4.4.2022.

[13] Krebs Sebastian, Duraisamy Bharanidhar, and Flohr Fabian. A survey on
leveraging deep neural networks for object tracking. In 2017 IEEE 20th In-
ternational Conference on Intelligent Transportation Systems (ITSC), 2017.

[14] Jianbo Shi et al. Tomasi. good features to track. In Computer Vision and
Pattern Recognition, pages 593–600, 1994.

[15] Hideaki Uchiyama and Eric Marchand. Object detection and pose track-
ing for augmented reality: Recent approaches. In 18th Korea-Japan Joint
Workshop on Frontiers of Computer Vision (FCV), 2012.

[16] Jianing Wei, Genzhi Ye, Tyler Mullen, Matthias Grundmann, Adel Ah-
madyan, and Tingbo Hou. Instant motion tracking and its applications
to augmented reality. arXiv, 2019.

[17] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A survey.
ACM Comput. Surv., 38(4), 2006.

[18] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Tracking objects as
points. In European Conference on Computer Vision. Springer, 2020.

[19] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points.
arXiv, 2019.

Firewall and filtering policy for hybrid
cloud

Otso Friman
otso.friman@aalto.fi

Tutor: Tuomas Aura

Abstract

Adoption of public cloud in the IT industry is overwhelming. This adoption

comes with multiple challenges, a specific one of which is firewall config-

uration in the public cloud. Firewall rules were traditionally configured

by a small set of network engineers, possibly from a private cloud provider.

However, in modern DevOps oriented organizations firewall rules for pub-

lic cloud are not only ’in house’, but also configured ’as code’ and accessible

by a much larger group of developers and DevOps engineers. Further, us-

ing hybrid cloud during migration, or more often indefinitely, brings more

complexity, which has to be supported by firewall configuration. This paper

explores existing research on the topics of public and hybrid cloud and fire-

walls, their policy, configuration and visualization. This is done to draft a

firewall policy for a real world hybrid cloud setup.

KEYWORDS: firewall, public cloud, hybrid cloud, Azure.

1 Introduction

Cloud computing has risen to prominence in the technology industry. A

blocker for adoption has been concerns over security on public cloud. One

security concern arises from the user being responsible for configuring

network security themselves on public cloud, yet being dependent on the

cloud service providers (CSP) resources to do so [9]. For smaller compa-

nies that cannot afford, or don’t see a benefit in, building and managing

on-premise infrastructure, this differs from the other, often previous op-

tion, private cloud [8]. There, the CSP typically manages networks and

security for the customer.

Another rising trend in the industry and integrating well with public

cloud is DevOps. The specific DevOps practice of automation is in part

implemented by using infrastructure as code (IaC), which allows storing

the infrastructure code in version control and using it to automate infras-

tructure deployment and configuration [7, 13]. This ability in public cloud

to rapidly change infrastructure, enabled by DevOps and IaC, imposes a

challenge in keeping the changing infrastructure secure. An addition to

this challenge is a quite typical hybrid cloud setup, where a private cloud

is connected to public cloud [8]. Connecting the two clouds securely fur-

ther complicates network configuration and security.

The goal of this paper is to construct a firewall policy for the public

cloud side of a hybrid cloud setup, taking into account the above dis-

cussed challenges and that in accordance with DevOps, the firewall and

its rules should be defined in code and automatically deployed. Central

research questions are: 1.How to configure a public cloud firewall

policy for hybrid cloud? How to do this firewall configuration in

a way keeps the firewall functioning securely in changing infras-

tructure? 2. How to ensure firewall correctness and usability?

This paper starts with a literature review into network security for hy-

brid cloud, focusing specifically on firewalls and public cloud. After this,

constructing a firewall policy and firewall configurations suitable for the

setup are examined. This is followed by researching ways to visualize fire-

wall configuration to support the usability and verifying correctness of the

firewall. These examinations are used to finally create a firewall policy.

2 Firewalls for public and hybrid cloud

In this section, background research and an introduction into the topics is

conducted. Firewalls are first discussed to understand the different types,

and challenges in configuring them. This is followed by reviewing what

firewall options exist in public cloud, specifically Azure. After this, hybrid

cloud and connecting the private cloud side to public cloud is discussed.

2.1 From firewalls to public cloud firewalls

Firewalls are the main defence between a trusted machine or network and

an untrusted network, specifically in this paper’s context a private net-

work and the internet. The purpose of a firewall is to prevent unwanted

connections from the internet to the private network or from the network

to the internet. Ingham et al. [5] do a good job of mapping out the history

and development of different firewalls, starting from basic packet filters

to more advanced solutions like stateful inspection firewalls (SPI) and

application level gateways, also called application proxies. Packet filters

simply inspect network packets attributes against a set of rules. These

attributes include the IP addresses and ports of the source and destina-

tion as well as the protocol being used. SPIs take this further by storing

the session information to determine which side initiated the connection.

This allows separate inbound and outbound rules [5].

CSPs offer native firewall solutions for their platforms, the one on Azure

being Azure firewall, which is an SPI firewall, though it has some ’next

generation firewall’ features as well, for a price premium [14, 16]. These

’next generation’ features are proprietary software and do not have great

visibility into them, so they are mostly ignored in this paper, though offer-

ings like an intrusion detection system (IDS) can be quite useful. Azure

firewall is in a sense a PaaS component as the actual implementation can-

not directly be interacted with, and the firewall rules are configured on a

higher abstraction layer, through APIs or a web interface [16]. These APIs

allow the programmatic control of the firewall, enabling writing the fire-

wall rules in code, conforming to the DevOps practice of IaC [13]. The

Azure firewall allows for creating rules for IPs, fully qualified domain

names (FQDNs) or sources using network address translations (NAT).

Rules can also be grouped into sets, which are then given a priority num-

ber to set the rule order (the group with smallest priority number consid-

ered first) [1].

In literature, firewall configuration is found to be complicated and prone

to errors with these errors leading to severe vulnerabilities [17]. A chal-

lenge comes from a firewall policy consisting of many rules which can be

conflicting, and the large number of rules leads to complexity, which is

found to drastically increase the likelihood of configuration errors [19].

Various firewall analysis and configuration tools and methods have been

developed to help with this problem [17]. From a public cloud perspective

these challenges are even trickier as the tools and methods often cannot

be applied directly because public cloud firewalls are not directly config-

urable as mentioned above.

2.2 Hybrid cloud and connecting networks

Hybrid cloud is a cloud computing setup where a private and a public

cloud are used together. This can be during a migration phase, when a

company is moving to public cloud or can be a permanent solution, for

example if something cannot be migrated to public cloud because of legal

reasons. The arising challenge is how to securely connect the two knowing

they can be physically relatively far from each other. The simplest and

unsafest way is to have public endpoints on the public cloud and simply

access them from the private cloud over the internet. This insecurity can

be addressed by using a virtual private network (VPN). Azure has a VPN

solution in VPN Gateway, which allows connecting a site-to-site VPN from

the private cloud side using standard protocols IKEv2 and IPSec [16].

Using a VPN does have one major downside, while traffic is secured

through encryption, it still goes over the public internet. This may not be

ideal, if some critical interaction is happening between the public cloud

and private cloud side. Congestion during times of high traffic, or net-

work outages are out of one’s control and can completely halt a service.

Because of this, basically all CSPs offer network peering, directly phys-

ically connecting the private cloud to the public cloud. On Azure this is

called Express route. Express route offers guarantees for uptime, speed

and latency in the form of a service level agreement (SLA), since the con-

nection is private [3]. Express route is connected to a virtual network on

Azure with a virtual network gateway, and standard BGP is used for ex-

changing routing information between the two networks, effectively cre-

ating one large private network [3].

3 Applying firewall practises to public cloud

This section first discusses the hybrid cloud setup to determine require-

ments for firewall policy. After this, research into firewall policy is cov-

ered, which is used to make suggestions about the final firewall policy.

Following policy, the solution of distributed firewalls is reviewed to make

decisions on how to configure, and where to place firewalls. Finally, fire-

wall usability and visualization are covered to support the secure updat-

ing of rules.

3.1 The hybrid cloud setup

The hybrid cloud setup in question is a development environment migrat-

ing from private cloud to Azure. Express route is established between

the two clouds. On Azure, a main firewall is in place facing the internet,

and resource or subnet specific firewalls are configurable as well. The re-

sources in Azure, along with firewalls and rules, are defined in code using

Terraform. The Terraforms are hierarchical, and since the main Azure

firewall is a critical network component, updating firewall rules requires

applying the lowest level Terraforms. Although Terraform is quite good at

showing what changes will be made to infrastructure, frequently applying

the network level Terraforms imposes at least some risk. Further, on com-

plex changes, seeing exactly how the firewall configuration changes is not

easy from the Terraform changelog. Desirable goals for a firewall policy

are minimizing changes to the main firewall, configuring changes in a way

that minimizes risks for misconfiguration and some sort of visualization

of the firewall policy.

3.2 Firewall policy

A NIST technical report [18] composes firewall policy guidelines. The pro-

cess starts by assessing the network to be secured, what are the main

threats and weak points. With this knowledge, a decision on what fire-

walls to use and where should be made. Next what tools or applications

are allowed to pass through the firewall and under what conditions needs

to be reviewed. From this a firewall policy and rule set can be drafted.

The firewall policy should also include when and how to test the firewall

and how to manage it. These steps should also be repeated to consolidate

the policy, whenever the security policy changes notably [18].

In this case, as this is a Development environment, the firewall ruleset

is simplified by the fact that no inbound connections are allowed. Users of

the environment connect to the private cloud using VPN and can access

the public cloud side through the Express route peering. Outbound access

is required for various build and test automation tools to access external

resources such as container registries and code repositories. To minimize

the attack vector, outbound connections should also be dropped by default.

Firewall rules can be set up for all required external resources, and the

rules can be grouped into logical groupings for similar resources. This is

to minimize the affected rules in case of misconfiguration, as external re-

sources and the rules for accessing them are expected to change often. It

is reasonable to assume that frequency of change is correlated with the

type of resource, which justifies the grouping. As all created rules are to

allow connections, the ordering of rules is not critical, but some perfor-

mance improvement can be found from ordering the rule groups by how

often they are used, assigning the most often used group with the small-

est priority number. Using only ’allow’ rules also simplifies complexity

and reduces the likelihood of rules conflicting.

3.3 Firewall and rule distribution

Public cloud allows for the easy creation of multiple environments from

sandboxes and development environments to staging and production. As

the number and use case of these environments grows, having a single

firewall handling incoming and outgoing traffic (north-south traffic) is

no longer sufficient, but traffic between environments (west-east traffic)

needs to also be controlled. To solve this, the practice of distributed fire-

wall design can be utilized, as it addresses how to set up and manage

firewalls both on the perimeter and inside the network, on the assump-

tion that internal traffic may not be trusted [4]. Distributed firewalls offer

various benefits including no longer having a single point of failure in the

main firewall of a network, fine grained access control to resources in-

side the network, performance benefits as the main firewall is no longer a

choke point and not having to tunnel external machines into an isolated

network [4]. Some benefits cannot be realized in the cloud, such as having

the firewall and the application on the same machine, as cloud typically

works on a higher level of abstraction utilizing orchestration tools such as

Kubernetes. In this specific scenario, distributed firewalls do offer an ad-

ditional benefit, as having distributed firewalls means changes to specific

firewalls (and possible configuration errors) become less frequent and the

scope affected by a misconfiguration decreases.

The main challenges for distributed firewalls are how to define the dis-

tributed policy and how to distribute the centrally managed rules to the

firewalls securely [6]. Azure uses role based access control (RBAC) for

managing resources [2], which allows securely distributing the policy and

configuring the firewalls. On the policy definition side, implementing the

original idea of distributed firewalls with no main firewall and no topo-

logical isolation is not desirable, as this scenario does not need its main

benefit of external access without tunneling, but does become less secure

due to lack of isolation. Instead, a hybrid approach (also called ’a cascade

of distributed firewalls’ [15]) with one main firewall on the perimeter, and

firewalls configured for subnets and possible resources as needed seems

practical. This approach does keep the other desirable benefits of dis-

tributed firewalls that were listed in the paragraph above. Typically, the

biggest downside of this approach is seen to be the uncertainty of whether

the added security of this approach is worth the added cost of additional

firewalls [15]. On Azure, this is not an issue, as higher level components

such as keyvaults and file or blob storages come with built in firewalls

for no additional cost, and subnets used by compute solutions like Kuber-

netes or simple virtual machines can similarly be secured with Network

Security Groups (NSGs) for no additional cost [16].

The starting point for rule configuration, as was the case with the main

firewall configuration discussed above, is to drop all traffic by default, and

configure firewall rules only for necessary connections. The main firewall

can have more generic rules that apply to the whole network, and resource

or subnet specific firewalls can have use case specific rules. This allows

network level access control and isolation of more sensitive applications

as needed. This approach is depicted in figure 1. The cascaded firewalls

approach also allows for ’repeated’ rules, defining similar rules on mul-

tiple firewalls, which can further reduce the impact of misconfiguration

of singular firewalls. Infrastructure changes are also much less likely to

cause security risks, as traffic is blocked by default, and rules to connect

to new or changed infrastructure need to be explicitly set.

3.4 Firewall usability and visualization

The firewall distribution and repeated rules discussed above increase the

amount of firewalls and rules. Knowing that usability of a firewall con-

figuration in general is a challenge [17], this increased complexity needs

to be met with ways to support it. Using automation for firewall manage-

ment eases supporting complexity, and clear guidelines on only creating

rules for necessary connections helps understanding complex rulesets by

giving clear reasoning behind rules. In literature, one big way of helping

with firewall usability has been using visualization [17]. With firewalls

the actual rules can be visualized, some notable examples being [12, 10].

Mansmann et al. [12] point out a challenge in detecting and removing

rules that have become unused [12]. This seems indeed applicable to our

case of rapidly changing cloud infrastructure and quite restrictive pol-

icy with rules for every required external resource, which can also change

quite frequently. Kim et al. [10] note a problem in conflicting rules, result-

ing in some rules being ignored and thus unnecessary complexity, which

can be noticed by their visualization tool [10]. Another thing to visualize

is monitoring of the firewall. As the amount of rules and firewalls in-

crease, relying on firewall logs alone for monitoring is no longer enough

and using visualization is beneficial [11].

Firewall visualization tools existing in literature are not directly us-

able on the proprietary Azure firewall, but their findings can be utilized

while creating visualizations on an Azure visualization tool called Mon-

itor Workbooks [16]. An example workbook exists for firewall use, with

some useful visuals like firewall usage over time and most frequent al-

lowed and blocked IPs and FQDNs [1]. This workbook can be expanded

upon, visualizing any firewall logs or diagnostics [1]. One very useful met-

ric to visualize is hits per firewall rule, since notable concerns are unused

rules or ignored rules, caused by conflicting rules. These will be easily

detectable, since they will not have any hits. Storing firewall rules in ver-

sion control also helps with determining if rules are obsolete, by looking

at change history and commit messages of rulesets.

4 Results

The chapters above suggest practices for firewall policy, firewall distribu-

tion and visualization using justifications from literature. This chapter

combines the suggestions and findings to a coherent policy. A simplified

example setup is used to explain the policy, in order to protect intellec-

tual property of the true setup. Figure 1 visualizes this example. It

depicts the setup in Azure, two Kubernetes clusters with different func-

tions and sensitivity as well as the Express route to private cloud and the

Azure firewall. Arrows depict connections allowed by firewall rules. Fi-

nally, after covering the policy, improvements and ideas for future work

are discussed.

Figure 1. Example firewall configuration in Azure

4.1 Suggested firewall policy

A main Azure firewall is configured on the perimeter, and all traffic going

to the public internet passes through it. All subnetworks inside Azure

should have Network security groups defined, working as firewalls for

the subnetwork. Further, all higher level resources such as blob and file

storages and keyvaults should have firewalls enabled as well. Firewalls

should drop all traffic by default, and rules must be defined for all neces-

sary connections. This allows isolation of sensitive applications like clus-

ter 2 in figure 1, which is managed by cluster 1 but cannot access the

internet, and cannot be accessed directly from the private cloud side, but

can post results to the private cloud. Repeating rules on different firewall

levels allows robustness against misconfigurations in single firewalls, for

example if the main firewall is misconfigured to allow access to erroneous

external resources the NSGs for clusters 1 and 2 will still block this ac-

cess. To connect to the private cloud side, express route should be used,

using a virtual network gateway to connect it to the Azure virtual net-

work, also depicted in figure 1. Since connecting to Azure can be done

from the private cloud side via Express route, there is no reason to allow

any inbound traffic through the Azure firewall.

All firewalls and rules should be configured as code using Terraform,

and stored in version control. Firewall rules should be grouped by use

case, for example external build repositories being one group. The rule

groups should be ordered so most often used resources are in rule groups

considered first. Automation should be used to deploy both the firewalls

and rules. Code reviews can be used to review rule changes before they

are merged and automation takes over to deploy them. The Terraform

changelog can be checked to verify that the intended firewall changes are

applied. For larger rule changes, visualization enabled by Azure work-

books can be checked to verify correctness. Workbooks should also be

used to periodically review rules with no firewall hits to determine if they

are obsolete or ignored due to conflicting rules. Since rules are configured

on multiple firewall levels, obsolete rules can also be detected by finding

rules which do not have counterparts in other firewalls. For example in

figure 1, the main Azure firewall having a rule for a build repository,

which cannot be found in the cluster 1 NSG may be obsolete.

4.2 Discussion on improvements and future work

The suggested policy in the end relies on humans to check visualizations

to determine correctness of policy and detecting obsolete rules. As au-

tomation is already used for deploying firewalls and their configuration,

it is logical to extend this automation to verify correctness and detect

obsolete rules. Correctness could be verified for example by automated

probing, while firewall logs could be consumed by automation to detect

obsolete rules with no hits. This automatic policy control and compliance

monitoring could be the basis of future research.

5 Conclusions

Cloud infrastructure can be rapidly changing, which challenges firewalls

to keep the changing infrastructure secure. On the other hand, public

cloud allows easy creation of firewalls for all requiring resources and cen-

tral control of firewalls using IaC and automation. By dropping traffic on

firewalls by default, and explicitly setting rules for allowed connections

and repeating them on different levels of firewalls increases the amount

of rules, but ensures security during misconfigurations or infrastructure

changes. Visualizations of firewalls and their metrics help with managing

these large rulesets.

References

[1] Azure firewall documentation. https://docs.microsoft.com/en-us/azure/
firewall/, 2022. Accessed: 5.4.2022.

[2] Azure RBAC documentation. https://docs.microsoft.com/en-us/azure/
role-based-access-control/, 2022. Accessed: 5.4.2022.

[3] Expressroute documentation. https://docs.microsoft.com/en-us/azure/
expressroute/, 2022. Accessed: 5.3.2022.

[4] Steven M Bellovin. Distributed firewalls. ;login: Magazine, Special Issue
on Security, 1999.

[5] Kenneth Ingham, Stephanie Forrest, et al. A history and survey of network
firewalls. University of New Mexico, Tech. Rep, 2002.

[6] Sotiris Ioannidis, Angelos D Keromytis, Steve M Bellovin, and Jonathan M
Smith. Implementing a distributed firewall. In Proceedings of the 7th ACM
conference on Computer and communications security, pages 190–199, 2000.

[7] Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer. What
is DevOps? a systematic mapping study on definitions and practices. In
Proceedings of the Scientific Workshop Proceedings of XP2016, pages 1–11,
2016.

[8] Yashpalsinh Jadeja and Kirit Modi. Cloud computing - concepts, archi-
tecture and challenges. In 2012 International Conference on Computing,
Electronics and Electrical Technologies (ICCEET), pages 877–880, 2012.

[9] Wayne A Jansen, Tim Grance, et al. Guidelines on security and privacy
in public cloud computing. Special publication, National Institute of Stan-
dards and Technology (NIST), 2011.

[10] Hyungseok Kim, Sukjun Ko, Dong Seong Kim, and Huy Kang Kim. Firewall
ruleset visualization analysis tool based on segmentation. In 2017 IEEE
Symposium on Visualization for Cyber Security (VizSec), pages 1–8. IEEE,
2017.

[11] Christopher P Lee, Jason Trost, Nicholas Gibbs, Raheem Beyah, and John A
Copeland. Visual firewall: real-time network security monitor. In IEEE
Workshop on Visualization for Computer Security, 2005.(VizSEC 05)., pages
129–136. IEEE, 2005.

[12] Florian Mansmann, Timo Göbel, and William Cheswick. Visual analysis of
complex firewall configurations. In Proceedings of the ninth international
symposium on visualization for cyber security, pages 1–8, 2012.

[13] Kief Morris. Infrastructure as Code, 2nd Edition. O’Reilly Media, 2020.

[14] Kishan Neupane, Rami Haddad, and Lei Chen. Next generation firewall
for network security: A survey. In SoutheastCon 2018, pages 1–6, 2018.

[15] Robert N Smith, Yu Chen, and Sourav Bhattacharya. Cascade of dis-
tributed and cooperating firewalls in a secure data network. IEEE Trans-
actions on Knowledge and Data Engineering, 15(5):1307–1315, 2003.

[16] Julian Soh, Marshall Copeland, Anthony Puca, and Micheleen Harris. Mi-
crosoft Azure: Planning, Deploying, and Managing the Cloud. Springer,
2020.

[17] Artem Voronkov, Leonardo Horn Iwaya, Leonardo A Martucci, and Stefan
Lindskog. Systematic literature review on usability of firewall configura-
tion. ACM Computing Surveys (CSUR), 50(6):1–35, 2017.

[18] John Wack, Ken Cutler, and Jamie Pole. Guidelines on firewalls and firewall
policy. Technical report, National Institute of Standards and Technology
(NIST), 2002.

[19] Avishai Wool. A quantitative study of firewall configuration errors. IEEE
Computer, 37(6):62–67, 2004.

Firewalls and filtering policies for small
networks

Sepehr Javid
sepehr.javid@aalto.fi

Tutor: Prof. Tuomas Aura

Abstract

The increase in the number of home offices and the trend towards working

from home has risen recently, requiring access to the main office infrastruc-

tures through the unsafe internet and from home. Additionally, equipped

homes with smart home appliances rely on cloud services over the internet.

Firewalls have been employed to provide the security of small home net-

works; however, with the advent of the internet of things (IoT) devices and

the home office trend, small home and office networks are increasingly ex-

posed to the outside world, posing security threat against internal devices

and company assets. On the other hand, lack of regular administration

and policy update due to management restrictions in such firewalls inten-

sifies the threat.

We have implemented an automated testing software whose aim is to verify

the firewall policies. The software is designed to analyze different types of

attacks, evaluate the results, and report the successful attacks. The soft-

ware also reports the possible reason of the success of the attacks, and pro-

poses methods to prevent them.

KEYWORDS: Firewall, IoT, Policy, VPN, Server, Client, Attack

1 Introduction

In recent years, workplaces have been transferred to homes, introduc-

ing the term "home office". This new trend has required access to work

resources from home and through the internet, transmitting critical in-

formation over an untrusted path [15]. To secure such information ex-

change, companies have adopted virtual private network (VPN) solutions;

however, home and corporate networks are still exposed to other external

attacks, such as denial of service (DoS) attacks. DoS is an attack where

the attacker flood the target server with undesired traffic, causing disrup-

tions to the service [14]. DoS is mainly the initial step for more severe and

threatening attacks.

On the other hand, the dream of smart houses has led to utilization of

IoT devices at homes. These devices, such as Google Nest Family provide

security surveillance, automated heating, and sound systems [1] are con-

stantly accessing the internet. Such constant access can further expose

the home network to the internet and attacks originated from it. For ex-

ample, an IoT device could be compromised, join the Mirai bot network,

and act as a threat to the internet and to the home local network [7].

In order to protect the home networks from the aforementioned threats,

firewalls are employed to filter the network traffic and block untrusted

packets. Each firewall consists of rules, predicates, and clauses, which

are called structural entities and determine the policy of the firewall [10].

The ability of a firewall to provide sufficient protection against the spec-

ified risks is achieved through constant professional administration and

policy measurements. The existing firewalls in our home networks are

commonly incorporated within the network router and may use an out-

dated software version. In addition, home firewalls are generally not

maintained and administered by a professional. Consequently, they are

vulnerable to cybersecurity hazards.

This paper aims to develop an automated software for firewall adminis-

tration and policy management. The method utilizes the concept of fire-

wall policy coverage to verify the correctness of each entity. In this con-

cept, packets are the inputs and outputs of the test. The output packets

are assessed against the correspondent goal of the entity to verify if the

effect of the entity on the inputs were as intended [10]. As the intention

for this method is not to require prior knowledge of firewalls, the input

packets are generated automatically. Hwang et al. [11] propose four au-

tomatic packet generation techniques that inspires the packet generation

of our software.

We will develop the automated software based on a scenario that simu-

lates a real-world home network containing IoT devices. In this network,

IoT devices are assumed to constantly access a cloud service through a

VPN tunnel. The firewall will be probed by automatically generated pack-

ets and will be evaluated based on the output packets.

The rest of the paper is organized as follows. Section 2 provides deeper

information about firewall policies. Section 3 describes the scenario in

detail, and presents the requirements of the scenario. Section 4 provides

information about the packet generation method utilized by the software.

In section 5, the paper explains the possible attacks on the provided sce-

nario, and the reason behind the success of these attacks. In Section 6,

the implementation of the software is thoroughly explained, including the

incorporated scripts. Section 7 concludes the paper and presents future

work.

2 Firewall Policies

A firewall policy is a set of rules used to filter undesired traffic to and from

the protected network [12]. Filtering can be based on the source and des-

tination IP address, utilized protocol, application, content and used ports.

Firewall policies require constant validation, update and optimization.

On the other hand, managing the firewall policies are difficult because

of the ever-changing nature of networks [12]. Policies can filter packets

in two different ways. stateless and state-full. Stateless filtering makes

decision for the packet based on the packet information and regardless

of the connection state. However, state-full filtering uses the connection

state corresponding to the packet to make filtering decisions [13]. One

of the major use cases of state-full filtering is to filter any traffic that

aims to start a connection form outside of the local network. This ensures

that only a client from the local network can initiate a connection, and

the incoming packets corresponding to the initiated connection. Another

way to achieve the mentioned goal is full cone network address transla-

tion (NAT) protocol. Full cone NAT maps the internal private IP address

network and port to an external public IP address and port [9]. This be-

havior of the NAT requires every traffic from the internet to be related to

a connection previously initiated by a client on the local network. Such

Figure 1. Utilized scenario [6].

functionality is close to the state-full filtering behavior of a firewall.

3 Scenario and Goals

This paper uses a scenario simulating a real-world environment (Figure

1). In this environment, there are two different sites, each containing

several IoT devices which rely on a service provided by a cloud server. The

firewalls involved in such scenario must fulfill the following requirements:

• The services dedicated to each site must be exclusive to that site. This

means that a client from one site cannot be served by the server dedi-

cated to the other site.

• A cloud server may not be reached from the internet, unless there exists

a host on the internet which is explicitly reported as trusted.

• The clients cannot access the local networks of the other client sites.

• The clients should receive a response from the cloud server if and only if

the client has initiated the connection. This implies that a server cannot

send any packets to the client unless there has been a request from the

client initially. This requirement expects the firewall to support state-

full filtering.

• A client cannot be reached from the internet [6].

To achieve these requirements, the firewalls must block the undesired

traffic. The firewall on each site can use full cone NAT to ensure that the

connection to the cloud server is initiated by the IoT devices on the local

network. The alternative way to achieve the same objective is to use state-

full firewall policies on the client site firewalls. The firewall protecting the

server site must block any traffic from the internet except traffic from the

white-listed devices. Ultimately, the client site and cloud firewalls should

establish a VPN connection, and allow all the corresponding traffic [6].

The VPN connection ensures that no attacker on the internet can spoof

the IP address, and deceive the cloud server into providing the service.

IP address spoofing is the act of generating an IP packet with a false

origin IP address to deceive the destination about the source address, and

impersonate a desired source [2].

4 Automated Packet Generation

The developed software uses a configuration file which contains a sum-

mary of the network addresses and the number of clients and server sites.

This configuration is utilized by different components of the software to

detect the target firewalls to probe. The file also declares the white-listed

devices on the internet that each firewall can allow. Additionally, in or-

der to fulfill the mentioned requirements, this paper proposes deploying

the software on all of the devices existing in the topology in order to ini-

tiate an attack from any possible source. This possibility provides the

flexibility for the software to perform a wide range of attacks. The main

responsibility of the software is to send packets from different sources to

the destination firewall to determine the correctness of the policy. Each

probing packet must use different protocols to cover the entire test cases.

5 Possible Attacks

The developed software probes the firewall using two main attack sources.

Attacks from the internet and cross site attacks. These attacks are per-

formed by different scripts from different nodes of the topology. Each

script collects the cloud server addresses containing the IP address and

the port on which the service is running, by accessing the configuration

file to analyze the access to the servers. Additionally, it is possible that

the cloud servers run in the same physical server, however different con-

tainers. A container is a unit of software that holds the code and the

dependencies of an application, and runs separately from other applica-

tions on the same server [3]. In this case, the IP addresses of both cloud

services in the specified topology are the same. However, the port num-

bers are different to distinguish the services. Therefore, the script has to

analyze the access to both servers to probe the firewall in between.

5.1 Attacks from the Internet

These attacks are performed from the router node in the topology to imi-

tate an attacker listening to the path on the internet.

Accessibility from the internet

In this attack, the router node tries to access the cloud servers using TCP

and ICMP protocols. ICMP protocol is used to probe the Accessibility of

the physical server from the internet. Accessibility of the cloud servers

using ICMP protocol can lead to other serious attacks, such as, ICMP

tunneling, smurf attack, etc [4]. TCP protocol is utilized to determine if

a TCP connection can be established with the server from the internet.

Availability of TCP connections from the internet can provide the envi-

ronment for attacks, such as, TCP SYN flooding attacks [8].

Spoofing attack from the internet

Another attack from the internet is to initiate a TCP connection using

IP address spoofing, and impersonating the client sites. Ideally, because

of the required VPN connection between the client site and the server

site, such attack should not succeed. The reason is that the VPN on the

server site requires the packets sourced from the client sites to only arrive

from the VPN tunnel. Therefore, it blocks the packets with the source

addresses of the clients that enter from the outside of the tunnel. As a

result, the server site drops the spoofed TCP packets by the attacker.

5.2 Cross-site Attacks

These attack imitate a case where one client site is compromised. The

source of these attacks in this topology is the client gateways. Based on

the requirements, the script should ensure that each client site cannot

reach the service of the other client sites.

Accessibility from the opposite client site

To execute this attack, a client from one site targets the service of the

opposite client site. The client tries to open a TCP connection to receive

service from the server of the opposite client site. According to the re-

quirements, the service should drop such packet, or the packet should be

redirected to the corresponding service instead of the service of the oppo-

site site.

6 Implementation

The proposed software by this paper aims to perform the aforementioned

attacks using different scripts. Each script contains the attacks from a

specific source and initiates them upon execution. The software, includ-

ing the scripts, uses python3 as the programming language. In order

to generate spoofed and original packets, the scripts , utilize Scapy tool.

Scapy is a packet manipulation program which is able to forge or decode

packets with different protocols [5]. Scapy also provides a tool to capture

packets traveling through a node. Each script provides the desired desti-

nation and source IP address to the Scapy interfaces, and selects the nec-

essary protocol to generate the packet. In the case where the script sends

a spoofed packet, the response reaches the victim instead of the node from

which the attack initiated. Therefore, the attacker cannot receive and

evaluate the response packet. As a solution, the router node uses Scapy

to capture the response packets, and inform the attacking script about the

captured packets.

The main goal of the topology is that the firewalls allow the clients to

receive service from the cloud servers. Therefore, the script must verify

that despite the firewall policies, the main functionality is not corrupted.

As a result, a script must be executed from the clients to confirm that the

clients can successfully receive service from the servers.

Each script is executed from a different node in the topology. There-

fore, there needs to be a main script to orchestrate the execution of these

components. Since the entire topology is a virtual scenario [6], the main

script can run on the host. This script first calls a secure shell (SSH) com-

mand. This command connects the host to a desired node in the topology.

Later, the main script executes the script related to the attack to be ini-

tiated from the connected node. Additionally, the main script connects to

the cloud servers to initiate the the services, in order to host the attacks.

Ultimately, each executed script creates a report file in a shared directory

where the main script can access. The main script collects these reports

and presents the final output to the user. The final report consists of the

attacks that succeeded and a brief explanation of why such attack was

successful. In addition, the report proposes possible solutions to prevent

the successful attacks.

7 Conclusion and Future Work

In this paper, we propose a software to probe firewalls in a frequent topol-

ogy. The main idea of the topology is to provide a protected path for the

IoT clients to request for service from the cloud servers. The developed

software can verify safety of the path by probing the firewalls on the path

and performing attacks from different sources. It can be utilized in an

environment where there is SSH access to a device on the path, and the

client site gateways. The output of the software is a report consisting of a

list of succeeded attacks, the reason behind the possibility of the attack,

and available solution to prevent the attack. In the future, we plan to

consider adding a wider range of attacks to initiate, for more precise ver-

ification. In addition, we consider using other tools to determine all the

open ports and accessible IP addresses in the topology to use as the target

of attacks. This helps the software provide a more detailed report as an

output.

References

[1] Google nest. Accessed 2022-02-02. https://store.google.com/us/category/connected_home.

[2] Ip address spoofing. Accessed 2022-04-09. https://en.wikipedia.org/wiki/IPaddressspoofing.

[3] What is a container? Accessed 2022-04-09. https://www.docker.com/resources/what-
container/.

[4] Icmp attacks. Accessed 2022-04-10. https://resources.infosecinstitute.com/topic/icmp-
attacks/.

[5] Scapy. Accessed 2022-04-10. https://scapy.net/.

[6] Tuomas Aura. Accessed 2022-03-05. https://github.com/tuomaura/cs-e4300testbed.

[7] Christoph Haar and Erik Buchmann. FANE: A Firewall Appliance for the Smart

Home. In Federated Conference on Computer Science and Information Systems
(FedCSIS), volume 18, page 449–458, Sep 2019.

[8] W. Eddy. TCP SYN Flooding Attacks and Common Mitigations. RFC 4987,
August 2007. https://www.hjp.at/doc/rfc/rfc4987.html.

[9] dynamicsoft C. Huitema R. Mahy J. Rosenberg, J. Weinberger. STUN - Simple
Traversal of User Datagram Protocol (UDP) Through Network Address Trans-
lators (NATs). RFC 3489, The Internet Engineering Task Force, March 2003.
https://www.ietf.org/rfc/rfc3489.txt.

[10] Fei Chen Alex X. Liu JeeHyun Hwang, Tao Xie. Systematic Structural Testing of
Firewall Policies. PhD thesis, North Carolina State University, Michigan State
University, Dec 2008.

[11] Fei Chen Alex X. Liu JeeHyun Hwang, Tao Xie. Systematic Structural Testing of
Firewall Policies. PhD thesis, North Carolina State University, Michigan State
University, Jan 2012.

[12] K. Golnabi, R.K. Min, L. Khan, E. Al-Shaer. Analysis of Firewall Policy Rules
Using Data Mining Techniques. In 2006 IEEE/IFIP Network Operations and
Management Symposium NOMS 2006, Oct 2006.

[13] Thawatchai Chomsiri, Xiangjian He, Priyadarsi Nanda, Zhiyuan Tan. A Stateful
Mechanism for the Tree-Rule Firewall. In 2014 IEEE 13th International Confer-
ence on Trust, Security and Privacy in Computing and Communications, pages
122–129, Sep 2014.

[14] Zouheir Trabelsi, Safaa Zeidan. Resilence of Network Stateful Firewalls against
Emerging DoS Attacks: A Case Study of the BlackNurse Attack. In 2019
IEEE/ACS 16th International Conference on Computer Systems and Applica-
tions (AICCSA), pages 1–8, Nov 2019.

[15] Alina Škiljić. Cybersecurity and remote working: Croatia’s (non-)response to
increased cyber threats. 1:51–61, Oct 2020.

Optimizing packet classification in
firewalls and routers

Anastasia Safargalieva
anastasia.safargalieva@aalto.fi

Tutor: Tuomas Aura

Abstract

Packet classification helps to manage the network traffic by using speci-

fied rules. The algorithms for packet classification consist of complex data

structures which require considerable time and computing resources. It

is an issue because packet filtering needs to be executed in the real-time.

In this paper we consider packet classification problem as an algorithmic

problem. We review HiCuts and HyperCuts algorithms to solve packet clas-

sification problem.

KEYWORDS: packet classification, firewalls, HiCuts, HyperCuts

1 Introduction

Packet classification is a building block for many services in the computer

network. In this paper, we examine packet classification as an algorithmic

problem and observe that there are generic algorithmic solutions across

that can be used for a broad range of applications. The methods of packet

classification concern the tradeoff between the speed needed for real-time

packet classification and availability of the computing resources.

A literature survey of the packet classification problem was conducted,

explaining the principle behind some key algorithms for implementing

the packet classifiers.

In more detail, the paper has the following goals. Firstly,to understand

the applications and requirements for packet classification. Secondly, to

find efficient algorithms from the literature with focus on firewalls and

packet filtering. Thirdly, to demonstrate the algorithms with examples.

The work is organized as follows. Section 2 presents the background of

the problem. It introduces routers and firewalls and explains the need

for packet classification. In the Section 3, we examine packet classifica-

tion as an algorithmic problem. Section 4 concerns packet classification

algorithms – HiCuts and HyperCuts. Section 5 concludes the paper.

2 Background

2.1 Routers and firewalls

Routers are the intermediaries in terms of communication over the In-

ternet. They are connected to the end-points through the network-level

protocol – Internet Protocol (IP). The data which users exchange on the

network is divided into segments known as packets. The IP routers are

responsible for many Internet services, for example, forwarding a packet

from the source to the destination. Another service provided by the routers

is limiting a particular category of the traffic to prevent unwanted access.

Load balancing to distribute the incoming traffic evenly across multiple

servers is also managed by IP routers.

In addition to packet filtering in routers, there are specialized firewall

appliances whose only purpose is packet filtering. They forward packets

between two networks and apply a filtering policy to drop unwanted pack-

ets.

Firewalls are at the gates of the network infrastructures, they allow the

traffic to leave and enter the network only according to the predefined

policies [4, 7]. This is possible with a set of rules listed in the tables. A

collection of rules is called a classifier. With the growth of the network

system, these tables increase in complexity. The main goal is to make

as few rules as possible without lowering or even increasing the security

state of the infrastructure [12]. There are different types of algorithms to

tackle such challenging problem as the tradeoff between time and memory

consumption of the computing algorithms [5, 12, 7, 10].

There exist different types of firewalls. Stateful inspection firewalls al-

low packet transmission between two earlier established endpoints. They

control the way packets are transmitted and their connection status. How-

ever, these stateful firewalls are designed to be generic so that they can be

used in nearly any environment [6]. To provide control for more specific

applications, there is application layer firewall which is the most secure

type of firewall. In this case, the client and the destination server never

interacts. When there is a request to process the packet, the application

proxy initiates its own request to the destination server. The destination

server sends the result of the request back to the proxy. The proxy com-

municates back to the client on the behalf of the server. The packet is

inspected in this case entirely [11].

2.2 Need for packet classification

In order to provide different services to a variety of applications, IP router

has packet classification and filtering functions merged into it [2]. Packet

classification algorithms differentiate packets into different flows accord-

ing to the content of the packet. Packets from the same flow will be pro-

cessed similarly. There are defined rules for each type of incoming traffic.

Arriving packets are matched against the rules until the first matching

rule is found [4]. It helps service providers to identify and isolate packets

from some users and provide service to others [2, 1]. Packet classification

is a fundamental issue in computer networking. It is considered to be a

building block for firewalls. Efficiency of the work of the firewalls plays

an important role in the overall network performance [5].

Packet classification is needed for filtering policies in routers. The algo-

rithm defines which packets are allowed to reach the destination address,

and which packets have to be dropped. Denial of Service (DoS) attacks

can be prevented by limiting the number of packets or bytes in each traf-

fic class. The packets are dropped when a specified maximum rate is ex-

ceeded.

Another example of the service where packet classification is needed is

Quality of Service (QoS) and traffic prioritization. Firewalls allow to clas-

sify the traffic in the groups based on its final purpose and apply specific

QoS requirements of different applications to these groups. The require-

ments could be faster forwarding of the packets or lower probability of the

packet being dropped because of the lack of the buffer resources. Deep

packet inspection (DPI) is one of the technologies that help to inspect and

classify the arriving data. But this method produces delays in the ser-

vices because each packet needs to be inspected. In addition, DPI takes

a lot of computing resources of the controller. Another method for traffic

classification uses machine learning. It is more efficient in terms of time

and computational resources.

Packet classification helps to minimize the cost of the packet delivery

when there is a tradeoff between faster and lower cost routes. Another

reason for packet classification is that is helps to define which packets

to forward through the encrypted tunnels. By configuring IPsec poli-

cies, route-based VPNs regulate which traffic can be sent through the

encrypted channels.

In all these applications of packet classification, the packet header fields

are first matched against the rules and then action specified by the match-

ing rule is taken.

3 Packet classification as an algorithmic problem

Packet classification defines the flow to which one or the other packet

belongs to. It allows the firewall to process a stream of packets of one flow

in the same manner. For example, if the packets have the same source

and destination IP addresses, they can be assigned to one flow based on

the packet header [2].

There are d components in each rule in the classifier. Each component

represents destination and source addresses, ports and a protocol field.

For example, the packet comes from source address 192.142.55.45, desti-

nation address 192.171.110.23 with destination port 80 and source port

1800, TCP protocol field. It can be represented as the following combina-

tion of headers: (192.142.55.45, 192.171.110.23, 80, 1800, TCP). Packet clas-

sification problem is to find the rule for the packet as fast as possible with

least memory demanded.

The set of rules is denoted as R = R1, R2, ..., RN , k = 1, 2, ..., N . Rk[i] is

the i-th component, or a header field of rule Rk. It is commonly agreed

that rules are listed in the order of priority. For example, R1 has the

highest priority and RN has the lowest priority. P stands for packets. A

packet P matches the rule Rk, if each field of the header of P matches the

corresponding field of Rk[i] [1, 3].

In firewalls, the cost is the priority order of the rules. The priority order

of rules in the firewall policy is an essential part of the security policy

Table 1. Examples of rules.

Rule D. Address S. Address D. Port S. Port Protocol

R1 201.15.17.21 201.15.75.4 =80 =1800 TCP

R2 110* 1* =80 =1024 TCP

R3 201.18.20.25 201.15.100.10 >80 <1024 TCP

R4 201.18.20.25 [100-192]* >80 <1800 TCP

definition, and the highest-priority matching rule must be applied to the

packet. On the other hand, when packets are classified for quality-of-

service and economic reasons, an algorithm that approximates the lowest

cost may be acceptable. Cost function can represent almost anything, for

example, how many resources it would take to process the packet [1].

There can be four different types of matches between rules and header

fields of the packets. The first type is an exact match when the values of

rule fields and packet fields must be the same. Exact match rules can be

represented as Rule 1 in the Table 1. Prefix match means that the rule

field value should be a prefix of the header field of the packet. Rule 2

is an example of prefix match for the destination and source addresses.

Range match specifies the range of the packet header values. Rule 3 is

an example of the range match for the ports and there is an exact match

for the addresses. Regular expression match requires the header field

of the packet match the string expression specified in the rule. Rule 4

is an example of the regular expression for the source address. There

is specification on the rule what should be done with the packet after

classification, e.g., how to process the packet, does it have to be accepted

or denied, encrypted or decrypted [1, 3].

In order to analyze the efficiency of the algorithms for packet classifi-

cation, there are such metrics as the speed of the classification and the

amount of memory the algorithm consumes. The search speed is impor-

tant as the bandwidth of IP networks is growing and hence also the per-

formance requirements of router and firewalls. The ideal situation for

the memory consumption metric is when the data structures used by the

algorithm take as little memory as possible. It allows to implement fast

memory technologies like static random access memory (SRAM). Another

critical feature of the algorithm efficiency is how fast the data structure is

updated when new rules appear, or when the rules get obsolescent [2, 1].

4 Packet classification algorithms

The solutions can be divided into linear algorithms, geometric approaches,

heuristic algorithms, and hardware-specific search algorithms. Heuristic

solutions are based on decision-tree approaches.

Work of the packet classification algorithms is divided into two stages:

preprocessing stage and classification stage. The preprocessing stage starts

with building the most suitable data structure according to the rules. The

goal is to build such a decision tree that each packet matches the right

action at the lowest computational cost. The classification stage is re-

sponsible for distinguishing the values of the headers of the packets and

finding the best matching rule in the tree.

The easiest data structure that can be applied to packet classification

problem is a linked list of rules. Each packet goes through the sequence of

rules until headers of the packet find the appropriate rule. This algorithm

is effective in terms of memory requirements. The disadvantage of this

approach is that time grows linearly during the classification process [1].

The packet classification problem is similar to the problem of point loca-

tion problem in a multi-dimensional geometric space. Fields in the packet

header stand for the dimensions, and the packet is viewed as a point in

hyperspace. Rules are hypercubes.

Throughput, power, and memory size are the characteristics by which

we can assess the efficiency of the scheme used in packet classification.

The following section overviews the existing algorithms of packet clas-

sification on multiple fields. Section 4.1 focuses on the HiCuts algorithm.

Section 4.2 describes HyperCuts. Section 4.3 covers potential advances

in the technology of packet classification.

4.1 HiCuts

Hierarchical intelligent cuttings (HiCuts) is an algorithm based on the

decision tree approach. There is one root node. Internal nodes contain

enough information to guide the packet to match with the best leaf node.

Each leaf contains a single rule or a small set of rules. In the latter case,

linear search method is applied to find the best matching rule.

The cutting starts from the root node. The root node represents the en-

tire d-dimensional space. Child nodes appear by cutting the root node. Hi-

Cuts divides the multi-dimensional rule space evenly at each step across

one dimension at a time. The process of cutting the child nodes continues

Table 2. Classifier.

F1 F2

R1 00* 00*

R2 0* 01*

R3 0* 0*

R4 10* 10*

R5 11* 10*

R6 11* 11*

R7 0* 10*

R8 * 11*

until the number of rules in each leaf node reaches the threshold. Then

these cuts form subtrees and distinct leaves in the end. The character-

istics of the tree are defined while preprocessing the classifier. The main

disadvantage of the HiCuts algorithm is significant rule replication where

some of the child nodes can be identical. This requires more memory allo-

cation [8, 9].

Let us examine following example of the classifier with two fields (Table

2). The threshold is set at up to 2 rules per child node and at most 4

child nodes per root node. We make 3 cuts along dimension F1: A, B and

C. These 3 cuts give us 4 child nodes. Another cut D along dimension

F2 (Fig.1) gives us 4 new nodes containing 2 rules each. The number of

rules under each leaf node satisfies the chosen threshold two. Therefore,

the cuttings can be stopped. The following tree (Fig.2) was build from the

geometric representation of HiCuts.

4.2 HyperCuts

HyperCuts is the successor of HiCuts. It is also based on the decision-

tree structure. This algorithm makes cuttings across many dimensions

at a time. This gives advantage in both memory and decision time. This

algorithm cuts the rules into one dimension, which reduces the depth of

the tree and redundancy of the rules in it. If HyperCuts sees the same

rules common to many branches, it puts these rules into one parent node.

This helps to manage the redundancy of rules in the firewalls and, there-

fore, addresses memory problems [9, 8]. One of the main drawbacks of

cutting in several dimensions at the same time is growth in the storage

Figure 1. Geometric representation of cuttings for HiCuts and HyperCuts

Figure 2. HiCuts decision tree

Figure 3. HyperCuts decision tree

requirements.

As an example, let us choose the same geometric representation of the

cuttings from Fig.1. The only difference is that the cuts A, B, C and D

are made at the same time. Decision tree for the HyperCuts contains one

level of leaf nodes (Fig.3). The work of the HyperCuts algorithm can be

described as follows:

1. Identify the set of dimensions for splitting. We need the most uniform

distribution of rules.

2. Decide on the number of splits in each of the dimensions. For this,

the mean number of the rules in the child nodes helps. After this, we can

run the following algorithm to get the matching rule for the packet.
Data: Arriving packet headers in the binary form

Result: Rule

current leaf node = 0; for all headers do

if H1 ̸⊂ currentleafnode then

current leaf node++;

else

return rule from the current leaf node;

end

end
Algorithm 1: Algorithm for matching rules

4.3 Future improvements

However, HiCuts and HyperCuts are known for memory overhead be-

cause of the exhaustive number of rules. Another more sophisticated al-

gorithm EffiCuts avoids these problems. EffiCuts creates separated trees

with different subsets of rules. It merges the resulting trees to optimize

the running time of the search. Applying equi-dense cuts, we get evenly

distributed rules in the child nodes. [9, 12]. Another improvement can

be achieved by applying deep reinforcement learning (RL) methods to the

problem of packet classification [5].

5 Conclusion

This paper reviewed the problem of packet classification and its applica-

tions in IP networks. We explained two packet classification algorithms:

HiCuts and HyperCuts. HiCuts method makes one cut at a time. Hyper-

Cuts makes the cuttings in all dimensions simultaneously, decreasing the

time needed to process the packet filtering. These approaches are good

for the classifiers with many fields, as they show better trade-off between

memory and speed.

While the algorithms were originally designed for firewalls, they can be

used in other applications of packet classifiers, such as QoS routing and

IPsec policies. Packet classification problem remains actual because the

existing methods are complex and hard to optimize. The presented algo-

rithms can be further optimized based on the knowledge of the application

and the type of traffic in the network.

References

[1] Karthik Ramasamy Deep Medhi. Network routing: Algorithms, protocols,
and architectures, chapter 15. Morgan Kaufmann Publishers, 2nd edition,
2018.

[2] P. Gupta and N. McKeown. Classifying packets with hierarchical intelligent
cuttings. IEEE Micro, 20(1):34–41, 2000.

[3] Pankaj Gupta. Algorithms for routing lookups and packet classification.
Master’s thesis, Stanford University, December 2000.

[4] Tihomir Katic and Predrag Pale. Optimization of firewall rules. In 2007
29th International Conference on Information Technology Interfaces, pages
685–690. IEEE, 2007.

[5] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. Neural packet classification.
arXiv, 2019.

[6] Derrick Rountree. Security for Microsoft Windows System Administrators.
Syngress, Boston, 2011.

[7] Arjun Singh, Divyanshi Singh, Arun Kumar Singh, Harikesh Pandey, and
P. C. Vashist. Security through optimization techniques of firewall rule
sets. In 2020 International Conference on Computation, Automation and
Knowledge Management (ICCAKM), pages 452–455. IEEE, 2020.

[8] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet
classification using multidimensional cutting. In Proceedings of the 2003
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM ’03, page 213–224, New York, NY,
USA, 2003. Association for Computing Machinery.

[9] Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vijaykumar. EffiCuts:
Optimizing packet classification for memory and throughput. volume 40,
page 207–218, New York, NY, USA, Aug 2010. Association for Computing
Machinery.

[10] Chenghong Wang, Donghong Zhang, Hualin Lu, Jing Zhao, Zhenyu Zhang,
and Zheng Zheng. An experimental study on firewall performance: Dive
into the bottleneck for firewall effectiveness. In 2014 10th International
Conference on Information Assurance and Security, pages 71–76. IEEE,
2014.

[11] Brad Woodberg. Configuring juniper networks netscreen and SSG firewalls.
Syngress, Burlington, 2007.

[12] Sorrachai Yingchareonthawornchai, James Daly, Alex X. Liu, and Eric Torng.
A sorted-partitioning approach to fast and scalable dynamic packet classifi-
cation. IEEE/ACM Transactions on Networking, 26(4):1907–1920, 2018.

Formal verification of distributed
systems

Juan Pablo Valencia Gómez
juanpablo.valenciagomez@aalto.fi

Tutor: Lachlan Gunn

Abstract

As software systems grow in complexity, they become harder to verify, in-

creasing the probability of failures. Formal verification methods seek to

ease the verification of complex systems with mathematical rigor. Since

distributed systems are notoriously complex, this paper analyzes how for-

mal verification methods are applied to different kinds of distributed sys-

tems, such as distributed algorithms, cryptographic protocols and their

implementations. As a result, this paper finds that formal verification

methods are being used with success in cryptographic protocols and im-

plementations, while in distributed algorithms their application has been

more limited.

KEYWORDS: formal verification, formal methods, distributed systems,

cryptographic protocols

1 Introduction

Software systems are present in every aspect of current-day society, from

transport to healthcare, banking, entertainment, commerce, and even hu-

man interaction, to name a few. Their reliable operation is of large soci-

etal importance [5], since their failure or malfunctioning can have serious

consequences.

Testing and peer reviewing are the most used techniques for software

verification in the industry [5]. However, as systems start to grow in scale,

they become increasingly complex. Complexity increases the probability

of human error in the design and implementation of systems, and while

the mentioned verification techniques remain necessary, they may not be

sufficient [10].

Formal methods aim to reduce and ease the verification efforts while in-

creasing their coverage, by establishing the correctness of software (and

hardware) systems with mathematical rigor [5]. Baier and Katonen [5]

point out that formal modeling of a system often leads to the discovery of

ambiguities and inconsistencies in its informal specification, even before

the implementation process of the system has started. Improvements in

the underlying algorithms, optimization techniques, and the increasing

availability of computing capacity, have allowed to apply formal verifica-

tion methods in real life systems [5, 10].

Distributed systems imply multiple challenges, including maintaining

consistency, dealing with network issues, such as delayed or dropped mes-

sages, and being tolerant to node faults. The interaction between compo-

nents, and overall behavior of the system, is often too complex to analyze,

leading to software being deployed into the real world containing critical

bugs [14]. Formal verification techniques can help minimize the occur-

rence of such errors.

This paper aims to review and compare the formal verification meth-

ods applied to different kinds of distributed systems, such as distributed

algorithms [8, 10], cryptographic protocols [7, 12] and their implementa-

tions [15]. It is organized as follows. Section 2 provides background on

distributed systems, and section 3 presents different formal verification

techniques. Section 4 shows how formal verification methods are used in

distributed systems, and section 5 provides analysis and discussion. Sec-

tion 6 concludes the paper.

2 Background

Van Steen and Tanenbaum [13] present the definition and properties of

distributed systems. In principle, a distributed system is composed of

multiple independent computing elements. A computing element, or node,

can be either a hardware device or a software process. Nodes need to

collaborate in order to achieve their common goals. The way this is ac-

complished in practice is by exchanging messages with each other [13].

Cryptographic protocols (and their implementations) fall into this def-

inition of distributed systems: they involve multiple participants with

common goals (e.g., establishing a secret key) that communicate through

message passing. Formal verification methods can be applied to verify

whether the protocol meets the desired security properties under the pres-

ence of an adversary.

In distributed algorithms goals can include fault tolerance, consistency

or availability, for example. Formal verification methods can be used to

verify whether these properties are achieved even on the event of network

or node failures.

3 Formal verification techniques

3.1 Model checking

Model checking is a formal method based on creating a model to describe

the system behavior in a mathematically precise manner, together with

algorithms that explore all possible states of the model [5]. The objective

of model checking is to verify that the system satisfies certain properties.

For this, it is required to have a precise statement of the properties as

well. As in the modeling process, this step often leads to the discovery of

inconsistencies in the informal specification of the system [5].

The model checker explores all possible system states to verify whether

they satisfy the desired properties. If a state that violates a property is

found, the model checker returns a counter-example that shows how the

system goes from the initial state to this particular one [5].

Although model checking is a powerful tool, it has some drawbacks [5].

One of them is that, in practice, it may be difficult to determine if the

formalization of the system (model and properties) is an accurate descrip-

tion of the real system. This is called the validation problem. Another

drawback is that, for many practical systems, the state space may be ex-

tremely large. Despite the development of techniques to combat this prob-

lem, models of realistic systems may still exceed the available computer

memory. This is known as the state-space explosion problem.

3.2 Theorem provers

Theorem provers (also called proof assistants) are computer programs

that aid in the proof of theorems [6]. One of the most prominent examples

of automated theorem proving was the verification of the proof of the Four

Color Theorem, performed using the Coq theorem prover.

Coq allows the user to formalize mathematical concepts and then as-

sists them in generating machine-checked proofs of theorems [1]. The

architecture of Coq consists of two levels: a small kernel, consisting of a

few primitive constructions and a few logical rules of inference, and on top

of the kernel a rich environment to help design proofs [6, 11]. In this way,

it is only necessary to trust the kernel, instead of the entire environment,

since ultimately any definition and proof is checked by the kernel [1, 11].

Although not its main application, Coq is well suited for software verifi-

cation due to its powerful language that includes functional programming

and high-level specifications [11]. A great example of this is CompCert [9],

a compiler for the C programming language that is formally verified us-

ing Coq. This means that it is formally proven that the executable code

produced by CompCert will behave exactly as specified by the semantics

of the C program.

Coq also supports extraction of verified programs to different program-

ming languages, such as OCaml and Haskell, allowing to create verified

software libraries [1]. Others have also expanded upon the program ex-

traction capabilities of Coq. For instance, Verdi [14] is a framework based

on Coq for specifying, implementing and formally verifying distributed

systems.

Verdi provides two key components that make it specifically suited for

distributed systems: network semantics and verified system transformers

(VST). Network semantics encode different network behaviors, for exam-

ple, reordering, duplicating or dropping packets. The idea is that a pro-

grammer initially implements and proves the system under an ideal net-

work model. Then, a VST transforms the application to work under a new

network semantic, and additionally generates a proof that the new system

preserves the properties of the previous one. This effectively transforms

the initial application into a new version that tolerates faults [14].

Benchmarking found that a verified version of a program achieves com-

parable performance to an unverified one [14]. Wilcox et al. [14] conclude

that Verdi is a promising first step towards the goal of easing the imple-

mentation of verified distributed systems.

There are other proof assistants, such as Isabelle [3], which can also

be used for the formal verification of software systems. Isabelle provides

code generation capabilities as well, allowing to extract specifications into

executable code in languages such as OCaml, Haskell and Scala [3].

3.3 F* and KaRaMeL

F* is a programming language designed to support formal verification

[2, 15], with syntax similar to functional programming languages, such

as OCaml and F#. After verification, programs can be extracted to C via

the KaRaMeL compiler (formerly known as KReMLin) [15]. This enables

to formally verify realistic applications. The resulting C program can be

compiled to verified machine code using CompCert. However, code com-

piled with CompCert is not yet as fast as that compiled with standard

compilers, such as Clang or GCC [15].

3.4 Tamarin

Tamarin is a tool for symbolic modeling and analysis of security protocols

[4]. Its specification language allows to construct detailed models of the

protocols, their security requirements, and the capabilities of the adver-

sary. Then, it can be used to produce a proof that the protocol fulfills the

desired properties, even when taking into account the actions of the ad-

versary [4]. Alternatively, it may return a counterexample, meaning that

it found an attack that violates a property.

Since the correctness of security protocols is an undecidable problem [4],

Tamarin may not terminate on a given input. In this case, users can resort

to an interactive mode, which allows them to explore the proof states and

inspect attack graphs, effectively combining automated proof search and

manual proof assistance [4].

4 Applications

This section presents several examples of formal verification methods ap-

plied to real life distributed systems.

4.1 Distributed algorithms

Amazon Web Services

Amazon Web Services (AWS) offers a considerable amount of cloud ser-

vices for different purposes. They aim to make these services simple for

customers to use, but this external simplicity is supported by internal

complexity: the services rely on distributed algorithms to achieve differ-

ent goals, such as fault tolerance, consistency or auto-scaling [10].

Newcombe et al. [10] describe how AWS has adopted TLA+, a formal

specification language, with the objective of minimizing the occurrence of

critical bugs in their systems. They state that formal methods are a big

success at AWS, and their adoption has been increasing across different

teams within the company [10].

TLA+ is used both for describing the desired correctness properties of

the system and for designing the system itself. For this purpose, they also

model the operating environment of the system. This means that different

events are specified, such as network and disk errors, process crashes

or data-center failures [10]. Then, the model checker verifies that the

specification maintains the desired properties despite any combination of

events in the operating environment.

The two main benefits of the adoption of TLA+ in AWS are the ability

to quickly verify whether proposed changes (even deep ones) are safe, and

the possibility to test innovative performance optimizations [10]. An ad-

ditional benefit is that the formal specification of the system serves as an

excellent form of documentation.

Newcombe et al. also address the validation problem, that is, the lack

of certainty that the executable code developed by engineers correctly im-

plements the formal specification. They report that they have not found

any tool capable of verifying the executable code of distributed systems

as large and complex as those being built at Amazon [10]. Despite this,

formal methods are still helpful in multiple ways at the company:

• They help get the design right. This is very important because, given a

flawed design, the engineers are unlikely to spot the flaws while focused

on implementing it.

• They help engineers gain a better understanding of the design, which

increases the chances of getting the code right.

Byzantine Paxos

Lamport [8] presents a formal proof of correctness for a Byzantine variant

of the Paxos algorithm. Paxos a distributed consensus algorithm, that is,

an algorithm that enables multiple nodes to agree on a value. Moreover, it

is fault tolerant: 2f +1 nodes can reach a consensus tolerating the failure

of any f of them [8]. In the Byzantine variant, 3f+1 nodes are used and it

can tolerate f of them being malicious [8]. The proof was performed using

TLA+.

4.2 Cryptographic protocols

This section presents examples of two different approaches for using for-

mal verification methods in cryptographic protocols. In one of them, they

are used to prove that the protocol satisfies the claimed security proper-

ties. On the other one, they are used to find vulnerabilities in the protocol.

TLS 1.3

Transport Layer Security (TLS) is the main protocol for secure commu-

nications on the internet [7]. Multiple attacks have been found over the

years in TLS versions 1.2 and below, resulting in protocol modifications

to provide security enhancements or increased functionality. For the next

version of the protocol (TLS 1.3), the IETF an adopted an “analysis-prior-

to-deployment” philosophy [7]. In this context, Cremers et al. [7] perform

a symbolic analysis on a release candidate for TLS version 1.3, to verify

its claimed security properties.

The analysis was performed using Tamarin, and modeled six out of the

eight fundamental properties that the TLS handshake protocol must sat-

isfy according to the specification. It concluded that, in general, TLS

1.3 meets the specified security properties [7]. However, it also found

an unexpected behavior, which may have security implications: in the

post-handshake client authentication, the client does not receive explicit

confirmation that the server has successfully received the client response.

Bluetooth pairing, EAP-NOOB and DPP

Peltonen et al. [12] present a study on different misbinding attacks against

protocols for secure device pairing and bootstrapping. In a misbinding at-

tack, malicious behavior of one protocol participant causes another par-

ticipant to be confused about the identity of their communication counter-

part [12].

Secure device pairing is seeks to establish a secure wireless commu-

nication channel between two devices [12]. Device bootstrapping refers

to protocols for registering Internet-of-Things (IoT) devices to an online

server [12]. Although these two kinds of protocols are considerably differ-

ent, they are similar in the sense that the identity of the devices is defined

by physical access to them. The lack of verifiable device identifiers results

in the protocols being vulnerable to misbinding attacks [12].

The study analyzes Bluetooth pairing, and two protocols for device boot-

strapping (EAP-NOOB and DPP). The protocols and their security re-

quirements were modeled with a tool called ProVerif. In all the cases,

ProVerif returned counter-examples, that is, execution traces that vio-

lated the security property, meaning that a misbinding attack was found.

In the case of Bluetooth pairing, five different variants of misbinding at-

tacks were identified [12].

Peltonen et al. [12] conclude that the impact of the misbinding attacks

is relatively marginal compared to the advantage of using encryption and

authentication. However, warn that protocol designers should understand

the misbinding vulnerability and make an informed judgment about whe-

ther additional countermeasures are needed [12].

4.3 Cryptographic implementations

The HACL* library

Cryptographic libraries are the core of secure communications on the in-

ternet, and therefore are held to high correctness, robustness and security

standards [15]. Bugs in these libraries have historically been found by

manual inspection and testing. A more robust approach is to use formal

verification to prove the absence of multiple kinds of errors.

Zinzindohoué et al. [15] present HACL*, a verified library that imple-

ments modern cryptographic primitives: the ChaCha20 and Salsa20 en-

cryption algorithms, Poly1305 and HMAC message authentication, SHA-

256 and SHA-512 hash functions, the Curve25519 elliptic curve, and Ed25519

signatures. The following properties are verified for each primitive [15]:

memory safety, functional correctness, and secret independence (an im-

portant property to mitigate against side-channel attacks).

HACL* is written on the F* language and compiled to C via the KaRaMeL

compiler [15]. Zinzindohoué et al. [15] mention that, at the moment of

writing, they used GCC to compile the C code for performance reasons,

but expect that CompCert will become faster over time. Benchmarking

yielded that, for most primitives, the HACL* implementations are at least

as fast as the most efficient implementations in other libraries [15].

HACL* is used as the main cryptographic library of the miTLS project,

a verified implementation of TLS. It is also being integrated in Mozilla’s

NSS cryptographic library, which is used by the Firefox browser [15].

5 Analysis

Formal methods are a very powerful tool for designing systems and verify-

ing that they meet their desired properties. Complex systems can benefit

greatly from this, resulting in less error-prone implementations. Formal

verification also provides a way to test the safety of proposed changes,

when it might be difficult to estimate beforehand all the implications that

they might bring.

Different kinds of distributed systems use formal methods in different

ways. While in some cases, e.g. cryptographic protocol analysis, they are

used for the design or verification of the protocol, in other cases, such

as cryptographic implementations, they are also used to verify the exe-

cutable code libraries.

In distributed algorithms, however, it is not yet possible to apply formal

verification methods to working code, as noted by the article by Amazon

engineers [10]. Verdi shows promise in this regard, but it is still on its

early stages and requires further development.

Another thing we can observe from the presented examples is that there

exists a wide variety of libraries, frameworks and tools for formal verifi-

cation. To recall only the ones mentioned in this paper: Coq, Isabelle,

TLA+, ProVerif, F*, and Tamarin. While having different options is pos-

itive, it might also make it harder to choose which tool to use for a given

application.

In the case of software systems, we know that Amazon uses formal

methods. It is possible that other “tech giants” use them too. However,

their usage is not widespread in the software industry, especially not in

medium and small sized companies. At this point it is unclear if the us-

age of formal methods will ever become standard practice in the software

development industry.

Two challenges for adopting formal verification methods in software

companies are: integrating the verification into the development process

in a way that does not cause disruption to the developer workflow, and the

need for training the engineers in the chosen formal verification tool.

Nevertheless, the clear benefits of formal methods make them an essen-

tial component for the verification of critical safety applications, complex

systems of all kinds, and, in particular, distributed systems. It is expected

that their usage in these areas will continue to increase in the coming

years.

6 Conclusions

This paper has reviewed and compared how formal verification meth-

ods are applied to different kinds of distributed systems, such as dis-

tributed algorithms, cryptographic protocols and their implementations.

First, different methods were presented, including model checking, theo-

rem provers, among others. Then, real life applications were analyzed.

This paper finds that formal verification methods are being used with

success in cryptographic protocols and implementations, being an impor-

tant tool for modern cryptography. In the field of distributed algorithms,

however, their application is more limited. Formal methods have been

used to model and design systems, but verification of working implemen-

tations is still on its early stages.

References

[1] Coq reference manual. https://coq.github.io/doc/v8.15/refman/. [On-
line; accessed 24-February-2022].

[2] F* introduction. http://fstar-lang.org/#introduction. [Online; ac-
cessed 31-March-2022].

[3] Isabelle overview. https://isabelle.in.tum.de/overview.html. [Online;
accessed 24-February-2022].

[4] Tamarin user manual. https://tamarin-prover.github.io/manual/book/
001_introduction.html. [Online; accessed 07-April-2022].

[5] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
press, 2008.

[6] Alan Bundy. Automated theorem provers: a practical tool for the working
mathematician? Annals of Mathematics and Artificial Intelligence, 61(1):3,
2011.

[7] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla
van der Merwe. A comprehensive symbolic analysis of TLS 1.3. In Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’17, pages 1773–1788. Association for Computing
Machinery, 2017.

[8] Leslie Lamport. Byzantizing Paxos by refinement. In Distributed Comput-
ing, pages 211–224. Springer Berlin Heidelberg, 2011.

[9] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus
Pister, and Christian Ferdinand. CompCert - A Formally Verified Optimiz-
ing Compiler. In ERTS 2016: Embedded Real Time Software and Systems,
8th European Congress, 2016.

[10] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker,
and Michael Deardeuff. How Amazon Web Services uses formal methods.
Communications of the ACM, 58(4):66–73, 2015.

[11] Christine Paulin-Mohring. Introduction to the Coq proof-assistant for prac-
tical software verification, pages 45–95. Springer Berlin Heidelberg, 2012.

[12] Aleksi Peltonen, Mohit Sethi, and Tuomas Aura. Formal verification of
misbinding attacks on secure device pairing and bootstrapping. Journal of
Information Security and Applications, Volume 51, 2020.

[13] Maarten Van Steen and Andrew S. Tanenbaum. Distributed systems. Maarten
van Steen Leiden, The Netherlands, 2017.

[14] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas Anderson. Verdi: A framework for im-
plementing and formally verifying distributed systems. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 357–368. Association for Computing Machinery,
2015.

[15] Jean-Karim Zinzindohoué, Karthikeyan Bhargavan, Jonathan Protzenko,
and Benjamin Beurdouche. HACL*: A verified modern cryptographic li-
brary. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, pages 1789–1806. Association for
Computing Machinery, 2017.

Theoretical Framework for Cloud
Computing Network Measurements

Santeri Sipilä
santeri.sipila@aalto.fi

Tutor: Corneo Lorenzo

Abstract

The global pandemic has affected the world in multiple ways including

the traffic changes of the internet. Measuring and analyzing this traffic

may help to improve the creation of future cloud computing solutions. This

paper researches recent studies on the measurements of cloud computing

and summarizes them. These studies include research on the effects of the

pandemic on the internet, reachability of cloud data centers and measuring

cloud providers off net deployments. In addition, this paper discusses the

different methods of improving reachability of cloud datacenters and their

drawbacks. Edge computing, using sophisticated routing protocols and

using private WAN are all discussed on.

Keywords: Cloud Computing, Data Center, RIPE Atlas, Networks, Net-

work Measurements,

1 Introduction

The global pandemic has affected the world in multiple ways. One of the

affected areas includes the variations in the traffic of the internet [5] [14].

This traffic is often directed toward cloud data centers which have been

adopted globally by many different corporations and institutions in the re-

cent decade. These data centers manage high amounts of traffic through

the internet while serving many different types of applications. Measur-

ing the traffic of these centers that create and receive it is required to

analyze the effectiveness and to plan new applications of the data cen-

ters.

Many tools are available on the market, which allows for analyzing the

latencies, the traffic, and the surrounding networks of these data cen-

ters. These tools are either software, hardware, or a combination of both.

For example, a common tool used for analyzing networks is the Ripe At-

las platform [2], which combines both hardware and software to create

a platform that can measure network performance from many different

locations.

Multiple recent studies have been published on measuring different net-

work statistics of the cloud. However, recent studies on summarizing and

analyzing these measurements have not been published. This paper stud-

ies the current tools available for cloud computing network measurements

and looks into recent studies that examine trends in networks surround-

ing cloud computing. In addition, this paper studies improving the reach-

ability of cloud data centers. These are accomplished by reviewing re-

search on the matter.

The structure of this paper is as follows. Section 2 presents the com-

mon metrics that are used in measuring networks, as well as some of the

standard measurement tools that are commonly used. The third section

overviews recent research that has been conducted on the matter of net-

work measurements. The fourth section analyzes the use cases of these

studies and examines how the reachability of cloud data centers could be

improved. Finally, the fifth section concludes the findings of this paper.

2 Network traffic measurements

This chapter reviews the basic concepts of network measurements, com-

mon network measurement tools, the validity of these measurements and

cloud data centers.

2.1 Network measurement metrics

Figure 1. A visualisation of the Round Trip Time (RTT) of a packet.(J. Kurose & K. Ross
2013 [16])

There are many quantities to measure in a network, but the most com-

monly used metrics are connectivity, latency, bandwidth, throughput, and

packet loss [16]. Connectivity is a binary metric that indicates if two end-

points are connected in a network or not. The time it takes for a packet

to travel from one point to another and back is known as latency or the

Round Trip Time (RTT) [16]. A visualization of the RTT is presented

above in Figure 1.

Bandwidth is the maximum capacity of data flow in an endpoint, link

or network [16]. Throughput is the measure of how much traffic is going

through a link or a network at one time [16]. Finally, Packet loss is the

number of packets lost while trying to send packets from one endpoint

to another. Although there are many quantities to measure, this paper

mainly studies the connectivity, latency, and bandwidth of cloud data cen-

ters and networks.

2.2 Common network measurement tools

There are many common measurement tools made for personal comput-

ers. One of the most common tools is the ping command built into many

operating systems, such as the Linux operating system [3]. This tool can

be used to measure the connectivity, the RTT, and the packet loss ratio

from the host computer to the endpoint. Another tool embedded in the

Linux operating system is the traceroute command [4]. This command

allows the host machine to see the route that the package takes while

traveling to a certain endpoint in the network. The traceroute command

shows then the RTTs of each hop within this network.

Network measurements can also be done via a probe in a network. There

are many types of probes available on the market, but this paper focuses

mainly on the uses of the RIPE Atlas probe and the platform that it uses

[2]. The probe collects various types of network measurements, such as

ping, traceroute, SSL/TLS, DNS, NTP, and HTTP measurements, and

sends these to the RIPE Atlas NCC platform [2]. Data from multiple (12

000 connected [1]) probes are collected on to this platform. This data can

then be filtered, analyzed, and exported on the platform.

2.3 Ways of measuring network traffic

Network measurements methods are currently divided into two main classes

[10]. The first class is passive measuring. In this way of measuring, the

inserted probe does not generate any additional traffic to the network but

only "listens" for ongoing traffic. Data is collected by placing measure-

ment devices in the desired network locations. For example, measuring

the throughput of a single link via a probe would be passive measuring.

The second class of network measurement is active measuring. This

type of measuring is performed by a probe that sends probe packets to

the network and then measures different metrics of these packets, such

as the RTT. The commonly used tools ping [3] and traceroute [4] are both

examples of active measuring.

2.4 Cloud data centers and edge computing

Cloud data centers, also known as data centers are buildings that have

multiple interconnected and co-located servers within them [9]. Their

computing power consists of nodes, which can be bare-metal servers or

virtual machines. Data centers can be used for high-performance comput-

ing, such as scientific computing or acting as a distributed server. Often,

this is achieved by parallel processing the data over multiple nodes in the

data center.

Cloud data centers can utilize edge computing. Edge computing is a

method of computing, which distributes the components of data centers to

a wider area. For example, a data center can distribute standalone servers

that host some of their commonly used applications widely throughout a

region. The benefits of using edge computing are discussed in chapter 4.

Cloud data centers are often provided by content hypergiants, such as

Google, Amazon, and Facebook. Data centers can offer multiple differ-

ent kinds of services to clients, such as Infrastructure-as-a-Service (IaaS),

Platforms-as-a-Service (PaaS), Software-as-a-Service (SaaS), and Function-

as-a-Service (FaaS) [9].

3 Measurements of cloud datacenters

This section explores previous research done on the measurements of

cloud data centers. The first part presents the current situation with the

reachability of data centers. The effects of the global pandemic in cloud

data centers are then evaluated after. Finally, the validity of the RIPE

Atlas platform is evaluated.

3.1 Reachability of cloud datacenters

A key factor in cloud data centers is the reachability of these centers

from a client perspective. Some applications may require a low latency

while using, such as cloud gaming. One option to measure the reachabil-

ity would be to place probes globally and measure the latencies to data

centers from these probes. Corneo et al. [12] conducted a study on the

matter, in which they measured the average latencies to ten major cloud

data networks globally, using over 8500 distributed ripe atlas probes [2]

over 12 months. The study concluded that the majority of the world’s

population has access to a cloud data center within a latency of 100 ms.

Although a latency of 100 ms is viable in many applications, such as

hosting websites, there are still many cases where this is not fast enough.

Autonomous cars, cloud gaming, and augmented reality all need faster

latencies. Potential reachability improvements are presented in chapter

4.

3.2 Measuring the off-net deployments of cloud providers

Content hypergiants, such as Facebook, Google, and Netflix, have been in-

creasingly moving towards deploying services and servers inside end-user

networks. In addition, these hypergiants often encrypt the traffic that

they use. This makes it possible to publicly analyze the amount and the

locations of these off-net services by firstly scanning the default HTTPS

port 443 and then retrieving the Transport Layer Security (TLS) certifi-

cates. These certificates can then be used to determine the entity that

hosts that service [13]. A study, conducted by Gigis et al. proposed this

method and used it to measure the growth of off-net deployments by four

content hypergiants, Facebook, Google Netflix, and Akamai from 2013 to

2021 [13]. The study concluded that these hypergiants have more than

doubled the amount of their off-net services during the period between

2013 and 2014. The growth of off-net deployments differs depending on

the region. In recent years, the growth of these deployments has been

rapid in Europe, Asia, and Latin America.

3.3 Effects of the pandemic in cloud computing

The global covid-19 pandemic not only affected humans but also the net-

working traffic as a result. A study conducted by Feldmann et al. [5]

researched the effects of lockdowns on the bandwidth usage and destina-

tions of network traffic. It was found that the pandemic increased traffic

usage by over 200% in certain applications, such as VPN and video confer-

encing applications, while the traffic in local networks, such as university

networks was decreased [5]. This kind of traffic could increase the latency

to cloud data centers since increased traffic may lead to increased delays

in the service. For example, latencies may increase in situations where

the educational platform is hosted in the same data center as other ser-

vices. Despite these increased loads, the study also concluded that the

Internet managed to cope well despite having to manage rapid load vari-

ations in the network traffic.

Similar results were found in a study conducted by Favale et al., which

analyzed the traffic variations from the perspective of the Politecnico di

Torino campus [14]. It was observed that incoming traffic drastically de-

creased, while outgoing traffic increased and the usage of remote desktop

environments and VPN services increased.

3.4 Validity of measurements

This paper refers to several studies that have been conducted using the

RIPE Atlas platform [2]. Thus, it is useful to know if the platform has

valid measurements. A study has been conducted on the subject by Bajpai

et al [15]. The paper studied the challenges with the Ripe Atlas platform.

The paper concludes that the atlas platform has some weaknesses.

The first problem is that the first and the second version (v1, v2) of

probes are not always accurate in latency measurements [15]. This how-

ever is only a small percentage of probes since Ripe atlas does not dis-

tribute v1 and v2 probes anymore. Measurements can also be done with-

out the first and second-generation probes, leaving only valid measure-

ments.

The RIPE Atlas platform may also suffer from an inherent sampling

bias. Probes are set up often by enthusiasts that may have more com-

plex home networks than a regular user of the internet [15]. This should

be accounted for in the measurements, especially in the areas where the

amount of nodes is not large [15].

The RIPE Atlas platform has created many new traceroute vantage

points. This has resulted in extended coverage of the internet. However,

these vantage points can be restrictive in terms of resources. This can be

a problem when studying a network with many traceroutes over a long

period, since new network coverage creates stale traceroute results. This

could partially be prevented by using BGP updates as signals to monitor

overlaps in the traceroute corpus [8].

4 Meaurement usages

This section explores the ways of improving the reachability of cloud data

centers and combines information from previous studies to indicate key

metrics that should be accounted for to measure cloud-based systems.

4.1 Improving the reachability of cloud datacenters

The reduction of latency in cloud data centers is a major focus of im-

provement. This reduction allows for faster services in addition to an

entirely new genre of cloud-based real-time applications, such as aug-

mented reality-based applications. Thus, it is in the interest of major

service providers to reduce the latency.

The latencies that are measured consist of multiple different delays.

One major part of this delay is the route that the packet takes. One of the

most common routing protocols for packets is the Border Gateway Proto-

col (BGP). Although this protocol is widely used, it has been proven sev-

eral times to be inefficient, meaning that the protocol does not always find

the route with the lowest possible latency between endpoints [7]. Large

content providers, such as Facebook and Google have already been try-

ing to solve this problem with their routing protocols. However, a study

conducted by A. Todd et al [7], concluded that using more sophisticated

routing protocols only proves a minor reduction in these latencies despite

BGP offering possibly a slower route. A drawback of not using BGP is that

it is expensive to create a new routing protocol when compared to BGP.

Another way of improving latency could be to use a private Wide Area

Network (WAN). Using a private WAN can improve latencies since large

content providers can build a private network and determine what kind

of protocols and equipment they want to use inside them instead of rely-

ing on the possibly inefficient public internet. These private WANs are

then connected to the public internet via Points of Presence (PoP). This

method allows the cloud providers to bypass large parts of the public in-

ternet, thus allowing for better control and possibly better performance. A

study conducted by Arnold et al. [6] studied the possible improvements of

private WAN. The study concluded that WAN can often improve latency.

However, these improvements are highly dependent on the geographical

locations of the endpoint and the data center, the distance between them,

and the traffic that occurs in between. A private WAN does not automat-

ically improve the reachability, since it requires better paths and routing

policies to outperform the public internet. The study states that Google’s

and Amazons’s private WAN solutions offer better performance than the

public internet for most users, but they could still be improved.

Latency could also be reduced by bringing data centers closer to the

end-user. This would mean creating new data centers. This could im-

prove the latency, especially in remote regions where the distance creates

a large portion of the latency. This would reduce the distance between

end-users and data centers. However, data centers are costly and require

large amounts of power to operate. Economically it would not make sense

to create large data centers in places with few users. The solution to this

problem might be edge computing. Edge computing would bring cloud

computing resources closer to the end-users by creating smaller less ex-

pensive cloud computing facilities more widely, which in turn reduces la-

tency to the end-user. However, this would result in notable improve-

ments only in regions where the latency is already high. For example,

according to Corneo, et al. study [11], edge computing would only result

in reductions of around 2 ms in areas with already low latencies to cloud

datacenters. This way of reducing latency is more viable in regions, where

the latency to the cloud is already high, such as Asia, Latin America, and

Africa [11].

All of these methods of improving reachability have their areas of im-

provement and drawbacks. The table, presented below, summarizes the

benefits and drawbacks of each of these methods of improving reachabil-

ity.

Improvement method Possible improvements Drawbacks

Using more performance

aware routing

protocols instead of BGP [7]

Performance aware routing

can improve latency by 5+ms

in 2-4%of cases where BGP

routing is used.

Creating a new performance

aware routing protocol is

expensive when compared

to using BGP.

Using a private wan [6]

Can provide improved latency

in cases where the private

WAN outperforms the public

internet.

Building a private WAN can be

expensive and does not always

guarantee better performance

than the public Internet.

Using edge computing [11]

Edge computing could

improve latencies to cloud

data centers by up to 30%

in certain cases.

Latency gains fall when the

distance from the client to

the data center gets smaller,

thus making it less effective in

some cases.

Table 1. Summarized methods of improving the reachability of cloud data centers

4.2 Summary of cloud computing measurements

Measuring a traditional server/service has been straightforward since of-

ten they have been deployed to a single location. However, with cloud

computing these measurements become increasingly complex since they

can be distributed globally with different kinds of equipment resulting in

different results depending on the measurement location. Recent stud-

ies have proven that there are many good tools to analyze the cloud, but

there is no silver bullet for measuring the cloud. Instead, it requires care-

ful planning to measure different aspects of the cloud successfully.

One of the key metrics to analyze in cloud computing systems is to mea-

sure the reachability of the system. Corneo et al. presented a framework

for this using the RIPE Atlas platform, measuring the reachability of cer-

tain cloud data centers [12].

The expansion of cloud computing resources can be useful to measure

planning networks. Measuring can be achieved by using the method of

retrieving and analyzing HTTPS certificates from these cloud providers,

proposed by P. Gigis et al [13].

Analyzing the traffic and its changes in cloud computing can be used

to analyze different events on the planet, such as wars and pandemics.

In addition, they can be used to plan networks. There are many ways of

measuring the traffic of the cloud. The cloud is such a large concept that

it requires lots of data points to analyze. One solution is to analyze data

from vantage points, Internet Service providers, and edge locations, as

proposed by Feldmann et al [5].

5 Conclusion

Measuring different properties of the cloud is a key point in creating new

technologies that utilize the cloud. This paper reviewed the recent studies

that have been conducted on cloud computing measurements and sum-

marized the key factors of measuring the cloud. This paper also reviewed

some of the methods of improving the reachability of the cloud.

There is no silver bullet for measuring cloud computing. The nature

of distribution in the cloud will always make cloud computing measure-

ments complex. The result is that measurements of the cloud should be

planned in a controlled way while taking into account all of the variables

that the measurements may have. Measuring the cloud also has different

properties when compared to a regular service

Improving cloud reachability also suffers from a similar problem. Many

of the improvements are highly dependable on the network and devices,

which in turn means that improvements should be planned and tested

before fully committing to a way of improvement.

Due to the nature of cloud computing, there is a lot of possible research

to conduct. One possible future research topic could be to research if it

is possible to lower latencies by implementing new laws/regulations. For

example, requiring new nodes to have a certain minimum processing ca-

pacity. Another possible future research topic could be to research the

increase of traffic to a single cloud service provider over time and how it

correlates to the distribution of the cloud.

References

[1] Global ripe atlas network coverage. https://atlas.ripe.net/results/maps/network-
coverage/. Accessed: 15.2.2022.

[2] What is ripe atlas? https://atlas.ripe.net/about/. Accessed: 15.2.2022.

[3] GNU coreutils. ping(8) Linux User’s Manual, 8.32 edition, March 2020.
Accessed: 1.2.2022.

[4] GNU coreutils. traceroute(8) Linux User’s Manual, 8.32 edition, March
2020. Accessed: 1.2.2022.

[5] A. Feldmann et al. The lockdown effect: Implications of the covid-19 pan-
demic on internet traffic. IMC ’20: Proceedings of the ACM Internet Mea-
surement Conference, pages 1–18, 2020.

[6] A. Todd et al. (how much) does a private wan improve cloud performance?
In IEEE INFOCOM 2020 - IEEE Conference on Computer Communications,
pages 79–88, 2020.

[7] A.Todd et al. Beating bgp is harder than we thought. In Proceedings of
the 18th ACM Workshop on Hot Topics in Networks, HotNets ’19, page 9–16,
New York, NY, USA, 2019. Association for Computing Machinery.

[8] G. Vasileios et al. Reduce, reuse, recycle: Repurposing existing measure-
ments to identify stale traceroutes. In Proceedings of the ACM Internet Mea-
surement Conference, IMC ’20, page 247–265, New York, NY, USA, 2020.
Association for Computing Machinery.

[9] L. Barroso et al. The Datacenter as a Computer: Designing Warehouse-Scale
Machines, Third Edition. Morgan Claypool, 2018.

[10] L. Chengmin et al. Analysis and research of network measurement tech-
nologies. In Proceedings of 2015 International Conference on Intelligent
Computing and Internet of Things, pages 117–121, 2015.

[11] L. Corneo et al. (how much) can edge computing change network latency?
2021 IFIP Networking Conference (IFIP Networking), 2021.

[12] L. Corneo et al. Surrounded by the clouds: A comprehensive cloud reach-
ability study. WWW ’21: Proceedings of the Web Conference 2021, pages
295–304, 2021.

[13] P. Gigis et al. Seven years in the life of hypergiants’ off-nets. In Proceed-
ings of the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, page
516–533, New York, NY, USA, 2021. Association for Computing Machinery.

[14] T. Favale et al. Campus traffic and e-learning during covid-19 pandemic.
Computer Networks, 176:107290, 2020.

[15] V. Bajpai et al. Lessons learned from using the ripe atlas platform for mea-
surement research. ACM SIGCOMM Computer Communication Review,
45(3):35–42, 2015.

[16] J. Kurose and K. Ross. Computer Networking: A Top-Down Approach: In-
ternational Edition. Pearson, 2013.

julianjessen.howardbaker@aalto.fi

Biometric authentication: a survey of
different modalities and their potential
use cases.

Julian Jessen Howard Baker

Tutor: Sanna Suoranta

Abstract

This seminar paper examines the biometric authentication landscape. It

focuses on creating a broad overview of numerous methods and their ap-

plications. After an evaluation of survey papers and articles, it summarises

some notable unimodal, multimodal and continuous multimodal biomet-

ric authentication methods and concludes that, given the literature con-

tinuous multimodal biometric authentication is the most relevant method.

Especially given the pervasive and mobile state of technology in the present

world. Although this is mostly the case, there are still various significant

use cases for unimodal and multimodal methods, so it is not as simple as

which is better, the context of use is important.

key words: Biometric authentication, authentication, Enrollment, Au-

thentication, Templates, Continuous biometric authentication

1 Introduction

This section aims to introduce the concept of biometric authentication, its

importance, relevant advantages and disadvantages, introduce relevant

literature on the topic and state the direction of the paper

Alphanumeric passwords have been and still are the most common method

of user authentication despite their high cognitive load and susceptibility

to compromisation such as password database attacks and spoofing [16].

Passwords have served as an efficient alternative to manual checks in

more archaic access control systems and enabled the scaling of many dif-

ferent services that could not have been possible manually.

Due to user familiarity, alphanumeric passwords are user-friendly and

natural to use although often lead to reduced security for the user. In

many cases, to reduce the mental burden of remembering many pass-

words for different places, users will choose short, memorable (common)

passwords or store them in insecure locations. This presents a significant

attack avenue for capable, malicious actors.

With the advent of password managers and encrypted physical pass-

word devices, the password has retained its usefulness to an extent. How-

ever, new, reliable authentication methods, e.g, biometric authentication,

have been developed over the years that have either extended the func-

tionality of the password or replaced it entirely. Biometric authentication

is increasing in popularity not solely due to increased security and per-

formance. It has the advantage of being efficient to use, non-intrusive

and has been shown to be the preferred method of identity verification by

general smartphone users [16].

Biometric authentication is the process of using a physical, behavioural,

or vital biological characteristic to verify an identity [7].It typically con-

sists of two stages, enrollment and verification. Enrollment involves cap-

turing the particular characteristic(s) through a sensor on the device, ex-

tracting features of that characteristic, quantifying it, producing and stor-

ing a template of the characteristic somewhere safe. The latter stage con-

sists of comparing a current sensor recording to a template previously

stored on the system, and then making a acceptance or rejection decision

based on the similarity of the current recording and the stored template

[1].

2 Biometric systems: The generic architecture

To accomodate the processes of enrollment and validation, the system

must possess certain modules that allow for the collection of raw biometric

data [13]. The important modules include:

1. Sensor Module that captures the raw data of the trait being captured

2. Feature extractor that converts the raw data from the sensor module

into a compact representation

3. Classifier module / Matching module that uses a classifier to compare

the extracted feature to those residing in the local database and deter-

mine similarity

4. Decision Module Uses a threshold to determine if the similarity from

the classifier module is sufficient to accept the individual. If not rejects

the individual.

Many biological characteristics have properties that are especially use-

ful for the purpose of identity verification:

1. Universality The idea that everyone has this characteristic innately, by

being human. This means that everyone has a password or means to be

identified,

2. Uniqueness The concept that the chosen bio characterisic is different

between all potential users of the system, and

3. Permanence The lack of change of the characteristic over time. [3]

Using a singular biological characteristic to identify a user is called

a unimodal biometric authentication method, whereas .using a combi-

nation of them is referred to as a multi-modal method [7]. The works

[7, 2] discuss several significant, detrimental aspects of unimodal methods

such as: Susceptibility to circumvention, Non-universality, and highlight

that multi-modal address these aspects very well. However, some mul-

timodal methods can incur significant cost and performances penalties

[11]. Therefore depending on the requirements of the system, uni-modal

methods could be more appropriate.

However, an additional point that is not widely considered in the lit-

erature is the non-retractability of a bio-metric trait, which is especially

significant when using unimodal methods. If a system uses a biological

characteristic to decide entry to a system and if a user’s template is com-

promised, that incurs a massive usability or security tax, depending on

the response taken by the system governing body. This is an especially

important consideration in uni-modal systems, where if a user cannot val-

idate with a specific characteristic, they can either not use the system or

need to find another way of Authenticating themselves, such as reverting

to password use, which can incur a security penalty.

This paper aims to evaluate different unimodal and multimodal meth-

ods of authentication and analyse their performance and potential use in

different use case scenarios. The evaluation will address various contem-

porary unimodal and multimodal authentication methods and refer to the

components below to model security.

1. Performance vs Usability

2. Cost of implementation

3. Overall security - False Acceptance and False rejections

4. Interoperability

3 Notable unimodal methods

This section discusses and evaluates various notable unimodal methods.

Unimodal biometric authentication is still a widely used system of au-

thentication mainly due to its simplicity of implementation, speed of com-

putation and minimal system hardware requirements. The most common

methods of unimodal biometric authentication include face, iris, hand ge-

ometry, voice and fingerprint [17]. Unimodal methods are gradually being

replaced by multi-modal methods due to their susceptbility to circumven-

tion, Non-universality, high rates of error and noisy data.

3.1 Iris based authentication

Iris based biometric authentication well regarded, and is considered to

be a highly reliable authentication method. This is mainly due to low

interclass similarity, making the false acceptance rate of a system using

this modality very low [9]. Using the Iris also has various other benefits:

1. Unchangability with time

2. Ease of collection

3. Uniqueness

4. Large feature span

5. Non-contact and unintrusive based collection

[4]

The iris is a protected, internal structure located within the eye. It is

mainly responsible for controlling the ammount of light that reaches the

retina by contracting and relaxing various muscles in the eye. The iris

consists largely of complex, unique tissue where, much like the fingerprint

can contain grooves, ridges, loops, bulges and spots [9]. These components

contribute to the complexity and uniqueness of the iris between individu-

als. To optimize performance, high quality iris images are needed, which

can incur significant computational hardware costs.

Evaluation of iris based unimodal biometric authentication

In the review [6], a number of different iris based unimodal biometric au-

thentication works are evaluated. Overall, biometric authentication us-

ing the iris yields high performance. The iris as a feature is preserved and

changes at a slow rate over time. Hence, the template is valid for a long

period of time and does not need frequent updating compared to a feature

set that is subject to change like the face. Using the Iris yields highly

results even on mobile platforms [6], meaning it will remain extremely

relevant with devices becoming increasingly portable.

3.2 Face based authentication

Similarly to iris based biometric authentication, use of the face for au-

thentication purposes is extremely common. This is mainly due to the

availability of high definition cameras that are able to capture regions of

the face with very high accuracy. A potential problem with using the face

as a main authentication feature is the lack of permanence. The face and

its various features change dramatically in the process of aging. Over long

periods of time, the facial template will need to change. This incurs a us-

ability cost to the user, as they will have to periodically reconstruct their

facial template. This section presents some significant methods using the

face as a main authentication feature.

3.3 Basic methods and structure of the face

Face based biometric authentication using soft biometrics

In the paper exploring face based biometric authentication, [10] state the

use of using soft biometrics to improve the overall face-recognition ac-

curacy. Soft biometrics are facial traits that are not distinctive on their

own although can significantly aid in facial recognition. These features

can include scars, moles and freckles [10]. These features are especially

helpful in non-ideal situations, where the individual to be verified is off-

center or in an off-frontal pose. Additionally, due to increasing quality and

higher resolution images, these features can be captured with ease and is

therefore a relatively effortless way of improving face based biometric au-

thentication.

4 Multimodal methods

The introduction of multimodal biometric authentication methods helped

solve issues such as spoofing attacks, non-universality and intraclass vari-

ation in unimodal methods. The characteristic that makes this possi-

ble is fusion, which is where evidence of multiple , independent features

are taken from many different biological or behavioural sources via sen-

sors, and combined into valid template. Multimodal methods can also

address the problem of ’liveness detection’, whereby the authentication

device must try to detect if the individual to be authenticicated is ac-

tually present in that moment [13]. By requesting a random subset of

biometric traits, the device can ensure that the individual is actually

present. This section introduces some early methods of biometric authen-

tication and discusses their applications in mobile contexts. The differ-

ent methodologies used to combine different modalities are described and

discussed. Then, some more contemporary methods are discussed and

compared with their earlier multimodal and unimodal counterparts.

4.1 Multi-modal methods: Early feature fusion techniques

The work [13] discusses some early vairiations of multi-modal methods

of biometric authentication. It highlights different methods of feature

fusions and evaluates their performance.

The findings suggest that using multiple, independent biometric traits

increase performance significantly. Arun Ross et al. state that there

are various issues that unimodal methods have to contend with that re-

duce their effectiveness. Examples of this include: Noisy data(Improperly

maintained sensor, burnt fingerprint or scarred finger), Intra-class varia-

tion (wrong pose, poor lighting) and Inter-class similarity (similarity be-

tween members from different classes. This results in false acceptance).

The generic aim of the multi-modal method is to address these problems

by fusing multiple independent biometric traits of an individual whilst

meeting the performance requirements of the various applications using

them. Arun Ross et al. introduce several main categories of feature fusion

available when using multimodal methods, they include:

Single biometric trait, multiple sensors

The use of multiple sensors to retrieve the raw data of a singular bio-

metric trait. This data can then be fused at different stages during data

processing. Generally, fusion happens at one of two stages, matching or at

the recording of data and feature extraction stage. In feature level fusion,

the data from multiple sensors are combined into a single template. One

way that this is done is by calculating the weighted average of the vari-

ous data sets to produce one single template from a series of feature sets

[12]. In match level fusion, the individual features sets are first passed

through the match module - which determines how similar the recorded

feature set is to the correct, stored feature set. After passing the multiple

sensor recordings of the biometric trait through the matching module, the

matching scores are combined for subsequent use in verification [12]. Al-

though the discussion of the match level fusion techniques are outside the

scope of this paper, it is easy to see the performance benefit of combining

several feature sets into single numbers.

Single biometric trait, multiple classifiers

The use of a single sensor to retrieve multiple instances of the same bio-

metric trait. This helps in creating a more complete, concrete representa-

tion of the trait. Various examples of this include Multi-instance systems

- the usage of multiple instances of the same body trait (could be various

different angles of the face, recording and combining the feature set of

different fingers etc.) [12] - and multi-sample systems - usage of a sin-

gle sensor to acquire multiple samples of data from the same biometric

trait - for example, taking multiple recordings from the same finger to

obtain a more complete and accurate feature set. An early example of

this the use of a multi-instance systems by J.Kittler et al. who conduct

an investigation into the usage of multiple sources of information to in-

crease accuracy of biometric authentication. In this case, multiple images

of different angles of the face are utilized to increase performance over

unimodal biometric authentication. They achieved a reduction in error

rates of up to 40% [8].

Multiple biometric traits

Utilizing multiple sensors to record mutiple, independent biometric traits.

The use of physically uncorellated traits is shown to result in high per-

formance [12]. However, the deployment of multiple varied sensors is

more expensive and there are further contextual considerations to make

regarding deployment costs, computational performance and error rates

[12]. D.Jagadiswary et al. introduce a multimodal biometric authenti-

cation system that fuses data at a feature level from fingerprint, finger

vein and retina to produce high GAR (general acceptance rate) and low

FAR (false acceptance rate) [5]. The method uses feature level fusion to

turn three independent sensor readings and feature extractions into a

single feature set via matrix fusion. The use of multiple biometric traits

increases the the complexity and detail of the feature space, thereby re-

ducing the overlap of features between individuals. This works to reduce

false acceptance [5]. Jagadiswary et al. do not specify the computation re-

quirements in this paper, it is also important to consider that due to their

use security mechanisms such as encryption of templates, the space and

processing power needed for this method are significantly higher than a

unimodal method without encryption. Although, it is not clear whether

these differences will be noticable or significant. What can be concluded

from this paper is that high levels of performance can be achieved even

with the use of encryption [13].

4.2 Continuous multimodal biometric authentication

After summarising and evaluating numerous multi-modal and uni-modal

biometric authentication methods the disadvantages of both approaches

are clear. Namely, that unimodal approaches, although easy to imple-

ment and have good potential for accuracy, suffer significantly when the

data quality is poor (e.g dirty or wet hand) and is highly susceptible to

interclass similarities which cause false acceptance [14]. And multimodal

approaches have great potential for accuracy and performance [5] incur

high computational and hardware costs due to multiple, highly specific

sensors and simultaneous reading and combination of information from

multiple sources. Furthermore, both of these static modalities have a fa-

tal vulnerability in that post-authentication the system could be misused.

The nature of static authentication being that the user is authenticated

once per session (e.g the user is authenticated until they lock the screen

of their phone). A solution to this is continuous biometric authentication,

a method in which the identity of the user is continuously re-verified.

Within continuous authentication, it has been shown that a combination

of physiological biometrics is preferrable due to the ease of collection and

low cost of implementation.

4.3 Continuous multimodal biometric authentication: Face
recognition and keystroke dynamics

After noting that continuous multimodal biometric authentication is an

advanced and relevant alternative to the previously discussed categories,

it is important to introduce and evaluate a specific case to discuss its use

and potential in different contexts. Stuti Srivastava et al. introduce

a continuous method using facial recognition and keystroke dynamics.

Keystroke dynamics is the analysis of timing information of a persons

typing rhythm and habits,the data used consists of the hold time for each

key (time between press and release) and latency between two successive

key presses [15]. In addition, to make use of the multimodal approach,

face recognition is used. Alone, this would be susceptible to noisy data

and other disdvantages as dicussed previously. However, in combination

with keystroke dynamics, they will serve as reliable identifiers. Compared

to physiological characteristics, keystroke dynamics can be recorded non-

invasively and without specialist hardware (e.g fingerprint sensors)[15].

Using weighted sum feature-level fusion, the experiment yielded a 0.0176

EER (equal error rate - the point at which the false acceptance rate and

false rejection rate intersect), which is extremely accurate.

This is extremely high performance given its hardware and software

requirements. The methods of data acquisition are also non-intrusive and,

superficially, do not interfere with the use of the system. Something that

is not really considered is when this authentication takes place. Further

research could definitely consider the optimal periods to record data and

perform the authentication such that it interfers as little as possible with

the user experience.

5 Conclusion

This paper provides an overview of the biometric authentication space.

It draws attention to the different modalities and briefly discusses their

potential uses. It covers the basics of uni,multi and continuous biomet-

ric authentication methods and their potential use compared to the fa-

miliar, archaic albeit efficient passwords. It serves as a timeline, con-

sidering more dated approaches and their initial developments, starting

with unimodal approaches and leading to more contemporary, continu-

ous multimodal biometric authentication. These more contemporary ap-

proaches are especially relevant with the increasingly pervasive nature

of technology, specifically smartphones. A conclusion that can be drawn

from the literature is that all biometric authentication methods can po-

tentially be useful if implemented correctly. Their potential usefulness is,

however, restricted to the use context. As mentioned above, continuous

multimodal biometric authenticationhas wide potential use especially in

pervasive systems, where the devices will be used with a high degree of

frequency. It is clear to see that in another context, authentication to this

degree would be unnecessary and costly.

References

[1] Shaymaa Adnan AbdulRahman and Bilal Alhyami. A comprehensive sur-
vey on the biometric systems based on physiological and behavioural char-
acteristics. 2021.

[2] A.Jain, A.Ross, and S.Prabhakar et al. An introduction to biometric recog-
nition. January 2004.

[3] Juan Esteban Ordonez Bonilla. Biometric authentication. May 2021.

[4] Arezou Banitalebi Dehkordi and Syed A.R.Abu-Bakar. A review of iris
recognition system. 2015.

[5] D.Jagadiswary and D.Saraswady. Biometric authentication using fused
multimodal biometric. 2016.

[6] Fathima, Aleemath Sana, and Dr.M Sharmila Kumari Mohammed Hafeez M.K.
A review on iris recognition systems. 2019.

[7] Ujwalla Gawande and Yogesh Golhar. Biometric security system: a rigorous
review of unimodal and multimodal biometrics techniques. May 2018.

[8] J.Kitler, J.Matas, K.Jonsson, and M.U.Ramos Sanchez. Combining evidence
in personal identity verification systems. 1997.

[9] Vahid Nazmdeh, Saghayegh Mortazavi, Daniel Tajeddin, Hossein Nazmdeh,
and Morteza Mdarresi Asem. Iris recognition; from classic to modern ap-
proaches.

[10] Unsang Park and Anil K.Jain. Face matching and retrieval using soft bio-
metrics. September 2010.

[11] Norman Poh, Thirimachos Bourlai, and Josef Kittler et al. Benchmark-
ing quality-dependent and cost-sensitive score-level multimodal biometric
fusion algorithms. November 2021.

[12] Arun Ross. Encyclopedia of Biometrics. Springer Link, 2009.

[13] Arun Ross and Anil K.Jain. Multimodal biometrics: An overview. Septem-
ber 2004.

[14] Riseul Ryu, Soonja Yeom, and David Herbert. Continuous multimodal bio-
metric authentication schemes: A systematic review. 2021.

[15] Stuti Srivastava and Prem Sewak Sushish. Continuous multi-biometric
user authentication fusion of face recognition and keystroke dynamics. 2016.

[16] Nina Gerber Verena Zimmermann. The password is dead, long live the
pasword - a laboratory study on user perceptions of authentication schemes.
August 2019.

[17] Krishnakumari y. A review on unimodal and multimodal biometric systems.
May 2017.

Explainable Empirical Risk Minimization

Yifan Zhu
yifan.zhu@aalto.fi

Tutor: Alexander Jung

Abstract

The demand for explainability in machine learning (ML) predictions has

been increasing with the wider application of ML techniques and the sig-

nificance of the decisions from predictions. An ideal ML model should

have both high predictive accuracy and explainability, whereas there is a

trade-off between these two targets. As a potential solution, Explainable

Empirical Risk Minimization (EERM) has been proposed to learn a pre-

dictive model by balancing its empirical risk and user-specific explainabil-

ity. This paper presents the details of EERM, evaluates its performance by

implementing EERM in linear hypothesis space, and compares experiment

results with linear regression, ridge regression and LASSO regression. The

result preliminarily shows the utility of EERM in linear hypothesis space.

KEYWORDS: empirical risk minimization, explainable machine learning,

regularized loss minimization

1 Introduction

With the development of Machine Learning (ML) in recent years, ML

techniques have been applied to much broader areas, including drug de-

sign [1], healthcare [2], and finance [3]. Many decisions of these appli-

cations, which might be affected by ML predictions, are crucial in that

wrong decisions can cause severe outcomes [3]. Furthermore, not know-

ing why and how the prediction is generated makes it difficult to adjust

the ML model. Thus, the demand for explainability of ML predictions is

rapidly increasing, which even limits the further broader application of

ML techniques.

Both predictive performance and explainability are significant indica-

tors of ML model performance. However, for most models, there is a

trade-off between these two factors [4]. With the improvement of pre-

dictive performance, the model can become more complex, then it is more

difficult to interpret the model. As a result, Explainable Empirical Risk

Minimization (EERM) [5] has been proposed to learn an ML model such

that both predictive performance and explainability are considered. In

EERM, a user’s knowledge for the data is quantified by an information-

theoretic measure as a "user summary" [6], and then the explainability

of the model can be measured by the distance between the prediction and

user summary. As an instance of Regularized Loss Minimization (RLM),

EERM uses the explainability quantification as the regularization func-

tion to learn the optimal ML model, which is to have low empirical risk

and to be clear for the user to understand.

To the best of our knowledge, EERM has only been formulated, and

there is little further evaluation and analysis of it. This paper reviews

the main features of EERM, evaluates its performance with experiments,

and analyses its utility together with other RLM algorithms.

This paper is organized as follows. Section 2 introduces the basic knowl-

edge and prerequisites of EERM. Section 3 presents the fundamentals

and details of EERM. Section 4 contains the experiment details, analyses

the experiment results and discusses the utility of EERM. Finally, Section

5 provides conclusions of EERM.

2 Prerequisites

In this section, we present some prerequisites for understanding EERM

in detail. Section 2.1 introduces the basic concepts of ML and learning

principles related to EERM. Section 2.2 elaborates on the definition and

methods of explainable machine learning. Finally, Section 2.3 presents

the basic knowledge of information-theoretic measures used in EERM.

2.1 Learning Principles in ML

Machine Learning is a technique that detects important patterns from

existing knowledge to obtain new information [7]. For example, in the

application of weather prediction, taking the weather data of the past

year as input, ML algorithms can extract features, such as the correlation

between weather and seasons, to predict the future weather.

Key Principle

The key principle of most ML algorithms is to train a model which builds

a prediction map from the input data to the output prediction. Let X =

{x1, x2, ..., xn} denote the input space, xi = (x1i , x
2
i , ..., x

m
i) denote each in-

stance in X , which is also a feature vector , Y denote the output space,

which is the label set for X . Then, to learn a model is to learn a prediction

map h

y = h(x)

h ∈ H : X → Y
(1)

where x is a feature vector in X , and y is the predicted label for x. The

prediction map h is referred to as a hypothesis in the hypothesis space H
as well as a predictor.

Generalization

One of the most significant goals of ML algorithms is to learn a predictor

with a strong performance in generalization. Generalization is an ability

that the predictor can make predictions on unseen instances with satisfy-

ing accuracy based on the training process. This ability can be measured

by a loss function L(y, h(x)), which calculates a score of error based on

the distance between the true label y and the prediction h(x). High value

given by L(y, h(x)) indicates that there are many differences between the

prediction result and the true label, and then the predictor has poor pre-

diction performance. Hence, the goal of ML can be quantified as finding

the optimal hypothesis h∗ such that

h∗ = argmin
h∈H

R(h) (2)

where R(h) denotes the generalization error of hypothesis h.

Empirical Risk Minimization

Since the true label for the unseen data is unknown, we cannot directly

measure the generalization error. Then, Empirical Risk Minimization

(ERM) [8] was proposed as a learning principle to approximate general-

ization performance by computing the average error over the training set

Γ

R̃(h) =
1

|Γ|
∑

(x,y)∈Γ
L(h(x), y) (3)

R̃(h) is referred to as the empirical risk of hypothesis h. With ERM, we

may select the hypothesis h∗ with the minimum empirical risk as the op-

timal predictor

h∗ = argmin
h∈H

R̃(h) (4)

However, ERM may arise the problem of overfitting. Overfitting is a

phenomenon such that the predictor with small empirical risk has high

risk in the unseen data, which indicates that the predictor cannot gener-

alize on the unseen data. This phenomenon is mainly caused by the gap

between the size of training set and the complexity of hypotheses. Since

the training set size is often limited, constraining complexity of hypothe-

ses may avoid overfitting.

Regularized Loss Minimization

The learning principle Regularized Loss Minimization (RLM) was pro-

posed to balance the empirical risk and the predictor complexity by mini-

mizing the sum of R̃(h) and a regularization function R(h)

h∗ = argmin
h∈H

R̃(h) + λR(h) (5)

where λ is a hyperparameter. R(h) measures the complexity of hypothesis

h. For example, Lasso regression adopts L1 norm ||w||1 =
∑n

i=1 |wi| as the

regularization function to constrain the number of model parameters as

well as the complexity in RLM; thus we can obtain a hypothesis with both

satisfying empirical risk and complexity.

2.2 Explainable Machine Learning

The growing demands for the explainability have brought increasing pop-

ularity and importance for Explainable Machine Learning. Explainable

ML is defined by Murdoch [9] as extracting the relations from the learned

ML model, which are either between data features and labels or learned

by the predictor.

The main categories for Explainable ML methods are intrinsic and post

hoc [10]. Intrinsic methods refer to ML models that are intrinsically ex-

plainable due to their simple structure or relatively low complexity, while

methods belonging to post hoc analyse the information extracted from the

learned model to obtain explanations. The key issue of Intrinsic meth-

ods is the trade-off between explainability and prediction accuracy, since

model with high complexity may lead to low explainability and high accu-

racy. EERM is then proposed by Jung [5] as an intrinsic method to learn

a predictor with balanced accuracy and explainability.

2.3 Differential entropy

Entropy is a basic concept in Information theory, which quantifies the un-

certainty of a random variable [11]. The uncertainty can be interpreted as

the amount of information contained in the random variable. Specifically,

the occurrence of a rare event can convey a large amount of information

as well as high uncertainty.

Differential entropy is the entropy for continuous random variables.

Conditional entropy H(Y|X) is an extension of entropy in that it quan-

tifies the uncertainty of random variable Y give the information of X. Let

Y be a continuous random variable, SY be the corresponding domain set,

then H(Y|X) can be defined by

H(Y|X) = −
∫

SX ,SY

f(x, y) log f(y|x)dxdy

= −E[log f(y|x)]
(6)

where f(x, y) is the joint probability density function of X and Y, f(y|x) is

the conditional probability distribution of X and Y.

3 Regularized Loss Minimization algorithms

In the following, we present the details of EERM algorithm, which is an

instance of RLM, and classical RLM algorithms, namely ridge regression

and LASSO regression. Then, in Section 4, we conduct experiments on

these algorithms to compare their performances and then discuss the util-

ity of EERM.

3.1 Explainable Empirical Risk Minimization

Explainable Empirical Risk Minimization is proposed by Jung [5] to search

for the optimal hypothesis with low empirical risk and high explainability

in the hypothesis space, which is intrinsically explainable. The essence of

EERM is the combination of RLM and user background. EERM models

users’ background, the understanding of data to be specific, as a user sum-

mary, which quantifies users’ expected value for the prediction results.

Then, the explainability of the predictor is measured by the conditional

differential entropy between prediction results and the user summary. To

learn the optimal model in the form of RLM, the empirical risk is used

to quantify the model generalization performance, and the explainability

quantification is used as the regularization function. The optimal model

obtained from training is an optimized result of the trade-off between ex-

plainability and predictive performance, which has satisfying generaliza-

tion performance and is explainable to the user.

User Summary

In Explainable ML, it is significant to notice that explainability is mea-

sured based on the context [12], which is the user’s background for, for

example, the application and ML techniques. Users with different back-

grounds can have different level of understanding and different concerns

for the predicted results. For example, a user who is familiar with lin-

ear regression can interpret the predicted results directly by the weight

of each feature, which represents the significance of the feature, while

a user with little knowledge of the algorithm may need a more detailed

explanation for understanding the result.

To process the varying user background, EERM proposed user summary

to model user’s understanding for the data and features. User summary

is defined as user’s expected value for the predicted result of given data,

which is largely based on user’s intuition for the correlation between data

features and labels [5]. For example, in weather prediction, the user can

provide own prediction for future weather based on the observations and

intuitions, such as the correlation between weather and seasons. Thus, by

providing the data and user summary to the training process, users with

different backgrounds can obtain a personalized explainable ML model.

Explainability Quantification

With user summary û and predicted result ŷ for data x, the explainability

of the predictor can be modeled as conditional differential entropy H(ŷ|û),
which quantifies the uncertainty of observing the predicted result while

given user summary. Since user summary contains user’s expectation

for the prediction, high uncertainty indicates that the predicted result is

largely different from user’s expectation, which suggest that the predictor

is out of user’s understanding; thus the predictor has poor explainability.

Furthermore, if we narrow down the range of hypothesis space to linear

predictors and assume that the data and its user summary follow multi-

variate normal distribution with zero mean, the explainability quantifica-

tion can be further derived as E[(ŷ − αû)2] [5] with the entropy of normal

distribution, where α is a constant. This quantification directly measures

the distance between predicted results and user summary, which is easier

to understand as well as compute.

Regularization

The objective function in EERM can be obtained by combining ERM and

the explainability quantification [5]

h∗ = argmin
h∈H

R̃(h)

s.t. H(ŷ|û) ≤ η

(7)

where the entropy is constrained to be smaller than η.

In practice, if we keep the assumptions above and quantify explainabil-

ity as E[(ŷ − αû)2], then we can write (7) as [5]

h∗ = argmin
h∈H

R̃(h) + λE[(wTx− αû)2] (8)

where w is the weight parameters in hypothesis h.

It is noticeable that (8) is in the form of RLM with explainability quan-

tification as the regularization term. Clearly, during the training process,

EERM algorithm will seek to find the optimal hypothesis with balanced

generalization performance and explainability based on the user’s specific

background.

3.2 Classical Regularization Algorithms

Both ridge regression and LASSO regression are classical regularization

algorithms. They share the similarity of being performed on linear hy-

potheses, and the major difference between them is the choice of regu-

larization functions, which leads to the difference in their preferences for

training the weight parameters.

Ridge Regression

Ridge regression is a regularization algorithm performed on linear regres-

sion with l2 norm as the regularization function

h∗ = argmin
h∈H

λ||w||22 +
n∑

i=1

(h(xi)− yi)
2 (9)

where λ is the regularization parameter that controls the penalty on the

parameters; ||w||2 is the l2 norm, which equals to
√∑m

i=1w
2
i .

Utilizing l2 norm as the regularization function, ridge regression tends

to regularize the weight parameters to approach zero with a large value

of λ; thus, it is capable of decreasing model complexity.

LASSO Regression

LASSO stands for least absolute shrinkage and selection operator. Unlike

ridge regression, LASSO regression uses l1 norm as the regularization

function

h∗ = argmin
h∈H

λ||w||1 +
n∑

i=1

(h(xi)− yi)
2 (10)

where ||w||1 equals to
∑m

i=1 |wi|.
From (10) we can observe that if the regularization parameter λ is cho-

sen be a large value, then LASSO regression will penalize weight param-

eters of insignificant features to be equal to zero. In other words, LASSO

regression is capable of performing feature selection, which leads to the

similar effects of ridge regression.

4 Experiments and Results

To evaluate the performance of EERM and compare it with ridge regres-

sion as well as LASSO regression, we implemented the EERM algorithm

specifically for a linear regression task; conducted experiments of these

three algorithms as well as the baseline linear regression algorithm on

the same dataset; presented their scores as well as learned weight param-

eters respectively as the experiment result. Codes for the experiments can

be found in GitHub.

4.1 Dataset

The dataset we used is the California Housing dataset. It contains the

housing information of 20640 census location blocks from the 1990 Cali-

fornia census. Ten attributes of census blocks are included in the dataset,

which are longitude, latitude, the median age of housing, total amount

of rooms, total amount of bedrooms, population, total amount of house-

holds, median income, distance to the ocean and the median house value.

The first nine attributes are used as data features, and the median house

value is used as the target.

4.2 Experiment details

To ensure that the dataset is usable, we cleaned the data in advance by

processing missing value and categorical value. Furthermore, to avoid

data overflow in the implementation of EERM, the data is scaled by stan-

dardization. The dataset is then randomly split into training set and test

set for training and evaluating the performance of the algorithms.

The models of Linear regression, ridge regression and LASSO regres-

sion are directly fetched from scikit-learn library, and the model of EERM

is implemented according to (8). In particular, to obtain the user sum-

mary for EERM, we first plot the correlation between all ten attributes

to simulate the intuition for the data. Then, we remove features that are

not strongly correlated to the target, which are longitude, total amount

of bedrooms, population and total amount of households, to form a new

dataset and fit it with another linear regression. The prediction of the

new dataset is used as the user summary. Coefficient of determination

regression (R2) score is used to measure the model generalization perfor-

mance. Score approaching to 1 indicates that the model can fit unseen

data well, and negative score may suggest that the model is worse than a

random model.

4.3 Experiment results

R2 score for linear regression, ridge regression, LASSO regression and

EERM are 0.461, 0.450, 0.408 and 0.413 respectively. Figure 1 presents

the learned weight parameters of these models.

From R2 scores we can observe that models of linear regression and ridge

regression have a similar performance, which is better than the other

two; the EERM model performs slightly better than the LASSO regres-

sion model. These observations may result from the fact that the dataset

includes few features compared to its large amount of data samples, which

indicates that regularization is hardly needed here to constrain model

complexity, especially the feature selection from LASSO regression.

From Figure 1 we can clearly observe the effects of regularization al-

gorithm compared to the baseline model. The weights from regulariza-

tion algorithms are smaller than the one from the baseline model, which

suggests that models from regularization have lower complexity. Further-

more, the features which are deemed to be insignificant in the user sum-

mary have the smallest learned weights from EERM, which indicates that

Figure 1. 8 learned weight coefficients of linear regression, ridge regression, LASSO re-
gression and EERM.

the model from EERM is more consistent with the user’s intuition for the

data, and thus it is more explainable to the user.

The experiment shows the essence of EERM, which is the trade-off be-

tween empirical risk and explainability. The model of EERM has ac-

ceptable empirical risk and better user-specific explainability compared

to other models. Nevertheless, more circumstances need to be considered

for a comprehensive evaluation of EERM, such as giving a user summary

that contains wrong intuition for the data and applying EERM to non-

linear hypothesis space.

5 Conclusion

This paper introduces the essence and details of Explainable Empirical

Risk Minimization. For evaluating the performance of EERM prelimi-

narily, we implement EERM in linear hypothesis space and then conduct

experiments together with algorithms of linear regression, ridge regres-

sion and LASSO regression. The result shows that in linear hypothesis

space, with appropriate user summary, EERM is capable of learning a

model with satisfying empirical risk and better user-specific explainabil-

ity. Further work needs to be done to evaluate EERM comprehensively, in-

cluding implementations in non-linear hypothesis space and experiments

with user summary containing wrong data intuition.

References

[1] Katsunori Sasahara, Masakazu Shibata, Hiroyuki Sasabe, Tomoki Suzuki,
Kenji Takeuchi, Ken Umehara, and Eiji Kashiyama. Feature importance
of machine learning prediction models shows structurally active part and
important physicochemical features in drug design. Drug metabolism and
pharmacokinetics, 39:100401, 2021.

[2] K. Shailaja, B. Seetharamulu, and M. A. Jabbar. Machine learning in
healthcare: A review. In 2018 Second International Conference on Electron-
ics, Communication and Aerospace Technology (ICECA), pages 910–914,
2018.

[3] Wei-Yang Lin, Ya-Han Hu, and Chih-Fong Tsai. Machine learning in finan-
cial crisis prediction: A survey. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 42(4):421–436, 2012.

[4] Max Kuhn and Kjell Johnson. Applied Predictive Modeling. Springer, 2013.

[5] Alexander Jung. Explainable empirical risk minimization. CoRR, abs/2009.01492,
2020.

[6] Alexander Jung. A gentle introduction to supervised machine learning.
CoRR, abs/1805.05052, 2018.

[7] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing - From Theory to Algorithms. Cambridge University Press, 2014.

[8] V. Vapnik. Principles of risk minimization for learning theory. In J. Moody,
S. Hanson, and R. P. Lippmann, editors, Advances in Neural Information
Processing Systems, volume 4. Morgan-Kaufmann, 1991.

[9] W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and
Bin Yu. Definitions, methods, and applications in interpretable machine
learning. Proceedings of the National Academy of Sciences, 116(44):22071–22080,
Oct 2019.

[10] Christoph Molnar. Interpretable Machine Learning. 2 edition, 2022.

[11] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wi-
ley Series in Telecommunications and Signal Processing). Wiley-Interscience,
USA, 2006.

[12] Katharina Beckh, Sebastian Müller, Matthias Jakobs, Vanessa Toborek,
Hanxiao Tan, Raphael Fischer, Pascal Welke, Sebastian Houben, and Laura
von Rüden. Explainable machine learning with prior knowledge: An overview.
CoRR, abs/2105.10172, 2021.

A Comprehensive Analysis of
Generative Models

Maryum Hamid
maryum.hamid@aalto.fi

Tutor: Tian Yu

Abstract

Generative models have been existent for many years in the machine learn-

ing field. Generative Adversarial Networks and other generative models

have been used to perform image processing, image generation, video gener-

ation and prediction. With advancements in the field of machine learning

and artificial intelligence, it is now possible to generate art pieces and mu-

sic as well. We study the algorithm and architecture of different generative

models in order to provide the reader with insights on which generative

model to choose while solving a problem.

KEYWORDS: Convolutional Neural Network (CNN); Variational autoen-

coders (VAEs); Generative Adversarial Networks (GANs); deep learning;

machine learning.

1 Introduction

Most classification machine learning models are discriminative models,

where decision boundaries are built between classes of training data. Whereas

generative models are built based on probability distribution. Model esti-

mates the probability distribution from the training data and generates a

new distribution approximate to the distribution of the training data [24].

Considering a set of data with features X and labels Y, generative models

capture the joint probability P(X, Y), such as Naive Bayes, Gaussian Dis-

criminant Analysis (GDA) if there are labels, or just P(X) if there are no

labels, such as GMM, Variational autoencoders (VAE). Whereas, discrimi-

native models capture the conditional probability P(Y|X), such as Logistic

Regression.

Training the generative models takes more time and hardware than dis-

criminative models as the creation of probability distribution as the origi-

nal dataset requires a higher number of correlation than just determining

the labels to the most probable classes [10]. Taking an example, a convo-

lutional neural network (CNN) model captures the differences between

the images of cats and dogs. Whereas, a deep convolutional generative

adversarial network (DCGAN) learns the features and generates new im-

ages of cats and dogs. Generative models capture almost all the features

whereas discriminative models might miss a few features. Generative

models trained on unlabeled data can be used as efficient feature extrac-

tion tools [17], and downstream classifiers could be trained or fine tuned

on labeled data [4], these classifiers are used in self driven cars, computer

vision based automation [18], disease detection [25], speech recognition

[20] [27] and weather prediction [23].

This paper presents a comprehensive analysis of the generative models

and their application. The involvement of deep learning in the building

of generative models helps the reader get necessary information to decide

which model should be used. This paper is organized as follows: Section 2

provides information on different Generative Adversarial Networks mod-

els. Section 3 provides information on Variational Autoencoders. Finally,

Section 4 provides concluding remarks.

2 Generative Adversarial Networks

Most machine learning models are used for classification and for this, two

approaches have been taken in supervised and unsupervised learning.

Generative Adversarial Networks (GANs) belong to the family of Gener-

ative models, whose models generate new samples by learning the prob-

ability density function from the given training samples [11]. The pat-

tern thus determined is used by the model to generate new data, which

falls under the category of realistic images of the type of original training

dataset [9]. The resolution and quality of images produced improve with

every new architecture. GANs consist of two simultaneously trained neu-

ral networks: Generator and Discriminator. Generator is responsible for

capturing the data distribution and generating new samples [9]. Whereas

a Discriminator is usually a binary classifier [2] that is trained to label the

actual and generated samples by the Generator as precisely as possible.

Generators and Discriminators are trained together in a zero-sum game,

Generators are trained to fool the Discriminators, while Discriminators

are trained to accurately detect generated fake examples.

Earlier versions of GANs had shallow Generator and Discriminator struc-

tures, this caused instability in training. Afterward, several GANs adopted

deep residual network Generator backbones for generating high resolu-

tion images. Hardware advancement has played a major role in training

more sophisticated Generators and Discriminators. This enables GANs

to serve for data augmentation [13], image to image translation [28] and

data generation [19].

2.1 Basic Structure

The GAN working structure consists of three structures: model learn-

ing, model training and deep learning integration with generative mod-

els. GANs basically serve the unsupervised solutions [8]. However, by the

advancement in GANs, they have also proved to serve semi-supervised

and supervised solutions [9]. GANs are used to provide solution software,

such as in the field of healthcare, banking, and sports. GANs are an in-

novation in the field of generative models built on the structure of deep

learning models, Discriminators and Generators. These models are of the

convolutional neural networks (CNN) framework. Generator models read

the features from the input data and imitate these features to generate

fake images. The Discriminator is built on top of a Generator model and

is used to check the performance of the Generator. When the Discrimina-

tor cannot distinguish between actual images and fake images, training

moves towards completion. We now discuss a few major contributions

done in the field of GANs.

Neural Architecture

GANs are based on minimax game theory, consisting of two neural net-

works: Generator and Discriminator as shown in Fig. 1. The Generator

(G) takes a noise vector Z and generates new samples with G(z). The sam-

ple is then passed through a Discriminator (D). The Generator inputs are

Figure 1. GAN Basic Structure

updated based on the probability results of the Discriminator. Genera-

tor and Discriminator basically compete. During training parameters of

both are updated using backpropagation with the aim to make the Gener-

ator able to generate realistic samples and Discriminator to get better at

labeling real and fake images. When a sample image X is added, the Dis-

criminator model gives out the probabilistic results of the sample being

real or fake. These results are then fed into the Generator model.

The Loss function of Minimax is given as:

MinGMaxGf(D,G) = Ex[log(D(x))] + Ez[log(1−D(G(z)))]. (1)

Here, Ex is the expected value of the real data samples, D(x)s the prob-

ability estimate of the Discriminator. If x is real, G(z)s the output of the

Generator with a noise vector z as input, D(G(z)) is the Discriminator

probability estimate. If the fake generated sample tends towards real, Ez

the expected value over random inputs fed to the Generator. Generator

tries to reduce the minimax and Discriminator tries to increase it.

Conditional Generative Adversarial Nets (CGAN)

CGANS, an extension of GANs, are used for conditional sample gener-

ation. CGANs are fed with extra information,y, defining the conditions

of data generation [21]. CGANs take into concatenation of the extra in-

formtion and input, to perform conditioning as shown in Fig. 2. The extra

information can be class labels or any other functionality provided with

the dataset [22].

Figure 2. CGAN Structure

MinGMaxGf(D,G) = Ex[log(D(x|y))] + Ez[log(1−D(G(z|y)))]. (2)

Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks (DCGANs)

DCGANs use deep convolutional neural networks as the base structure

for both the Generator and Discriminator models [24]. Deep Learning is

a secondary field of Machine Learning, built on the structure and func-

tionality of the brain. It can also be used as a generative model. Deep

learning techniques involve many layers of neural networks in one archi-

tecture. Discriminative models are the most important technique of deep

learning, which the split into different class labels based on some discrim-

inative features. Generative models with deep learning applications have

the advantage that they can work with large datasets.

The basic GAN architecture uses multi-layer perceptron (MLPs). The

DCGANs use CNN instead of MLPs as they produce better results with

images than MLPs. The key features of DCGANs are listed below:

• Generator, shown in Fig. 3, convolution layers are replaced with trans-

posed convolution layers, as a result, the representation of the Gener-

ator is larger at each layer, as it maps a lower dimensional vector into

a higher dimensional image. Furthermore, the pooling layers are re-

placed with stridden convolutions (Discriminator) and fractionally strid-

den convolutions (Generator) [3].

Figure 3. DCGAN architecture [24]

• Batch normalization is used in both the Generator and the Discrimina-

tor.

• All layers of the Generator, excluding the output layer, uses the ReLU

activation [1].

• Lastly, Stochastic Gradient Descent (SGD) [26] is replaced with Adam

[14].

Progressive Growing of GANs for Improved Quality, Stability, and
Variation (ProGAN)

ProGANs were developed for training GANs to generate high resolution

images via incremental growing of Discriminator and Generator [13]. Pro-

GANs train the generator in an incremental way, first, it is trained for low

resolution images and then moves on to higher resolution images. The

generator is trained for a very low resolution image first, then other lay-

ers on top add the details for high resolution results [7].

The Fig. 4 shows that the training set starts with Generator and Dis-

criminator both training at a very low resolution of 4 x 4 pixels. Going

forward, layers are added to Generator and Discriminator sequentially.

All the layers remain trainable throughout the training process. N x N is

to represent the convolutional layers processing on N x N spatial resolu-

tion. On right six images are shown as a result of training and obtaining

the images of 1024 x 1024 resolution.

2.2 Variational Autoencoders

This section is divided into two parts: 3.2 Autoencoders and 3.3 Varia-

tional Autoencoders.

Figure 4. ProGAN architecture [13]

Figure 5. Autoencoders with Loss function

Autoencoders

Autoencoders have encoder and decoder sets, neural networks, use an

iterative optimization process. After every iteration, the output of the

encoder-decoder model is compared with the input data and the error is

backpropagated to the architecture, in order to update the weights of the

network. The illustration of an autoencoder with loss function is given as:

Loss = ||x− x̂||2 = ||x− d(z)||2 = ||x− d(e(x))||2. (3)

The encoder and decoder architectures have just one layer with a linear

autoencoder like Principal Component Analysis (PCA) works up the best

linear subspace to generate data with the least information loss while en-

coding [12]. Encoding and decoding matrices that PCA calculates, are only

one of the required solutions. Whereas there are many encoder-decoder

combinations that give the optimal solution.

The encoder and decoder are non-linear. The architecture of the au-

toencoder determines the dimensionality it can perform reduction on, the

more complex architecture higher the resolution reduction can be. The ul-

timate purpose of reduction is to reduce the number of dimensions while

Figure 6. Loss Structure

keeping the important information in the reduced form. For this purpose,

the length of the latent space and depth of the autoencoder is controlled

and adjusted depending on the condition of dimension reduction.

Autoencoders comprise three layers. Input layer X, codding middle

layer Z, and the output layer X̂. The encoder output weights are kept

in Z and decoder outputs in X̂. The mapping function for encoding can

be:

Z = f(WX + b). (4)

Here (Equation. 4) b is the bias and W is the weight vector. The loss

function can be stated as:

L = ||x− x̂||2. (5)

The error so calculated is then backpropagated to the network and the

new weights are generated using these errors as shown in Fig. 6.

Variational Autoencoders (VAEs)

Variational autoencoders are encoders trained to avoid overfitting. The

latent space has suitable properties that enable the generative process

[5]. Variational encoders, like any other autoencoder, consist of an en-

coder and decoder which are trained to reduce the backpropagation error

between initial data and generated data. In VAE models, the encoders en-

code the input as a distribution over the latent space. A point in the latent

space is taken and then sampled. The sampled point is then decoded, and

the backpropagation error is calculated [6]. The calculated error is then

fed to the network to update encoder-decoder weights.

The input is encoded as a distribution with a variance that expresses the

Figure 7. Difference between autoencoder and variational auto encoders

latent space regularization, forcing the encoders to output latent descrip-

tive attributes that are from a standard normal distribution [16]. The

loss function in VAE training comprises a reconstruction term on the fi-

nal layer. The reconstruction term regularizes the latent space by mak-

ing the distribution close to the standard normal distribution [15]. The

regularity from the latent space to complete the generative process in-

volves two properties, continuity and completeness. Continuity is when

two closely located points in the latent space would not give entirely dif-

ferent outputs when decoded. Completeness is that a point in latent space

should give the required results once decoded. This regularization term

enables the model to encode data in the latent space to overlap. VAEs,

the autoencoders, that encode inputs as distribution, unlike PCA which

uses point encoding, and the latent space is regularized by constraining

distributions.

3 Conclusion

In this paper, we present an overview of most of the generative models

and their applications. We presented the architectures and applications

of these models. All the models described in this paper are being actively

used in different machine learning domains. The paper also highlights

the flaws and shortcomings of the models. We hope that this study will

assist academic and industry researchers in gaining a good understanding

of generative models and their applications.

References

[1] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv
preprint arXiv:1803.08375, 2018.

[2] Miguel A. Carreira-Perpinan and Ramin Raziperchikolaei. Hashing with
binary autoencoders. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2015.

[3] Ashutosh Chapagain. Dcgan–image generation. 02 2019.

[4] Yushi Chen, Xing Zhao, and Xiuping Jia. Spectral–spatial classification of
hyperspectral data based on deep belief network. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 8(6):2381–2392,
2015.

[5] Carl Doersch. Tutorial on variational autoencoders, 2016.

[6] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual
representation learning by context prediction. In Proceedings of the IEEE
international conference on computer vision, pages 1422–1430, 2015.

[7] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Mohammad
Norouzi, Douglas Eck, and Karen Simonyan. Neural audio synthesis of
musical notes with WaveNet autoencoders. In Doina Precup and Yee Whye
Teh, editors, Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pages
1068–1077. PMLR, 06–11 Aug 2017.

[8] Harshvardhan GM, Mahendra Kumar Gourisaria, Manjusha Pandey, and
Siddharth Swarup Rautaray. A comprehensive survey and analysis of gen-
erative models in machine learning. Computer Science Review, 38:100285,
2020.

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and
K.Q. Weinberger, editors, Advances in Neural Information Processing Sys-
tems, volume 27. Curran Associates, Inc., 2014.

[10] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial networks, 2014.

[11] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron Courville. Improved training of wasserstein gans, 2017.

[12] Ian Jolliffe. Principal Component Analysis, pages 1094–1096. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[13] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive
growing of gans for improved quality, stability, and variation, 2017.

[14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization, 2014.

[15] Siddique Latif, Rajib Rana, Junaid Qadir, and Julien Epps. Variational
autoencoders for learning latent representations of speech emotion: A pre-
liminary study, 2017.

[16] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara.
Variational autoencoders for collaborative filtering. In Proceedings of the
2018 World Wide Web Conference, WWW ’18, page 689–698, Republic and
Canton of Geneva, CHE, 2018. International World Wide Web Conferences
Steering Committee.

[17] Ping Liu, Shizhong Han, Zibo Meng, and Yan Tong. Facial expression recog-
nition via a boosted deep belief network. In 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1805–1812, 2014.

[18] Ping Liu, Shizhong Han, Zibo Meng, and Yan Tong. Facial expression recog-
nition via a boosted deep belief network. In 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1805–1812, 2014.

[19] Francesco Marra, Diego Gragnaniello, Davide Cozzolino, and Luisa Verdo-
liva. Detection of gan-generated fake images over social networks. In
2018 IEEE Conference on Multimedia Information Processing and Retrieval
(MIPR), pages 384–389, 2018.

[20] Daniel Michelsanti and Zheng-Hua Tan. Conditional generative adversar-
ial networks for speech enhancement and noise-robust speaker verification.
In Interspeech 2017. ISCA, aug 2017.

[21] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets,
2014.

[22] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets.
11 2014.

[23] Munir Nayak and Subimal Ghosh. Prediction of extreme rainfall event
using weather pattern recognition and support vector machine classifier.
Theoretical and Applied Climatology, 113, 03 2013.

[24] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised represen-
tation learning with deep convolutional generative adversarial networks,
2015.

[25] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta,
Tony Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya,
Matthew P. Lungren, and Andrew Y. Ng. Chexnet: Radiologist-level pneu-
monia detection on chest x-rays with deep learning, 2017.

[26] Sebastian Ruder. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747, 2016.

[27] Peng Shen, Xugang Lu, Sheng Li, and Hisashi Kawai. Conditional Gen-
erative Adversarial Nets Classifier for Spoken Language Identification. In
Proc. Interspeech 2017, pages 2814–2818, 2017.

[28] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In
2017 IEEE International Conference on Computer Vision (ICCV), pages 2242–
2251, 2017.

Optimizing firewall policies

Massimo Bertocchi
massimo.bertocchi@aalto.fi

Tutor: Tuomas Aura

Abstract

Firewalls are a crucial point to secure a Local Area Network, which allows

protecting our network from the internet. In the last decades, the firewall

rules have been increasing growth due to the variety of applications and

more complex communication systems. In order to enable and prevent an

overloading of the host, rule based classification needs to be taken into

account, improving the speed of the firewall itself. This paper introduces

the multidimensional classification for packet classification, analyzing the

advantages and the drawbacks these technologies.

KEYWORDS: HiCuts, Packet Classification, Decision tree

1 Introduction

Digitalization has increased internet traffic, making firewalls a critical

part of home, enterprise and cloud provider networks [4]. The firewall is

intended to be the only contact point between the Internet and the local

network; thus, all packets must pass through it. This gate needs to han-

dle traffic in and out of the network [7] [6], resulting in a bottleneck for

several companies [15]. This paper aims to review and analyse a Packet

Classification algorithm [12] for optimizing firewall policies, verifying the

possible improvement and proposing an implementation. The paper uses

some literature surveys and preview researches, and the implementation

is written in python code.

The goal of this paper is to describe the logic behind the multidimen-

sional packet classification methods and evaluate the advantages of this

viewpoint. Firstly, HiCuts [1] laid the foundation of this problem class,

forging the new concept. Further improvements were made using Hy-

perCuts [3], using a different data structure, and BiCuts [8], cutting in

equidensity points; EffiCuts instead [14] made a memory optimization

advancement to release unused memory waste.

Additionally, during the last decades, non-multidimensional splitting meth-

ods were invented and tested [9] to face the problem from a different angle

and to obtain a better performance [5].

This paper explains the main characteristics and scenario in which per-

form better, highlighting the advantages of a solution over their draw-

backs [16].

The rest of this paper is structured as follows. Section 2 describes the

algorithms and multidimensional splitting. Section 3 describes the exper-

iment using Hicuts. Section 4 outlines the advantages and the drawbacks,

and how to address the issues. Section 5 concludes the paper.

2 Background

2.1 Packet Classification

A firewall policy consists of several rules, where each rule represents a

requirement and an action section. The scope of packet classification

[12] is to match the requirement section of the incoming packet, without

analysing every rule of the policy table. A packet matches a rule when

each field of the packet matches the corresponding field of the rule [11];

considering that a packet can match multiple rules, a value needs to be

checked for the priority. The priority is defined as the arrangement of the

rules in policy table; thus, the rules on top represents the most significant

and the last one the least important.

To avoid the checking of the entire table, the table needs to be divided into

small buckets, and a multidimensional cutting is used as partition points

of the initial domain. Therefore, the domain is separated into small rule

sets, and the algorithm could only check the subspace and not the entire

policy table, as shown in Figure 1.

Figure 1. Multidimensional division of ruleset

2.2 Decision Tree

A decision tree is a tool to express a classification [13]. It consists of a

"root node" that has no incoming edges, "leaf nodes" that have no outgoing

edges and "internal nodes" that have outgoing and incoming edges. Each

node splits the domain into several sub-domains [10].

When each node separates the domain into precisely two different sub-

domains, as with Hicuts, such a tree is called “binary tree”.

The complexity of a binary tree is determined by the depth, or height, of a

tree, i.e. the number of nodes on the longest path between the root and the

furthest leaf, is used to determinate its complexity. The implementation

of trees in Hicuts could be seen as a geometrical collection of hyperplanes,

with internal nodes representing cutting locations in various dimensions.

2.3 Hicuts

The packet classification using Hierarchical Intelligent Cuttings was de-

veloped by Gupta and McKeown [2]. This algorithm consists of cutting

the multidimensional space into equally divided segments based on the

headers of the incoming packet to the firewall. This method begins with

a cutting point in one dimension and builds the decision tree on it, based

on the cutting value. The process is repeated recursively for each dimen-

sional cutting, using a user-specified input parameter, which can be de-

fined as the depth of the final tree. Furthermore, the rules are divided

into various sub-categories, resulting in a linear search of n
2c , where n is

the number of rules and c the number of cuts.

3 Implementation

3.1 Overview

This paper presents an implementation of Hicuts with Python and eval-

uates its efficiency comparing it to a standard firewall policy lookup. The

program divides the initial rule space into different lists using a multidi-

mensional cutting.

The initial assumption is that finding a match in a policy table of n ele-

ments takes O(n2), and going through the tree of height m takes O(m).

Firstly, the number of cuts is defined based on a user-input value for the

IP dimension and another value for the port dimension. As the result of

the process must be a balanced tree, the number of cutting points is even.

Each cut is then performed such that the dimensional space is divided

into two equivalent subspaces. Subsequently, one tree is created using

the IP cuttings in the previous step as the internal nodes of the tree, with

leaves pointing to an additional tree structure. The second tree is created

using the cutting points of the port, but a list object is assigned for each

leaf instead of a tree pointer. The last step is a tree merging, combing the

port root to the IP leaves.

At this point the classifier should be ready to analyse the policy rules for

one specific system and to classify incoming packets in the network.

3.2 Input

The input file is formatted in the following way:

The first value represents the source IP address with the relative network,

and the second value the destination IP. Regarding the third and fourth

values, the port number is described as a port range divided by a colon in

the middle of it; thus, the port range x : y represents all the ports starting

from x until y; in order to indicate only one specific port, the values x and

y have to be same.

Src IP Dst IP Src Port Dst Port

88.108.88.203/16 251.105.175.122/32 0 : 65535 1724 : 1724

176.19.181.6/32 52.174.116.2/31 0 : 65535 1490 : 1490

0.0.0.0/0 69.0.0.0/12 0 : 65535 0 : 65535

Table 1. Example of input data for the Hicuts classficator

3.3 Experiment

The input file contains 947 randomly generated firewall rules. There are

some default routes, such as 0.0.0.0, and different ranges of ports (i.e.,

broad range and single port).

During the experiment, 4 cuts were performed: two port-based and two

IP-based. As such, the resulting tree will have a depth of 4 with 8 sub-

spaces. Figure 2 is the graphical representation of the resulting tree.

Figure 2. Decision tree based on four cuts

In the next steps, the rules will be separated into different sub-lists using

the tree classifier created in the previous step. Therefore, the 947 rules

will be separated into various lists: the final rule lists will not be evenly

balanced, since the policies are not uniformly distributed in the domain.

Finally, the output of the program consists of multiple buckets, coming

from each leaf of the tree, and some general statics of the experiment it-

self. Considering the previous input file, the major unbalanced bucket

counts 242 elements. The height of the tree is 4 and, in the average case,

the program checks the match against 125 values. The average case is cal-

culated by counting the checks in the tree traversal, and the rule matches

in the sub-lists.

4 Evaluation

In the best and in the average case, the algorithm performed as predicted.

However, there were overheads in the worst-case scenario.

To assess the method, a technical process must be considered, beginning

with the problem’s baseline. An unordered list can be traversed in O(n)

time. Running through a sub-section of the tree, on the other hand, takes

O(n/2c)+O(c) in the best and average cases, and O(n)+O(c) in the worst

case, where n is the number of rules and c the number of cuts. The tree is

created with an additional cost of O(n), but this value is negligible for the

classification’s correct runtime.

Moreover, in the worst scenario, the memory consumption is drastically

increased, due to the unnecessary creation of empty lists.

A further problem could be found when using several wildcards in the

rules as shown in Figure 3. Having rules that are widespread along all

the domains can provoke redundant rule policy in multiple leaf-list, and

therefore it might produce a memory overhead with no optimization, con-

sidering that all the rules are written in many lists.

Figure 3. Overlapping rules

4.1 Efficuts

Efficuts is an improvement of Hicuts and Hypercuts, with three major

characteristics [14]. To save memory waste, the method divides larger

rules with several wildcards from strict rules, avoiding repetition and re-

dundancy of non-homogeneous rules. It builds separable trees and con-

structs a decision tree using the split input, such as in Hicuts. The second

enhancement is made by merging the output of the trees, using a selective

tree merging algorithm. The unification of the tree can result in optimiz-

ing the running time, since the depth of the resulting tree is less than

the sum of the outputs trees, resulting in fewer memory accesses. The

third enhancement is the equal-density cuttings. Fine cuts are used to

split densely clustered rules, while broad cuts are employed to separate

widespread one, addressing the previous problem of Hicuts and incurring

in less memory overhead.

4.2 Bicuts

This new approach based on Hicuts was developed by Zhi Liu, Shijie Sun,

Hang Zhu, Jiaqi Gao, and Jun Li [8]. It addresses the issues in Hi-cuts

by applying the cutting points based on the input rule set, avoiding the

worst-case scenario. Moreover, the internal nodes have a bitmask to sep-

arate the two branches, making it a faster operation for any device. The

no-binary tree does not compare the value of its node, but it performs an

AND operation against the headers of the incoming packet. The outcome

of that paper proposes an improvement of memory usage, consuming only

19% of memory usage and 59% of memory accesses compared to Efficuts.

5 Conclusion

Hierarchical Intelligent Cuttings consists of many advantages in the sim-

plicity of the code and the data structure, having a relevant network per-

formance in homogeneous rule sets. Furthermore, in case of its best case

scenario, HiCuts outperforms its successor HyperCuts and Efficuts. Hy-

perCuts implies complex data structure and more memory space, while

Efficuts implies multiple data structures and significant runtime.

This paper proposes an implementation of the algorithm Hicuts. In a

trade off between memory and runtime, the program performs slightly

better over the standard ACL being a possible option for enterprise net-

works. The Python code can be further optimised to save memory and

improve the average and the worst case scenario.

References

[1] Hatam Abdoli. Balanced hicuts: an optimized packet classification algo-
rithm. 2009.

[2] P. Gupta and N. McKeown. Classifying packets with hierarchical intelligent
cuttings. IEEE Micro, 20(1):34–41, 2000.

[3] Dr Jabbar and Noor Almalah. Design and implementation of a network on
chip using fpga. al rafdeen, 21, 01 2012.

[4] Weirong Jiang and Viktor K. Prasanna. Large-scale wire-speed packet clas-
sification on fpgas. FPGA ’09, page 219–228, New York, NY, USA, 2009.
Association for Computing Machinery.

[5] Tihomir Katic and Predrag Pale. Optimization of firewall rules. pages 685
– 690, 07 2007.

[6] Alan Kennedy, Xiaojun Wang, Zhen Liu, and Bin Liu. Low power architec-
ture for high speed packet classification. pages 131–140, 01 2008.

[7] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet forwarding
using efficient multi-dimensional range matching. 28(4):203–214, oct 1998.

[8] Zhi Liu, Shijie Sun, Hang Zhu, Jiaqi Gao, and Jun Li. Bitcuts: A fast packet
classification algorithm using bit-level cutting. Computer Communications,
109:38–52, 2017.

[9] Yan Luo, Ke Xiang, and Sanping Li. Acceleration of decision tree searching
for ip traffic classification. pages 40–49, 01 2008.

[10] Yan Luo, Ke Xiang, and Sanping Li. Acceleration of decision tree searching
for ip traffic classification. In Proceedings of the 4th ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems, ANCS
’08, page 40–49, New York, NY, USA, 2008. Association for Computing Ma-
chinery.

[11] Yaxuan Qi, Lianghong Xu, Baohua Yang, Yibo Xue, and Jun Li. Packet
classification algorithms: From theory to practice. pages 648 – 656, 05
2009.

[12] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet
classification using multidimensional cutting. SIGCOMM ’03, page 213–224,
New York, NY, USA, 2003. Association for Computing Machinery.

[13] T S Urmila and Raman Balasubramanian. Decision tree based network
packet classification algorithms. 2015.

[14] Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vijaykumar. Efficuts:
optimizing packet classification for memory and throughput. In SIGCOMM
’10, 2010.

[15] Chenghong Wang, Donghong Zhang, Hualin Lu, Jing Zhao, Zhenyu Zhang,
and Zheng Zheng. An experimental study on firewall performance: Dive
into the bottleneck for firewall effectiveness. In 2014 10th International
Conference on Information Assurance and Security, pages 71–76, 2014.

[16] Sorrachai Yingchareonthawornchai, James Daly, Alex X. Liu, and Eric Torng.
A sorted-partitioning approach to fast and scalable dynamic packet classifi-
cation. IEEE/ACM Transactions on Networking, 26(4):1907–1920, 2018.

Task Allocation for Vehicular Fog
Computing

Zixin Zhou
zixin.zhou@aalto.fi

Tutor: Wencan Mao

Abstract

Vehicular fog computing (VFC) provides latency-sensitive and data-intensive

computation for vehicular networks. In VFC, idle computing resources

of vehicles are shared between nearby vehicles by allocating computation

tasks to service vehicles. However, the mobility of vehicles has posed a chal-

lenge for task allocation in VFC. This paper reviews recent task allocation

schemes for VFC, comparing them in terms of communication standards,

architectures, application scenarios, objectives, constraints, problem for-

mulation and algorithms. Based on the analysis, challenges and future

research directions for task allocations in VFC are discussed.

KEYWORDS: Task allocation, Vehicular fog computing, Cloud computing

1 Introduction

The emerging vehicular applications, such as autonomous driving [1],

video streaming [2] and parking navigation [3], facilitate more efficient

transportation. These applications have led to the increasing demand for

ubiquitous real-time computing resources. Due to the limited computing

capability of a single vehicle, it is necessary to offload tasks to entities

that are rich in computing resources, e.g., cloud data centers and base

stations.

However, offloading tasks to the remote cloud can cause high transmis-

sion delays [4]. In addition, the vehicular traffic demand changes accord-

ing to time and place, while stationary fog nodes deployment needs to sat-

isfy the peak demand, thus causing over-provisioning of resources. Fur-

thermore, the advance in Vehicle-to-Vehicle (V2V) communication tech-

nologies enable efficient and reliable communication between vehicles.

Therefore, vehicular fog computing (VFC), a promising paradigm that

combines fog computing with the idle computing capacity of vehicles, has

been proposed to provide computation for latency-sensitive and data-intensive

applications.

As an important topic of VFC, task allocation, which decides how to

offload tasks from client vehicles to fog nodes, has received notable atten-

tion. Existing research has studied task allocation mechanisms in various

scenarios, including autonomous driving [1], visual crowdsourcing [5] and

traffic management [6]. The varying needs lead to different objectives

and constraints, such as latency, quality of service, energy consumption

and reliability. Additionally, researchers have devised different architec-

tures to model the responsibility of VFC components [7]. Then, the task

allocation problem is formulated as an optimization problem or a Markov

decision process (MDP) and solved with various algorithms [8].

This paper reviews recent task allocation schemes for VFC, comparing

them in terms of communication standards, architectures, objectives, con-

straints, application scenarios, problem formulation and algorithms. In

addition, this paper identifies the challenges of research in task alloca-

tion for VFC.

The remainder of the paper is organized as follows. Section 2 intro-

duces the basic concepts of VFC and motivation for using VFC. Section 3

presents a review of recent task allocation schemes. Section 4 discusses

the challenges and possible research directions. Finally, the paper is con-

cluded in Section 5.

Figure 1. Structure and components of VFC

2 Concepts and motivation

2.1 Vehicular fog computing

Fog computing is a distributed computing paradigm with computing re-

sources close to end users [9], which reduces communication latency be-

tween users and computing resources. For vehicular fog computing, the

fog nodes can be deployed at both static infrastructures (e.g., cellular base

stations and roadside units) and vehicles [4]. In many studies, service

vehicles refer to vehicles that serve as fog nodes, while task vehicles rep-

resent the vehicles whose tasks will be offloaded to fog nodes. Figure 1

presents the structure and components of VFC.

According to Xiao and Zhu [10], the motivation for utilizing vehicles as

fog nodes is two-fold. First, the density of vehicles varies with regard to

time and location. Therefore, it is not feasible to rely on static infrastruc-

tures to satisfy the changing needs of computing resources of vehicles.

Due to the proximity of vehicles during traffic, vehicles with idle comput-

ing capacity can be deployed as fog nodes. Second, the advent of reliable

and high-speed V2V communication protocols facilitates the implementa-

tion of vehicles as fog nodes.

2.2 Task allocation

Tasks are operations that could be assigned to and executed on fog nodes.

Task allocation schemes match fog nodes with tasks in the queue, deciding

when and where the tasks will be executed. The decisions are made ac-

Figure 2. Workflow of task allocation in VFC

cording to their objectives and constraints. Figure 2 illustrates the work-

flow of task allocation in VFC.

3 Task allocation schemes review

3.1 Communication standards

Communication between components of VFC serves as the basis of task al-

location. Existing studies commonly use five types of communication sys-

tems for VFC [8]: V2V, Vehicle-to-Infrastructure (V2I), Vehicle-to-Pedestrian

(V2P), Vehicle-to-Network (V2N) and Vehicle-to-Everything (V2X). The

V2X system includes the other four types of systems. Several studies [2],

[11], [12] utilize V2V and V2I systems. FlexSensing [5] uses V2X system.

Typical inter-vehicle communication technologies for VFC include Ded-

icated Short Range Communications (DSRC) and Long Term Evolution

(LTE) [13].

In V2V communication, the number of transmission hops between task

vehicles and service vehicles affects the range of communication [8]. One-

hop communication refers to the direct communication between task ve-

hicles and service vehicles. In multi-hop communication, some vehicles

forward the task allocation requests to service vehicles and relay the cal-

culation results to task vehicles. Compared with one-hop communication,

multi-hop communication exploits more potential computing resources.

However, the increased number of transmission hops can cause higher

latency, and the dynamic topology of vehicular networks could result in

more vulnerable connections. Most existing research adopts one-hop com-

munication. The Mobility Aware Multi-hop Task Offloading (MMTO) scheme

[1] utilized multi-hop communication.

3.2 Architectures

According to the entities that make the task offloading decisions, the ar-

chitecture of VFC task allocation approaches can be classified into three

categories [7]: server-based, distributed and other models. In server-

based models, the task vehicles generate tasks and send task offloading

requests to the server. Then, the server offloads tasks to service vehicles

and sends the task execution results back to task vehicles. The static in-

frastructure generally serves as the server. Most studies [2], [3], [5], [12],

[14], [15] assume that there is a single server in one region. In contrast,

distributed models [1], [16] allow service vehicles to decide on details of

task allocation. Other models of task allocation include the mixed model

[17] and the three-layer model [6], [11]. The mobility aware blockchain-

enabled offloading (MABOS) method [17] adopts a combination of server-

based model and distributed model. In [11], task vehicles send task of-

floading requests to an access roadside unit (RSU), and the RSU sends the

request to a software-defined network controller, which makes offloading

decisions. Ning et al. [6] added a cloud layer to the server-based model

to perform city-level traffic control, which complements the local manage-

ment of the cloudlet layer.

In terms of the basic unit of task offloading, partial offloading schemes

[11], [12] assign a proportion of the task to fog nodes, while other schemes

operate on individual tasks. Partial offloading aims at reducing the pos-

sibility of recomputing time-consuming tasks caused by frequent changes

in V2V connection [11]. This task allocation policy can be adopted when

reliability and transmission delay are jointly considered. Table 1 presents

the architecture of recent VFC task allocation schemes.

3.3 Application scenarios, objectives and constraints

The objectives and constraints of task allocation approaches vary with

regard to different application scenarios. For multimedia-related applica-

tions, the quality of images is an important factor. Zhu et al. [16] designed

the Chameleon approach for visual-based assisted driving, which aims at

reducing service latency and increasing image resolution. FlexSensing [5]

utilized VFC for vehicle-based visual crowdsourcing, maximizing quality

of information with latency constraints.

Energy consumption and economic incentives are considered for applica-

tions related to commercial activities. Zhang et al. [3] investigated park-

Table 1. Architectures of task allocation schemes for VFC

Method Model Partial Offloading

FlexSensing [5] Server-based ✗

Parked vehicle assisted VFC [3] Server-based ✗

PVFChain [14] Server-based ✗

Folo [2] Server-based ✗

Priority-Aware Offloading [15] Server-based ✗

DRL Based V2V Partial Offload-

ing [12]

Server-based ✓

QUOTA-UCB[18] Server based ✗

MMTO [1] Distributed ✗

Chameleon [16] Distributed ✗

MABOS [17] Mixed ✗

VFC-enabled offloading [6] Three-layer ✗

EC-SDIoV [11] Three-layer ✓

ing guidance based on VFC and devised a parked vehicle assisted VFC

system to achieve a win-win for system actors, including moving vehicles,

parked vehicles, commercial fog nodes, and fog node controller (FNC), by

maximizing utilities for vehicles and FNC with economic constraints. To

exploit the idle computing resources of parked vehicles and gain profits,

Huang et al. [14] included service fee and energy consumption minimiza-

tion in their objectives.

Some studies focus on general-purpose applications, most of which aim

at reducing latency. Zhu et al. [2] proposed a dynamic task allocation

mechanism named Folo to minimize service latency and quality loss with

fog node capacity constraints. Some researchers include priority as a task

allocation objective. Huang et al. [14] encoded priority in the utility func-

tion of fog servers. Shi et al. [15] utilized different utility functions for

tasks with high and low priority, which consider service availability and

user incentives. For mobility-aware task allocation schemes [1], [12], [15],

service availability or link connectivity is considered.

Security and reliability of VFC task offloading have also been inves-

tigated. Several studies have leveraged blockchain technology to pro-

vide secure task allocation for VFC. Huang et al. [14] designed a parked

vehicle-assisted fog computing method based on blockchain (PVFChain)

using smart contract operations, supporting authentication, request vali-

dation and reward integrity checking. Similarly, Liao et al. [18] employed

smart contract and blockchain to ensure privacy, fairness and security of

the task offloading process. To increase reliability, Edge computing-aided

Internet of Vehicles based on software-defined networking (EC-SDIoV)

[11] considered both transmission and computation failure.

Table 2 shows a summary of application scenarios, objectives and con-

straints of the mentioned studies.

Table 2. Objectives and constraints of task allocation schemes for VFC

Method Application

Scenario

Objectives Constraints

FlexSensing [5] Vehicle-based

visual crowd-

sourcing

Quality of information Latency

Chameleon [16] Visual-based

assisted driv-

ing

Image resolution Latency

Parked vehicle

assisted VFC [3]

Parking navi-

gation

Driving cost, walking

cost, energy con-

sumption, parking

payment, FNC profit

Latency

VFC-enabled of-

floading [6]

Traffic man-

agement

Latency None

MMTO [1] Autonomous

driving

Latency, incentive pay Link connectivity

DRL Based V2V

Partial Offload-

ing [12]

General Latency, priority, in-

centive

Service availability

Folo [2] General Latency, quality loss Latency, quality

loss, fog node ca-

pacity

Priority-Aware

Offloading [15]

General Latency, task prior-

ity, service availabil-

ity, incentive

Price, single task

assignment

EC-SDIoV [11] General, reli-

ability

Reliability Latency

PVFChain [14] General, secu-

rity

Service fee, energy

consumption, priority

Latency

MABOS [17] General, secu-

rity

Calculation costs Bandwidth, re-

sources, security,

deadline

QUOTA-UCB[18] General, secu-

rity

Task offloading delay Handover cost,

queuing delay

3.4 Problem formulation and algorithms

Many existing studies consider the task allocation problems for VFC as

optimization problems. Zhu et al. [2] formulated the task allocation

problem for VFC as a bi-objective minimization problem, which is opti-

mized using a linear programming-based optimization algorithm and bi-

nary particle swarm optimization algorithm. Hou et al. [11] investigated

partial offloading and reliable task offloading, considering the problem

as an optimization problem, and proposing a heuristic algorithm named

fault-tolerant particle swarm optimization algorithm for maximizing the

reliability as a solution. Shi et al. [12] formulated the partial task offload-

ing of VFC as a sequential decision-making problem, which is solved by

a deep reinforcement learning algorithm (DRL) based on soft actor-critic.

Huang et al. [14] modeled the process of task offloading as an optimal

smart contract design problem, which is transformed into a user payment

minimization problem and solved by the Stackelberg game framework.

Lakhan et al. [17] formulated the multi-side task offloading for VFC as

a convex optimization problem with movement, task priority, and compu-

tation capability constraints. A Mobility Aware Blockchain-Enabled of-

floading algorithm is conceived to solve it. Liao et al. [18] formulated the

problem as a series of short-term deterministic optimization subproblems

and proposed a QUeuing-delay aware, handOver-cost aware, and Trust-

fulness Aware Upper Confidence Bound (QUOTA-UCB) algorithm as a

solution.

In addition, some studies use MDP to model task allocation problems.

In Chameleon [16], the problem is modeled as a partially observable MDP

and solved with a stochastic dynamic programming algorithm. Shi et al.

[15] formulated a tri-objective problem as an MDP and solved it using

a deep reinforcement learning algorithm. Similarly, FlexSensing [5] for-

mulated the problem as an MDP and utilized a deep Q-network to solve

it.

The mentioned algorithms for solving task allocation problems can be

categorized into five types [8]: mathematical programming, machine learn-

ing, metaheuristics, game theory and auction methods. The problem for-

mulation and algorithms of VFC task allocation schemes are presented in

Table 3.

4 Discussion

Despite the progress in VFC task allocation research, many challenges re-

main to be solved. First, security and reliability issues of task allocation

for VFC are a major concern. For applications that require secure and re-

Table 3. Problem formulation and algorithms of task allocation schemes for VFC

Method Problem For-

mulation

Algorithm Algorithm Cate-

gory

Parked vehicle

assisted VFC [3]

Optimization Single-round/ multi-round

parking reservation auction

Auction

PVFChain [14] Optimization Stackelberg game framework Game theory

Folo [2] Optimization Linear programming-based op-

timization algorithm and bi-

nary particle swarm optimiza-

tion algorithm

Metaheuristics

EC-SDIoV [11] Optimization Fault-tolerant particle swarm

optimization algorithm

Metaheuristics

MMTO [1] Optimization A semidefinite relaxation

method adjusted by an adap-

tive policy

Mathematical

programming

VFC-enabled of-

floading [6]

Optimization Brand-and-bound algorithm,

Edmonds-Karp algorithm

Mathematical

programming

MABOS [17] Optimization Linear search-based task

scheduling algorithm based on

blockchain technology

Mathematical

programming

DRL Based V2V

Partial Offload-

ing [12]

Optimization DRL algorithm based on SAC Machine learning

QUOTA-UCB[18] Optimization Online learning-based algo-

rithm

Machine learning

FlexSensing [5] MDP Deep Q-network Machine learning

Priority-Aware

Offloading [15]

MDP DRL algorithm based on SAC Machine learning

Chameleon [16] MDP Stochastic dynamic program-

ming

Mathematical

programming

liable transactions, such as autonomous driving, any possible successful

attack could be fatal. Most existing studies adopt the server-based model,

in which static infrastructures allocate the tasks. Hence, if attackers con-

trol the server, the vehicles will suffer from terrorism, free-riding and

false-payment issues [14]. Recently, researchers have utilized blockchain

technology and the distributed model to secure VFC task offloading. How-

ever, distributed task allocation methods receive incomplete information

as input, thus resulting in local optimum solutions. Apart from security, to

achieve reliable task allocation, task interruption and reprocessing need

to be considered in future studies.

Furthermore, due to the assumptions for simplification, the task allo-

cation schemes might not be feasible for real-world applications. Some

studies [2], [5], [12] assume that one server would be responsible for one

region. However, in real applications, when a road becomes busy, one

server could be overloaded with task offloading requests. Therefore, the

policy of choosing servers can be further studied. In addition, many ex-

isting studies overlooked the dependency of tasks. For example, visual

assisted driving requires object detection to be completed before planning

the movement of vehicles. To avoid these problems, more factors need to

be considered as metrics of task allocation methods.

Finally, there is a lack of real-world implementation. Currently, most

task allocation methods are tested by simulation. Although most vehicles

are equipped with the necessary hardware for communication, the com-

munication standards have not been unified. Considering the advent of

5G technologies, future studies can also focus on adapting current inter-

vehicle communication standards to 5G technologies to provide more effi-

cient transmission.

5 Conclusion

This paper reviews recent task allocation approaches for VFC. First, re-

lated concepts and motivation are presented. Then, the VFC allocation

schemes are compared in terms of communication standards, application

scenarios, architectures, objectives, constraints, problem formulation and

algorithms. In the end, challenges posed for future research are pre-

sented.

References

[1] Lei Liu, Ming Zhao, Miao Yu, Mian Ahmad Jan, Dapeng Lan, and Amirho-
sein Taherkordi. Mobility-aware multi-hop task offloading for autonomous
driving in vehicular edge computing and networks. IEEE Transactions on
Intelligent Transportation Systems, 2022.

[2] Chao Zhu, Jin Tao, Giancarlo Pastor, Yu Xiao, Yusheng Ji, Quan Zhou,
Yong Li, and Antti Yla-Jaaski. Folo: Latency and quality optimized task
allocation in vehicular fog computing. IEEE Internet of Things Journal,
6(3):4150–4161, 2019.

[3] Yi Zhang, Chih-Yu Wang, and Hung-Yu Wei. Parking reservation auction
for parked vehicle assistance in vehicular fog computing. IEEE Transac-
tions on Vehicular Technology, 68(4):3126–3139, 2019.

[4] Tesnim Mekki, Issam Jabri, Lamia Chaari, and Abderrezak Rachedi. A sur-
vey on vehicular fog computing: motivation, architectures, taxonomy, and

issues. In Workshops of the International Conference on Advanced Informa-
tion Networking and Applications, pages 159–168. Springer, 2020.

[5] Chao Zhu, Yi-Han Chiang, Yu Xiao, and Yusheng Ji. Flexsensing: A qoi and
latency-aware task allocation scheme for vehicle-based visual crowdsourc-
ing via deep q-network. IEEE Internet of Things Journal, 8(9):7625–7637,
2021.

[6] Zhaolong Ning, Jun Huang, and Xiaojie Wang. Vehicular fog computing:
Enabling real-time traffic management for smart cities. IEEE Wireless
Communications, 26(1):87–93, 2019.

[7] Lei Liu, Chen Chen, Qingqi Pei, Sabita Maharjan, and Yan Zhang. Ve-
hicular edge computing and networking: A survey. Mobile networks and
applications, 26(3):1145–1168, 2021.

[8] Alisson Barbosa De Souza, Paulo AL Rego, Tiago Carneiro, Jardel Das C
Rodrigues, Pedro Pedrosa Rebouças Filho, Jose Neuman De Souza, Vinay
Chamola, Victor Hugo C De Albuquerque, and Biplab Sikdar. Computation
offloading for vehicular environments: A survey. IEEE Access, 8:198214–
198243, 2020.

[9] Paolo Bellavista, Javier Berrocal, Antonio Corradi, Sajal K. Das, Luca Fos-
chini, and Alessandro Zanni. A survey on fog computing for the internet of
things. Pervasive and Mobile Computing, 52:71–99, 2019.

[10] Yu Xiao and Chao Zhu. Vehicular fog computing: Vision and challenges. In
2017 IEEE international conference on pervasive computing and communi-
cations workshops (PerCom workshops), pages 6–9. IEEE, 2017.

[11] Xiangwang Hou, Zhiyuan Ren, Jingjing Wang, Wenchi Cheng, Yong Ren,
Kwang-Cheng Chen, and Hailin Zhang. Reliable computation offloading
for edge-computing-enabled software-defined iov. IEEE Internet of Things
Journal, 7(8):7097–7111, 2020.

[12] Jinming Shi, Jun Du, Jian Wang, and Jian Yuan. Deep reinforcement
learning-based v2v partial computation offloading in vehicular fog comput-
ing. In 2021 IEEE Wireless Communications and Networking Conference
(WCNC), pages 1–6. IEEE, 2021.

[13] Jiadai Wang, Jiajia Liu, and Nei Kato. Networking and communications in
autonomous driving: A survey. IEEE Communications Surveys & Tutorials,
21(2):1243–1274, 2018.

[14] Xumin Huang, Dongdong Ye, Rong Yu, and Lei Shu. Securing parked ve-
hicle assisted fog computing with blockchain and optimal smart contract
design. IEEE/CAA Journal of Automatica Sinica, 7(2):426–441, 2020.

[15] Jinming Shi, Jun Du, Jingjing Wang, Jian Wang, and Jian Yuan. Priority-
aware task offloading in vehicular fog computing based on deep reinforce-
ment learning. IEEE Transactions on Vehicular Technology, 69(12):16067–
16081, 2020.

[16] Chao Zhu, Yi-Han Chiang, Abbas Mehrabi, Yu Xiao, Antti Yla-Jaaski, and
Yusheng Ji. Chameleon: Latency and resolution aware task offloading for
visual-based assisted driving. IEEE Transactions on Vehicular Technology,
68(9):9038–9048, 2019.

[17] Abdullah Lakhan, Muneer Ahmad, Muhammad Bilal, Alireza Jolfaei, and
Raja Majid Mehmood. Mobility aware blockchain enabled offloading and
scheduling in vehicular fog cloud computing. IEEE Transactions on Intelli-
gent Transportation Systems, 22(7):4212–4223, 2021.

[18] Haijun Liao, Yansong Mu, Zhenyu Zhou, Meng Sun, Zhao Wang, and Chao
Pan. Blockchain and learning-based secure and intelligent task offloading
for vehicular fog computing. IEEE Transactions on Intelligent Transporta-
tion Systems, 22(7):4051–4063, 2020.

Privacy preserving techniques for
continuous authentication

Hussam Aldeen Alkhafaji
husamu-aldeen.alkhafaji@aalto.fi

Tutor: Sanna Suoranta

Abstract

Authentication is a procedure to guarantee protection and to control access

to devices and services. Continuous authentication is sometimes needed

to guarantee only allowed usage of the system. Continuous authentication

brings many security and privacy concerns. Ensuring confidentiality of

sensitive and private data stored in our devices is fundamental to preserve

the rights of individuals and the interests of companies. In this work, we

first review what authentication and continuous authentication are. Sec-

ondly, we showcase the use cases where continuous authentication is neces-

sary. We demonstrate the modes of function of continuous authentication.

Thirdly, we address the security and privacy concerns of continuous au-

thentication. Finally, we demonstrate methods and techniques that are

used to overcome the aforementioned limitations. We conclude with a re-

flection on what the future hold for continuous authentication.

KEYWORDS: Authentication, Continuous Authentication, Access Control,

Privacy, Cryptography.

1 Introduction

Computational systems are ubiquitous in every aspect of people’s lives.

Modern societies are surrounded by many small systems, usually known

as the Internet of Things or IoT devices that serve various purposes. A

prime example of such a device is the smartphone in most people’s pock-

ets. While the smartphone is not exactly an IoT device, it encompasses

many sensors that can be considered as IoTs separately. These systems

usually require some form of authentication to be accessed by users as

they contain sensitive data, private data, or both [1].

Authentication is the process of identifying the user by verifying who they

claim to be. This process is usually done using a technique known as static

authentication (SA), which is done at the beginning of a user session.

Currently, there is a new trend of continuous authentication (CA) [2]. This

method authenticates the user continuously throughout the usage period

of a system to ensure that the user never changed after the first static

authentication [3]. Continuous authentication uses many sources of user

data to achieve its goals such as (1) sensor gathered biological data, in-

cluding blood sugar levels or body prints, (2) behavioral data, including

keystrokes dynamics and locations. These new methods to authenticate

Figure 1. [2]

users introduce new security and privacy concerns ,such as how the data

is being handled, where the authentication is happening, and what could

go wrong. To answer these questions, researchers have studied and in-

vented privacy-preserving techniques applied to continuous authentica-

tion. Examples of such studies is the work by Acar et al [4] which offers

a non-invasive CA scheme to allow users to access proximity based ser-

vices. The implementation in Chuang et al [5] which offers a lightweight

CA protocol for IoT devices. The research in Lopez [6] which offers a pri-

vacy aware CA scheme for proximity based access control. The study in

Govindarajan et al [7] which offers a privacy preserving protocol for out-

sourcing CA of smartphone users with touch data. The purpose of this

paper is to highlight the current issues that faces continuous authentica-

tion and then to showcase the current solutions available.

This paper, defines both authentication and continuous authentication.

Then we will explore the use cases of continuous authentication and where

it is needed. After that we will explain all the concerns attached to each

use case. Finally, the last section will introduce the possible solutions for

these concerns and explain how they solve the problems.

2 Authentication and Continuous Authentication

This section briefly defines what authentication is in the context of com-

puter systems before we then explain what is CA. This section elaborates

how they cooperate to achieve common goals.

2.1 Authentication

Authentication can be defined as the act of verifying an identity [8]. Au-

thentication is generally categorized into three sub-categorizes depending

on the method the user uses to authenticate, These are:

• Something you have, such as a ticket.

• Something you know, such as a password.

• Something you are, such as a fingerprint.

Authentication exists in different forms and types. The most common

form of authentication is Static Authentication (SA) where the users au-

thenticates themselves once before they start using the system. Recently

other types of authentication has emerged, such as the Strong authenti-

cation used by various governments as well as continuous authentication,

which will be discussed next.

2.2 Continuous Authentication

Continuous authentication [3] is a passive form of authentication that is

not meant to replace the traditional SA discussed above but rather, it is

meant to help achieve identity confirmation of the user on an ongoing ba-

sis. The main advantage of CA is that it does not interrupt the normal

workflow of the user while adding an additional layer of much needed

security. This layer of security is usually implemented using machine

learning and depends on a variety of factors, including data comprising

biometric, behavioral, and context-oriented characteristics. A typical im-

plementation of CA would be composed of

• the continuous stream of data collected from the user.

• a user template or a user profile that is being used as the basis of judg-

ment.

• a reward / penalty system where a certain threshold would lead the user

to be "suspicious" and cause the system to lock.

The location (local or cloud) and specifics of those three parts differ from

one implementation to another. This paper discuses CA in general, and

specifies certain implementations when deemed necessary.

3 Example use cases of CA

Continuous authentication is used in many use cases in the real world.

This section examines them briefly to highlight the importance, relevance

and prominence of CA.

3.1 Military

One of the security issues that concerns military personnel is leaving their

devices unattended. This issue can lead to unauthorized persons gaining

access to information and assets. CA would solve this issue by monitoring

the user’s behavior at all time. In a scenario where CA is implemented

correctly, the device would lock itself before the unauthorized person can

do any substantial damage. In a military context, security is prioritized

over usability. This is to protect classified data as well as protect vital

structures of a government. This context is a perfect use case to imple-

ment CA.

3.2 Civil

Many used cases have been proposed for CA in a civil context. This section

will demonstrate two examples.

Hospital

Hospitals store a large quantity of sensitive data that belong to patients

[9]. Doctors in these hospitals need frequent access to this data through-

out their shifts. Usually, the doctor will have to login using static au-

thentication to access a patient’s data. One issue concerning this context

is doctors are usually quite busy and risk leaving their sessions open.

Another issue is that the frequent access of this data means frequent re-

authentication, which can be cumbersome for a doctor, especially if they

need different credentials for each patient. CA can solve this problem by

profiling each doctor’s behavior and continuously authenticating the us-

age while the doctor accesses patient’s data throughout the day. CA will

work alongside SA to ensure that the sensitive data is protected at all

times.

Remote Work

Due to the recent pandemic, many companies have switched to remote

work. This switch to "work from home" introduced with it many secu-

rity concerns. One such security concern is that employees get to work

on companies propriety business secrets from their homes. As soon as

such secrets leave the premise of the company’s building, it is suspect to

many attacks. As mentioned before, one such attack is leaving a device

unattended. This behavior would allow for attackers to steal important

data and information from companies laptops. Another attack is steal-

ing an employee’s credentials. It is much easier to do so by scamming

them using various social engineering methods. This will also result in

an outsider gaining access to a company’s data. CA helps in preventing

all of these attacks and more. The company will have to decide on the

exact implementation of the authentication itself in a way that suits their

needs.

4 Flaws and concerns in CA

As it is usually the case with every new technology, it has its advantages

and disadvantages. This section demonstrates the flaws and concerns

relating to the usage of continuous authentication.

4.1 Security of CA

We define the security of continuous authentication in two points:

• The performance of a specific modality of CA. The performance includes

accuracy, false acceptance rate, and false rejection rate.

• The feasibility of forging a biometric modality using different attacks,

such as mimicry attacks, template leaking attacks.

4.2 Privacy concerns

The privacy issues [10] stems from two different perspectives. The first

is the possibility of stealing the user templates or models from the device

that has all the collected data used by CA. The second is using cloud con-

tinuous authentication. This term refers to either processing the data in

the cloud to access a cloud service or authenticating a user in the cloud to

allow usage of a locked device. These privacy challenges vary depending

on the various modes and modalities of continuous authentication. The

modes differ in the source of data that is used to achieve authentication .

• Continuous authentication that monitors personal information, such as

location data, mouse movements and keyboard clicks, and personal de-

vice usage. This mode does not provide any privacy to the user as it uses

personal information gathered to function.

• Continuous authentication that monitors online presence, such as sites

visited and frequency of visits, The time spent in a given site, presence

of certain cookies. While this mode does not reveal information directly,

much information can be inferred from the data, such as the user’s gen-

der and age. The user’s usage may disclose vital information, such as

fragments of medical history, employer related secrets, or personal in-

formation.

• Continuous authentication that monitors physiological characteristics

and other biological and behavioral data, such as facial features, gait

and movement patterns, keystroke dynamics and other similar data.

This mode of continuous authentication is the most dangerous to user

privacy as it uses lot of identifying information. The data collected by

this mode is sensitive on its own. However it can also be used to infer

further information on the user, such as health related data as well as

age and gender.

5 Privacy preserving techniques

This section discusses privacy preserving techniques and algorithms that

can be applied to the modes discussed previously. These techniques are

meant to surpass the privacy risks that accompany using continuous au-

thentication.

5.1 Homomorphic Encryption

Cryptographic approaches require decryption before authentication to be

able to achieve access control using continuous authentication [11]. This

creates a privacy issue discussed above in all modes of continuous authen-

tication, an untrusted cloud provider can see the biometric data after de-

cryption. The same problem occurs if a device is stolen and the decryption

keys are in the device itself. One privacy preserving technique that can

be used is Homomorphic encryption. Homomorphic encryption is a type of

encryption that allows certain computations to be done on encrypted data.

This means that there is no need to decrypt the data first to manipulate it.

This allows a user using continuous authentication to send its encrypted

data to an untrusted cloud server. The server can do comparisons on the

encrypted data without being able to decrypt it. The server then returns

a response to the user. The cloud server has no means to discover the

template used nor the data being sent hence preserving the privacy of the

user.

5.2 Zero knowledge proofs

Zero knowledge proofs is a set of encryption schemes that allows a prover

(the user) to authenticate itself without having to share the data that

demonstrates their identity [12]. This is done through a process of math-

ematical algorithms that proves a statement to be true without revealing

any additional data. In Continuous authentication, the user can prove

their identity to an untrusted cloud server or to a local server using this

process without having to share personal information and thus preserving

privacy.

5.3 Cancel-able biometrics

Cancel-able biometrics is a privacy preserving technique used specifically

to hide physiological biometric data [13]. The concept of cancel-able bio-

metrics is similar to hash functions as well as Homomorphic encryption.

biometric data goes through a non-reversible process to reach a state

where it can be used for authentication without being able to discover

the original data. In practice, biometric data can be images of body parts,

such as the face or the eye pupils. This technique help in distorting the

image in a way that it is still usable for authentication but the original

image cannot be constructed from it anymore.

6 Analysis

Privacy preserving techniques give continuous authentication a chance to

be implemented on a larger scale for commercial use. Introducing contin-

uous authentication to civilian users and corporations will certainly aug-

ment the overall security. However, there is still much to be researched

and many attack vectors to explore. Technology similar to continuous

authentication take time to mature. A haste deployment of continuous

authentication might lead to disastrous outcomes for users, thus users

should be informed of how continuous authentication work and what data

is being collected. Consent will play a major role in the deployment of

continuous authentication. The future will tell how these intricate details

will be handled and if continuous authentication will be viable for usage.

7 Conclusion

This paper has introduced Static Authentication as well as Continuous

Authentication. It explained the differences between the two and why

both of them are needed to achieve better access control. The paper

demonstrated real life examples where this superior access control is needed.

The paper has also reviewed viable techniques used to preserve the pri-

vacy of users using Continuous Authentication. The techniques presented

offer good privacy to usability ratio as they add little overhead. There is

still much speculation if continuous authentication will be part of our se-

cure cyber future. Research is already underway to fully comprehend all

the factors that need to be settled. Further more, much work is still to

be conducted to further secure Continuous Authentication. As yet, all

the results obtained point to a future where continuous authentication is

present.

References

[1] F. H. Al-Naji and R. Zagrouba, “A survey on continuous authentication
methods in internet of things environment,” Computer Communications,
vol. 163, pp. 109–133, 2020.

[2] A. F. Baig and S. Eskeland, “Security, privacy, and usability in continuous
authentication: A survey,” Sensors, vol. 21, no. 17, 2021.

[3] L. Hernández-Álvarez, J. M. de Fuentes, L. González-Manzano, and L. Hernán-
dez Encinas, “Privacy-preserving sensor-based continuous authentication
and user profiling: A review,” Sensors, vol. 21, no. 1, 2021.

[4] A. Acar, S. Ali, K. Karabina, C. Kaygusuz, H. Aksu, K. Akkaya, and S. Ulua-
gac, “A lightweight privacy-aware continuous authentication protocol-paca,”
ACM Trans. Priv. Secur., vol. 24, no. 4, sep 2021.

[5] Y.-H. Chuang, N.-W. Lo, C.-Y. Yang, and S.-W. Tang, “A lightweight contin-
uous authentication protocol for the internet of things,” Sensors, vol. 18,
no. 4, 2018.

[6] I. Agudo, R. Rios, and J. Lopez, “A privacy-aware continuous authentication
scheme for proximity-based access control,” Computers & Security, vol. 39,
pp. 117–126, 2013.

[7] S. Govindarajan, P. Gasti, and K. S. Balagani, “Secure privacy-preserving
protocols for outsourcing continuous authentication of smartphone users
with touch data,” pp. 1–8, 2013.

[8] S. Z. Syed Idrus, E. Cherrier, C. Rosenberger, and J.-J. Schwartzmann, “A
Review on Authentication Methods,” Australian Journal of Basic and Ap-
plied Sciences, vol. 7, no. 5, pp. 95–107, Mar. 2013.

[9] F. Kargl, E. Lawrence, M. Fischer, and Y. Y. Lim, “Security, privacy and legal
issues in pervasive ehealth monitoring systems,” in 2008 7th International
Conference on Mobile Business, 2008, pp. 296–304.

[10] I. C. Stylios, O. Thanou, I. Androulidakis, and E. Zaitseva, “A review of con-
tinuous authentication using behavioral biometrics,” in Proceedings of the
SouthEast European Design Automation, Computer Engineering, Computer
Networks and Social Media Conference, ser. SEEDA-CECNSM ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p. 72–79.

[11] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic encryp-
tion be practical?” in Proceedings of the 3rd ACM Workshop on Cloud Com-
puting Security Workshop, ser. CCSW ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 113–124.

[12] D. Gabay, K. Akkaya, and M. Cebe, “Privacy-preserving authentication scheme
for connected electric vehicles using blockchain and zero knowledge proofs,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 6, pp. 5760–5772,
2020.

[13] V. M. Patel, N. K. Ratha, and R. Chellappa, “Cancelable biometrics: A re-
view,” IEEE Signal Processing Magazine, vol. 32, no. 5, pp. 54–65, 2015.

Object tracking for mobile augmented
reality

Elias Arte
elias.arte@aalto.fi

Tutor: Ashutosh Vaishnav

Abstract

This paper introduces general object tracking process, reviews existing

object trackers, and evaluates how feasible these object trackers are for

mobile augmented reality. The reviewed object trackers are a client-side

object tracker based on SURF and system that divides process so that the

object detection is on server-side and the object tracking is on client-side.

The evaluation for mobile augmented reality focuses on challenges, such as

performance and mobility.

KEYWORDS: augmented reality, AR, object tracking

1 Introduction

In recent years, augmented reality has got increasingly popular. Aug-

mented reality refers to a view of the real world that has been enchanted

with computer generated graphics. The use cases vary from mobile games

to educational solutions to industrial repair and maintenance solutions of

equipment.

However, object tracking complicates some possible augmented reality

applications. While multiple different methods for tracking objects exist,

not all of these can be used for all augmented reality applications. Some

of these applications track real world objects and replace those objects

with computer generated objects. This requires near real-time tracking of

objects or the application is unpleasant to use. Another problem related to

near real-time tracking is the computing power of mobile devices. While

near real-time tracking might be possible on a desktop PC or a server,

mobile devices might not be efficient enough.

As previously mentioned, multiple different methods for tracking objects

exist, thus this paper will only introduce two different solutions. First one

is a object tracking system running locally that can in theory track any

object the user wants to. Second one is a system that is divided between

server-side and client-side and can track objects entered into a database.

This paper is organized as follows. Section 2 presents general infor-

mation about object detection and tracking. At first, it will present two

sub-issues, object representation and feature selection, which are critical

for object detection and tracking, and then continue about object detection

and tracking. Section 3 will present two real object tracking solutions and

their technicalities. Then, in Section 4, the paper will discuss how feasi-

ble the presented solutions in Section 3 are for augmented reality. Finally,

Section 5 will end the paper with some concluding remarks.

2 Object detection and tracking in general

Object tracking is a process that can be divided into multiple smaller com-

ponents. These components are introduced as object representation, fea-

ture selection, object detection, and object tracking in this paper. This

section introduces the components and how to address them when creat-

ing an object tracker based on the survey created by Yilmaz et al. [1].

2.1 Object representation

According to Yilmaz et al. [1], when tracking an object, it needs to be

defined as the point of interest. This is done by creating the object rep-

resentation. The representations are divided into shape and appearances

categories. Some of the commonly used shape representations are points,

primitive geometric shapes, object silhouette and contour, articulated shape

models, and skeletal models. Meanwhile, common appearance represen-

tations include probability densities of object appearance, templates, ac-

tive appearance models, and multiview appearance models.

It is important to choose the correct representation for the object, as

some representations are more suitable than others. For example, points

are suitable for tracking smaller objects and primitive geometric shapes

are more suitable for simple rigid objects, while complex shapes, such as

humans, object contour or silhouette might be most suitable representa-

tion.

2.2 Feature selection

For object tracking to work, the object has to differ from the objects that

are not interesting. This means that the object needs to have some feature

to it, that can be used to identify it. In general, this means the visual

uniqueness of the object. Yilmaz et al. [1] present some feature examples

such as the object’s color, edges, optical flow, or texture. It is important

to choose features that fit the application domain, but also features that

work together with the chosen object representation [1].

2.3 Object detection

Object detection is a task where the object is detected from video footage.

Object detection is supposed to find the object from the frame in which

the object first appears in or from every frame. Previously defined object

representation and feature selection are used in object detection, and dif-

ferent object detection methods use different object representations and

feature selections.

Yilmaz et al. [1] present four different categories for object detection.

The categories are: point detectors, background subtraction, segmenta-

tion, and supervised learning. Point detectors find interest points in im-

ages at locations with an expressive texture. Background subtraction uses

a representation of the scene called the background model. The back-

ground model finds deviations of each incoming frame by comparing it to

the background model and each change points to a moving object. Seg-

mentation methods partition the image into similar regions and these

regions should represent the objects. Supervised learning uses a large

collection of samples of objects and machine learning to detect objects [1].

2.4 Object tracking

The purpose of object tracking is to track the detected object and generate

its trajectory from each frame of the video input. There are two different

possible approaches to tracking according to Yilmax et al. [1]. The track-

ing can be performed separately or jointly. Separately performed tracking

means that the tracker detects object and its location from each frame and

then connects objects across frames. Jointly performed tracking however,

uses information of the object location and region from previous frames

and estimates correspondence using that information. In either approach,

the object is then represented using the chosen object representation.

3 Object tracking methods

Object tracking has a long history, and many solutions have been devel-

oped over the years to solve it. This section will review two different

approaches to object tracking. Both approaches use SURF for object de-

tection. However, the first approach runs on client-side and can track any

object, while the second approach runs both on server-side and client-side

and can only track objects in a database.

3.1 A robust object tracking algorithm based on SURF

Speeded up robust features (SURF) algorithm contains three sections:

interest points detector, interest points descriptor, and interest points

matching [2]. Interest points are distinctive locations in the image, such

as corners, blobs, and T-junctions. The purpose of interest point detector is

to find the same interest points from different frames. SURF gets interest

points by approximating a Hessian matrix using a Fast-Hessian Detector.

SURF also uses box filters and integral images to reduce the computa-

tional complexity of the Hessian matrix. Next, interest point descriptor

(feature) vectors are created. Feature vectors represent the neighbour-

hood of every interest point and are created using Haar wavelets. Lastly,

the descriptor vectors are matched between different frames. Usually, the

matching is based on the distance between the vectors, using the Ma-

hanalobis or Euclidean distance [2] [3].

Zhou and Hu [3] use the above process for interest points but have im-

plemented a different, two-stage, matching algorithm. In the first stage,

they use a traditional SURF matching method, which uses Euclidean dis-

tance. The matching formula is as follows:

nearest distance PP ′

second nearest distance PP”
≤ T1 (1)

In the formula, P is interest point in the current frame, and P’ and P" are

interest points in some previous frame. If the ratio of PP’ and PP" is less

than the threshold T1, then the points are matched. T1 is here set as 0.8,

as it will allow the system to remove some wrong matching points, while

ensuring that the system can extract enough matching points.

In the second stage, Zhou and Hu [3] use dominant orientation to re-

move more wrong matching points. Dominant orientation can be got from

the SURF interest point descriptor, which also contained the location in-

formation for the first stage. The angle difference of the dominant orienta-

tion between two initial matching points that were obtained from the first

stage is then calculated. Next, an angle difference histogram is estab-

lished and maximum Bin area is found. In theory, as the angle difference

of any two matching points should be close to others, Zhou and Hu select

a range of ten percent around the maximum Bin area as the angle dif-

ference range of right matching points. Thus, the formula for the angle

difference range R of right matching points is as follow:

(N0 +N1)× 0.9

2
< R <

(N1 +N2)× 1.1

2
(2)

N1 is the value of the maximum Bin area, N0 is the value of the left Bin

area next to N1, and N2 is the value of the right area next to N1.

Next, as the matching process in the system created by Zhou and Hu

[3] relies on templates, which are generated from previous frames, the

templates need to be saved and updated on certain conditions. First, they

establish a template cache which can hold 10 templates in total. Each

template contains information about the object region, interest points,

and number of matching points. If the cache does not hold ten templates

a new template will be added to the cache. In a case that the cache al-

ready holds ten templates, the oldest one will be replaced by the new

one. However, as the tracking performance depends on the number of

matching points between the frame and the template, the templates are

not updated on each frame, but rather when the new frame and template

matching points amount is greater than set threshold T2.

For tracking, Zhou and Hu [3] use a two-stage method again for better

accuracy, as over time with template updates and wrong matching points

the system will start to drift. In the first stage they run the two-stage

matching between the new frame and new template. New template is the

template with the largest number of matching points. Then they calcu-

late the center of matching points gravity offset and determine the initial

position of the object. The second stage is similar to the first stage, with

the exception that they run the two-stage matching between the initial

position obtained in the first stage and a fixed template. The fixed tem-

plate contains the information of the very first frame, as it contains the

most original information of the object. The final object position is thus

obtained from the first stage initial position and fixed template. In cases

where the frames do not contain sufficient matching points to track the

object Zhou and Hu [3] adopt Meanshift [4] algorithm to track the object.

3.2 Server-side object recognition and client-side object
tracking

Gammeter et al. [5] propose a solution that divides some of the task to a

server, while keeping rest of the task on client-side. Their solution runs

object detection on server-side to take advantage of a large database of ob-

jects to gain near real-time results back from the database, while keeping

the object tracking on client-side to keep the server interactions at mini-

mum. This approach allows them to gain near real-time tracking on the

client-side.

For object detection, Gammeter et al. [5] follow closely their previous

work [6], which was used for landmark recognition, and combine it with

a media cover (books, CDs, DVDs) recognition service offered by the com-

pany kooaba. Gammeter et al. [5] assume that kooaba builds on the same

approach, using local features and visual vocabularies, as their landmark

recognition system.

Their landmark recognition system has crawled over 12 million images

that were geotagged on Flickr, and clustered them into 300 000 objects.

Gammeter et al. [6] use the approach proposed by Quack et al [7], which

provides a system for building the cluster database that is fully automatic.

The system sends geo-tagged queries to Flickr, runs clustering process to

images that are geographically close to each other by checking for their

visual similarity using SURF features [2] and bundles similar objects to-

gether, thus creating database of clusters where each object represents

some landmark. Then metadata from Flickr is added to it from the clus-

ter. For each object (landmark), a bounding box is then calculated. The

bounding box is calculated by using feature matches, which were used for

creating the object clusters at first, and their confidence values. An es-

timated bounding box is drawn around features which have high enough

confidence value [6].

Now with the database established, it can be used to detect objects from

new images. Gammeter et al. [6] quantize the cluster SURF features

using a visual vocabulary of 1 million visual words which was learned us-

ing approximate k-means [8]. Every image is thus represented as a set

of visual words and each incoming query image also get labeled with a

set of visual words. The set of visual words of the query is then matched

against the whole database using set intersection as distance measure.

For 500 closest candidate images a geometric consistency check is per-

formed by using RANSAC estimation of the homography mapping of fea-

ture matches. Instead of matching visual words as correspondence pairs

for the homography estimation, which is the common approach, Gamme-

ter et al. [6] use a different approach. They reestimate the correspon-

dences based on the second nearest neighbor distance ratio of the original

features, yielding far better retrieval accuracy. However, this comes with

a drawback that each SURF feature file has to be loaded into memory

from disk, which is slow. This is overcome by using a product quantizer

[9], which decomposes the feature space into a Cartesian product of low

dimension subspaces. This enables the system to keep the features in

memory instead of having to load them from the disk each time. In final

step, the database images vote for their clusters, and most voted cluster

is the result [6].

A working object detection system can now be used for object tracking.

To track the object, it means the object location needs to be updated and

labeled for every frame of video input. Multiple different approaches can

be used for tracking the object, but Gammeter et al. [6] use a combined

technique. Their approach combines sensor based tracking and visual

tracking to gain access to advantages of both of these methods.

For visual tracking Gammeter et al. [6] use FAST [10] corners combined

with 8x8 pixel image patches as feature descriptors. Their system has two

different visual tracking modes, direct tracking and incremental tracking,

which are used complement each other. With each object detection request

to the server, it saves the features of current frame as reference features.

Direct tracking attempts to match the features between the current frame

and reference features. If the matching was successful then the object can

be very accurately located in most cases. However, the tracking can fail for

multiple reasons with the most obvious being the object leaving the field

of the camera. In these cases the system uses incremental tracking, which

matches the features between current frame and the previous frame. This

estimates the interframe motion and the location is updated based on the

estimated motion. However, incremental tracking is subject to drifting,

therefore if the tracker remains in the mode for several frames, the system

will initiate a new object detection request [6].

Instead of using the sensors from a smartphone for directly tracking the

location, the sensor data is used as a backup for recovering from errors.

The smartphone’s pose can be estimated using accelorometer and mag-

netic sensors and this pose is not prone to drift. Gammeter et al. [6]

let direct tracking to track the object accurately and update the sensor

tracker’s world view to match the visual tracker. However, when direct

tracking is unsuccessful and incremental tracking that is prone to drift-

ing, is used, the system compares the locations between visual and sensor

tracker. After over 10 successive frames do not coincide, it is assumed

that the object has been lost, and new object detection request will be

made and visual tracker’s world view will be reset to match the sensor

tracker’s world view [6].

4 Evaluation for augmented reality

This section will discuss how feasible the solutions presented in Section

3 are for augmented reality usage. Rabbi and Ullah [11] categorize chal-

lenges in augmented reality tracking to performance challenges, align-

ment challenges, interaction challenges, mobility challenges, and visual-

ization challenges. The main challenge from the perspective of this sec-

tion is performance and mobility. Augmented reality applications need

near real-time tracking for the application to be comfortable to use. In ad-

dition, the object tracking should be light enough to run on mobile devices.

Heavier algorithms can be used for object tracking by taking advantage of

cloud or server-side computing, but this also causes a delay to the track-

ing, which should be near real-time.

4.1 A robust object tracking algorithm based on SURF

Zhou and Hu [3] created a object tracking algorithm based on SURF and

its technicalities were explained in Section 3. In their solution, the user

has to select a trackable object with a bounding box from the first frame

of video footage. In theory this means that their algorithm is capable

of tracking any object the user wants to. No accuracy statistics such as

pixel errors were not provided for the algorithm but in example footage

of their algorithm, it shows that their tracker is accurate in three differ-

ent demos and can overcome object occlusion with their template update

system. This makes it a very capable object tracker for augmented reality

in general. If their solution would be combined with an automatic object

detector, it could be used in multiple different augmented reality appli-

cations. However, with the growing use cases of augmented reality, this

object tracker might not be the best solution for most of them. In the end

it still seems like a very capable object tracker in general and might see

usage especially in demos that do not need to be perfectly accurate.

Augmented reality also needs near real-time tracking and Zhou and Hu

[3] do not provide much information about the performance of the object

tracker other than that it was run on an Intel Core i5 CPU@2.67GHz.

However, they compare the algorithm with a similar algorithm by Du et

al. [12], which was running on a weaker Intel Core i3-380 CPU@2.53GHz,

and it was able to process 12 frames per second of a 640x480 pixels res-

olution video. Now, assuming the algorithms perform similarly, the algo-

rithm created by Zhou and Hu [3] should be able to process frames fast

enough on a modern mobile phone considering the performance difference

between a year 2010 x86 architecture CPU and a year 2022 ARM CPU.

4.2 Server-side object recognition and client-side object
tracking

While previously introduced object tracker by Zhou and Hu [3] tracked

moving objects from video footage and ran the algorithm locally, Gam-

meter et al. [5] developed an algorithm that tracks both stationary and

non-stationary objects and uses server-side computing to boost the per-

formance. Their algorithm takes advantage of a huge database of objects

and their SURF features on a server for object detection, while perform-

ing tracking locally on a mobile device using FAST and the sensors of the

device. This solution is not a general one such as the one developed by

Zhou and Hu [3], but a more specific solution. As Gammeter et al. [5] use

a database of objects for detection, all the objects that need to be track-

able have to be added to the database by photographing the object from

multiple different viewpoints. However, their solution seems suitable for

example tourism applications as their solution can detect popular land-

marks, or museums if pieces of art were to be added to the database.

Gammeter et al. [5] reached a performance of about 12 frames per sec-

ond on 480x320 pixels resolution on a Google Nexus One phone, which

was released in 2010, meaning modern 2022 phones could reach a higher

performance. Android platform was also not yet fully optimized for vision

based AR applications and there was a substantial overhead due to unnec-

essary memory allocation and garbage collection when grabbing frames

from the camera [5]. While their sensor tracking was quite inaccurate

with typical errors on the order of 50 pixels, their direct tracking error

was at most 4 pixels, and incremental tracking after 50 frames was below

8 pixels. Sensor tracking is also not directly used for tracking the object

but rather used to reset the tracking process in case of failures which it

can efficiently detect. As the solution relies on server-side object detec-

tion, it makes it dependable on internet connection and the performance

might suffer under varying internet connections.

5 Conclusion

The goal of this paper was to introduce the basics of object tracking and re-

view some existing solutions. Important themes were mobile augmented

reality and the performance and mobility of the reviewed solutions.

Both solutions reviewed in this paper were working solutions. One solu-

tion was to run object tracking on client-side and to use SURF for detect-

ing the object. This object tracker can be used for implementing general

applications when combined with an automatic object detector. Other so-

lution was to run object tracking on client-side while using a server-side

object detection with a database of objects. This object tracker can be use

for more specific applications and could see usage in tourism or museums

for example.

Based on the reviewed content, object tracking is on a level where it can

be used for mobile augmented reality. However, the accuracy and perfor-

mance of existing solutions can still be improved with new algorithms and

new research. In addition, with the increasing popularity of augmented

reality applications, new application areas might appear where existing

solutions do not work.

References

[1] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A survey.
ACM Comput. Surv., 38(4):13–es, dec 2006.

[2] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up ro-

bust features. In Aleš Leonardis, Horst Bischof, and Axel Pinz, editors,
Computer Vision – ECCV 2006, pages 404–417, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[3] Dan Zhou and Dong Hu. A robust object tracking algorithm based on surf.
In 2013 International Conference on Wireless Communications and Signal
Processing, pages 1–5, 2013.

[4] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Real-time track-
ing of non-rigid objects using mean shift. volume 2, pages 142–149 vol.2, 02
2000.

[5] Stephan Gammeter, Alexander Gassmann, Lukas Bossard, Till Quack, and
Luc Van Gool. Server-side object recognition and client-side object tracking
for mobile augmented reality. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition - Workshops, pages 1–8, 2010.

[6] Stephan Gammeter, Lukas Bossard, Till Quack, and Luc Van Gool. I know
what you did last summer: object-level auto-annotation of holiday snaps. In
2009 IEEE 12th International Conference on Computer Vision, pages 614–
621, 2009.

[7] Till Quack, Bastian Leibe, and Luc Van Gool. World-scale mining of objects
and events from community photo collections. In Proceedings of the 2008 In-
ternational Conference on Content-Based Image and Video Retrieval, CIVR
’08, page 47–56, New York, NY, USA, 2008. Association for Computing Ma-
chinery.

[8] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zis-
serman. Object retrieval with large vocabularies and fast spatial match-
ing. In 2007 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8, 2007.

[9] Herve Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization
for nearest neighbor search. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(1):117–128, 2011.

[10] Edward Rosten and Tom Drummond. Machine learning for high-speed
corner detection. In Aleš Leonardis, Horst Bischof, and Axel Pinz, editors,
Computer Vision – ECCV 2006, pages 430–443, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[11] Ihsan Rabbi and Sehat Ullah. A survey of augmented reality challenges
and tracking. ACTA GRAPHICA, 24:29–46, 02 2013.

[12] Kai Du, Yongfeng Ju, Yinli Jin, Gang Li, Yanyan Li, and Shenglong Qian.
Object tracking based on improved meanshift and sift. In 2012 2nd Interna-
tional Conference on Consumer Electronics, Communications and Networks
(CECNet), pages 2716–2719, 2012.

Privacy in Authenticated Key Exchange
Protocols

Otso Pohjola
otso.pohjola@aalto.fi

Tutor: Chris Brzuska

Abstract

This literature review is an examination of privacy preserving authenti-

cated key exchange (AKE) protocols. The goal is to understand how pri-

vacy has been taken into consideration in four AKE protocols, TLS, Signal,

OTR and Noise. These protocols were chosen, since there was enough pri-

vacy centered research conducted of them to form a clear picture. They use

methods, such as encrypting the authentication step, sharing a signature

key and periodically publicizing old message authentication code keys to

preserve the privacy of the AKE participants.

KEYWORDS: Privacy, AKE, TLS, Signal, OTR, Noise

1 Introduction

Authenticated key exchange (AKE) means authenticating key exchange

parties to confirm their identity, in addition to establishing a secure com-

munication channel [1]. Probably, the most common example of an AKE

implementation is TLS [2], a protocol, which is often used in web com-

munications. Private messaging applications utilize AKE as well, while

attempting to protect the identity of the users at the same time [3][4][5].

Suitable examples of these are, e.g., Signal, OTR and Noise protocols

[6][7][8]. This paper reviews these four AKE protocols from the viewpoint

of privacy properties called anonymity, deniability and identity hiding.

In the context of AKE, anonymity can be defined as hiding the identity

of each AKE participant from everyone else, meaning its peers and ex-

ternal adversaries [1]. In real-life applications, it is difficult to achieve

this for everyone, as usually at least one party authenticates during the

session initiation. In addition, anonymity cannot be produced, and the

AKE schemes can only attempt to preserve the current state defined by

the underlying infrastructure [9].

Deniability focuses on maintaining repudiation, and it makes a party’s

involvement in a key exchange improvable. Note that this still allows the

protocol to leak other identifying information [1], but only as long as a

party’s participation cannot be proven based on it. In practice, deniability

promises that even when an AKE participant might trust the identities of

other peers, they cannot convince anyone else to believe the same.

The last property that this paper takes into account is identity hiding.

Identity hiding aims to hide the identity only from the external adver-

saries [1]. For example, in a client-server architecture, while the server

loses its anonymity by authenticating to the client, it can still preserve

identity of the client hiding property by encrypting any of its identifying

data that is transferred.

The existing research analyzes these properties in relation to AKE pro-

tocols [10][3][4] and also suggest new models and methods that could help

to improve them [11][12]. The paper is structured as follows: Section 2

considers the four different AKE protocols, starting with TLS and contin-

uing with instant messaging related protocols, Signal and OTR. Section

2 finishes with discussion regarding the complicated Noise protocol, after

which Section 3 considers the differences and similarities between these

AKE protocols. Finally, section 4 concludes the report.

2 Authenticated Key Exchange Protocols

2.1 TLS 1.3

Transport Layer Security (TLS) is used to protect web application commu-

nications varying from HTTPS to SMTP and VoIP. Its primary use cases

are encrypting transferred data, authenticating the parties and verifying

data integrity [13] [10].

In the previous version, TLS 1.2, identifying information, such as digital

signatures and certificates, were sent in clear [11]. Although the transport

layer messages were encrypted with a secret key, identities were trans-

mitted before the establishment of the key and thus publicly observable.

The current version, TLS 1.3, was released in 2018 by Internet Engineer-

ing Task Force (IETF) [13]. It shifted the encryption to earlier phase,

making authentication operations also encrypted. Another change was

the addition of Encrypted Server Name Indicators (ESNI). It is an en-

crypted version of SNI, a field that used to leak TLS 1.2 traffic destination

to passive adversaries.

Ghada Arfaoui, Xavier Bultel, Pierre-Alain Fouque, Adina Nedelcu and

Cristina Onete report that TLS 1.3 itself does not have innate privacy

weaknesses, but some of its properties could be abused [10]. TLS 1.3

supports two different modes: full handshake and session resumption.

According to Arfaoui et al., the full handshake mode is more frequently

used and has less weaknesses. In this mode, a client does an authenti-

cated Diffie-Helman (DH) key exchange with a server, while also offering

forward secrecy. An active "man in the middle" attack is the only privacy

related attack that Arfaoui et al. could apply to full handshake mode.

In this case, protecting both identities is not possible, since the initiator

has to disclose its identity before authentication occurs. This weakness is

not due to a technical detail in TLS 1.3, but rather because of its design

choices.

If TLS 1.3 session resumption mode is used, a server sends a session

ticket to a client. This ticket is used to avoid initiating the authentica-

tion sequence next time the client connects to resume the previous hand-

shake, and it is transmitted in public. Session resumption mode weakens

privacy, since the ability to resume sessions means automatically an abil-

ity to differentiate based on a client ticket state. Moreover, distinguish-

ing client identities becomes simpler, if any custom property, such as an

identification number or an incrementing number is added to the ticket.

Continuing the same session in a pre-shared key only mode also removes

any forward secrecy.

2.2 Signal

Signal is an AKE protocol used by the messaging application "Signal", an

app that is widely regarded to have high cryptographic standards [3]. It

especially focuses on protecting identity through deniability. This is a de-

sired attribute for messaging applications, since it assures that the mes-

sages cannot be traced back to the AKE participants afterwards. Having

a deniable messaging system brings an application closer to a face-to-face

conversation, where the only identifying link to data remains in the mem-

ory of participants [5]. While Signal does not offer online deniability, its

offline deniability has strong cryptographical proof [3]. However, some

conditions are related to this, which will be discussed later.

Signals deniability mainly originates from the 3DH protocol [3]. The

protocol bases on creating a shared secret by hashing concatenation of

ephemeral keys (X and Y in the figure below) and static public keys (A and

B). Participants also use their private DH values (a and b) when calculat-

ing the key K, authenticating themselves. Any participant can calculate

the same session key, therefore the encrypted messages cannot be linked

to any single party, and the recipient could even be sending messages to

itself from outsider’s perspective.

Alice Bob

x←$ {1,...,n}
X = gx

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

y←$ {1,...,n}

K = H(Ay||Xy||Xb)

Y = gy

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

K = H(Y a||Y x||Bx)

Figure 1. The 3DH protocol, where the public keys of Alice and Bob are A = ga and B = gb

respectively [3]. H is a suitable hash function and || denotes concatenation.

3DH is extended by the Extended Triple Diffie-Hellman (X3DH) proto-

col [3][6]. The X3DH variant adds a third party to 3DH: A key distributor

server is used for storing the ephemeral public keys, allowing them to be

used for establishing a 3DH handshake even when the participants are

offline [14]. The initial public keys are signed to protect against imper-

sonation attacks by the server. The server also takes care of caching sent

messages, when the recipient is offline.

In addition to X3DH, Signal implements a double ratchet step that oc-

curs during the message exchange. It is utilized for validating the ex-

isting session and for generating a new session key using a key deriva-

tion function (KDF) [3][6]. The ratcheting step can be further divided

into symmetric or asymmetric types, the difference being the input fed to

the KDF. Symmetric ratcheting step only inputs the current session key,

while asymmetric also calculates a new DH output and feeds it to the

KDF. Generating new DH values periodically ensures forward and back-

ward secrecy.

The use of a key distribution server raises a problem related to identity

hiding. The signed public keys that it stores cannot be encrypted, and the

server can easily identify the parties initiating the handshakes [14]. How-

ever, the server is publicly accessible, therefore the signed key could have

been uploaded by anyone [3], which offers a certain level of deniability.

Additionally, there is a forward secrecy weakness related to the double

ratchet step. To save resources, asymmetric ratcheting and a new round

of DH is initiated only when a previous message is sent by the other party

[14]. For this reason, an adversary that possesses a stolen session can

decrypt incoming messages continuously as long as a reply is not sent

back. Having the session key get stolen is not a far fetched scenario, since

Signal stores the session key on a secondary location, such as a hard drive.

This is required for Signal protocol to work offline.

Perhaps surprisingly, current cryptographic proofs of Signals offline de-

niability rely on the Knowledge of Diffie-Hellman (KDH) assumption. The

KDH assumption is used to simulate situations, where a malicious partici-

pant pre-calculates a partial result of the handshake, or where they frame

another participant by making them interact with a randomly generated

key, would be impossible to simulate [3].

2.3 OTR

Currently, OTRv3 is the most popular Off-the-Record (OTR) messaging

version, but OTRv4 is also under development. Messaging programs uti-

lizing it can be found on various platforms, e.g., OS X, Unix, iOS and

Android [5]. Just as Signal, OTR is a protocol designed for messaging

applications that shall provide a strong deniability guarantees. Despite

that, unlike signal, OTR is almost entirely an online based solution, and it

is designed only for two participants [14]. OTR also encrypts public keys

during the initial handshakes, which is something Signal cannot achieve,

as its X3DH server consumes unencrypted keys.

OTR consists of four steps [5].

1. An unauthenticated DH key exchange is used to setup a secure chan-

nel. This will allow a mutual authentication over SIGMA AKE protocol

to be performed without revealing the identities to the public [7]. After

the authentication, the participants will know their partners public DH

key, another shared value s and that s is also possessed by their partner.

2. Communication can now be encrypted by combining each participants

DH keys. In addition, each message is accompanied with a MAC, calcu-

lated using s [5][7].

3. The third step is re-keying, where both the encryption key and the

MAC keys are re-negotiated incrementally, after a set amount of mes-

sages are transmitted. This renders the old messages unreadable, even

for the participants.

4. Finally, the old MAC key is publicized, ensuring that, in theory, anyone

could have computed the old message authentication codes.

Having the messages authenticated with MACs, instead of digital sig-

natures, is a crucial detail for deniability in the case of OTR [5]. Since

initially, only two people know the MAC key, the participants can reason

that the messages were sent by the other. At the same time, making any-

one else believe this claim is difficult, as either one of them could have

generated the same MAC. Furthermore, after the last step anyone can

sign forged transcripts that are indistinguishable from the originals.

There are some privacy weaknesses with OTRv3. Being designed with

only real-time communication in mind, saving the messages for long-term

offline storage would violate its design principles and puts the privacy

of the other party at risk [5]. Another threat to privacy is the lack of

anonymity during the handshaking step. One of the details shared via

secure channel is a signature, and leaking it would act as a evidence of

taking part in the event [14].

OTRv4 addresses these points by supporting offline conversations and

by introducing a new signature algorithm, Ring Signature Algorithm [5][14].

The Ring Signature Algorithm consists of a set of public keys and a cor-

responding private key for each participant. It allows having a deniable

signature at the handshaking step, since once again the other party can-

not prove not computing the signature using their own private key. Still,

using OTRv4 for offline messaging is not recommended for deniability use

cases, since its downside is the initiator losing their deniability [14]. It

should be noted that [14] does not clarify this statement any further.

2.4 NOISE

The Noise framework is a collection of protocols that are used to construct

DH based key exchange protocols [15][8]. It is fundamentally used for

establishing secure communication channels and is utilized by a diverse

array of applications, such as WhatsApp, Lightning and WireGuard [15].

The Noise framework is flexible, and it offers protocol patterns that focus

on handshake attributes, such as low latency, identity hiding and various

expectations of cryptographic key types (e.g. pre-knowledge and lifetime).

However, the same flexibility complicates estimating the properties of the

patterns and which of them should be applied to a use case. Not every

developer pays attention to the impact on identity hiding when planning

to transfer long-term identifiers in clear.

The paper "The Noise Protocol Framework" by Trevor Perrin describes

the framework and acts as its specification [8]. Furthermore, it goes

through the different identity hiding patterns of Noise, and the poten-

tial attack vectors applied to each of them. For example, a pattern, where

a responder issues a static key, is prone to active probing by an anony-

mous initiator. These patterns are rated using ten identity hiding levels,

ranging from weak properties, such as "Transmitted in clear.", to stronger

ones, such as "An active attacker who pretends to be the initiator and

records a single protocol run can then check candidates for the responder’s

public key.". Some of the level definitions are refined further by Guillaume

Girol, Lucca Hirschi, Ralf Sasse, Dennis Jackson, Cas Cremers, and David

A. Basin [15]. They also discovered that the identity hiding levels do not

necessarily get monotonically stronger, even if it might appear the other

way at first. This means that, in some situations, you might lose privacy

when "upgrading" the pattern from identity hiding level 3 to 5.

Girol et al. computed most useful Noise Framework patterns for differ-

ent use cases, anonymity being one of those [15]. Nonetheless, the anal-

ysis did not cover all the identity hiding levels in Noise and thus there is

room for future research. The analysis also used an adversary with re-

stricted capabilities, and therefore, a more capable adversary should be

simulated. The restrictions were in place, as analyzing anonymity claims

of the Noise Framework is computationally challenging. Girol has also

written a hundred page master thesis, which is an in depth review of the

Noise framework [16].

A major weakness of the Noise Framework is that its session identifier

is not treated as a strictly private value [15]. The session identifier is

computable from public values including, in particular, the public keys of

the handshake participants. Therefore, given the link between session

identifier and public keys, an adversary can identify the handshake par-

ticipants.

3 Discussion

One topic for future research could be adding deniability to web traffic. It

would allow a client to send sensitive information to a server and deny

that any communication happened. This might be difficult to achieve

when the infrastructure is based on public and private key pairs. Majority

of web traffic uses TLS 1.3, but deniability is not applicable in its current

state. The traffic is signed with short time private keys, and anyone can

confirm that the client is the only one capable of singing the messages.

Noise is another protocol related to web traffic, and it is utilized in at

least one VPN solution (WireGuard). Once more, because of using asym-

metric keys, it would take extra effort to provide the deniability through

shared symmetric secred. The WireGuard users would benefit from de-

niability, since VPNs are often used for sensitive business. Another is-

sue with Noise is the freedom of choice it offers. Privacy issues seem to

infiltrate applications when complicated frameworks are not understood

correctly (e.g. inserting plain text session IDs into sessions).

4 Conclusion

This paper has reviewed four AKE protocols and presented their privacy-

preserving capabilities. The focus has been on properties interpreted as

anonymity, deniability and identity hiding.

TLS 1.3 improves over its previous version by moving authentication

inside an encrypted channel and by encrypting the SNI field, thus hiding

the identities more successfully. However, utilizing TLS 1.3 in the session

resumption mode will diminish its forward secrecy capabilities.

Signal and OTR attempt to create deniability using shared secrets, which

are mostly derived from public keys. Signal preserves offline deniability

well, as long as the session key does not leak, or the server is not com-

promised. Meanwhile, OTRv3 retains the online deniability of the par-

ticipants, providing their private keys are not lost, or the messages are

not saved locally. OTRv4 introduces the Ring Signature Algorithm and

support for offline messaging.

The Noise framework documents ten identity hiding levels, but these

are not as straightforward as they seem initially. Each level is meant to

protect an identity in a specific context, therefore careful consideration

is required before choosing the one to use. Noise has been extensively

researched by Girol et al., and a more complete review of their work is

recommended.

References

[1] Ian Goldberg, Douglas Stebila, and Berkant Ustaoglu. Anonymity and one-
way authentication in key exchange protocols, 2013.
https://eprints.qut.edu.au/218542/.

[2] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3,
2018. https://www.rfc-editor.org/info/rfc8446.

[3] Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo Krawczyk.
On the cryptographic deniability of the signal protocol, 2021.
https://eprint.iacr.org/2021/642.

[4] Keita Emura, Kaisei Kajita, Ryo Nojima, Kazuto Ogawa, and Go Ohtake.
Membership privacy for asynchronous group messaging, 2022.
https://eprint.iacr.org/2022/046.

[5] Carlisle Adams. Introduction to privacy enhancing technologies: A classification-
based approach to understanding pets, 2021.
http://www.noiseprotocol.org/noise.pdf.

[6] Signal specification, 2022. https://signal.org/docs/specifications/.

[7] OTR specification, 2022. https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html.

[8] Trevor Perrin. The noise protocol framework, 2018.

[9] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn Tackmann, and
Daniele Venturi. Anonymity-preserving public-key encryption: A construc-
tive approach, 2013. https://eprint.iacr.org/2013/238.

[10] Ghada Arfaoui, Xavier Bultel, Pierre-Alain Fouque, Adina Nedelcu, and
Cristina Onete. The privacy of the TLS 1.3 protocol, 2019. https://hal.archives-
ouvertes.fr/hal-02482253.

[11] Sven Schäge, Jörg Schwenk, and Sebastian Lauer. Privacy-preserving au-
thenticated key exchange and the case of IKEv2, 2020.
https://eprint.iacr.org/2020/1519.

[12] Loïc Ferreira. Privacy-preserving authenticated key exchange for con-
strained devices, 2021. https://eprint.iacr.org/2021/1647.

[13] Cloudflare documentation, 2022. https://www.cloudflare.com/learning/ssl/transport-
layer-security-tls/.

[14] Richard B. Riddick. vault1317/signal-dakez: An authenticated key ex-
change protocol with a public key concealing and a participation deniability
designed for secure messaging, 2020. https://eprint.iacr.org/2020/1231.

[15] Guillaume Girol, Lucca Hirschi, Ralf Sasse, Dennis Jackson, Cas Cremers,
and David A. Basin. A spectral analysis of noise: A comprehensive, auto-
mated, formal analysis of Diffie-Hellman protocols.
https://www.usenix.org/conference/usenixsecurity20/presentation/girol.

[16] Guillaume Girol. Formalizing and verifying the security protocols from the
noise framework, 2019.

A survey on touch-based continuous
authentication systems in mobile
phones

Josephus Jasper Limbago
jasper.limbago@aalto.fi

Tutor: Sanna Suoranta

Abstract

Continuous authentication using behavioral biometrics has been explored

in recent studies. It has been proposed as an additional security layer to ex-

isting user authentication systems, such as personal identification number,

passwords and face recognition. This paper presents recent studies related

to touch-based continuous authentication systems in mobile phones. It first

gives an overview of continuous authentication and behavioral biometrics

in mobile phones. Next, it summarizes selected research papers that ad-

dress the current limitations and problems related to this technology as

well as papers with recommendations for better performance. Then, it pro-

vides an idea of how users perceive the adoption of this technology and

also possible attacks. Finally, it discusses the feasibility of this method of

continuous authentication and some suggestions for further implementa-

tions. This paper will help researchers, who are getting into continuous

authentication in mobile phones, identify what aspects of the technology

needs further improvement.

KEYWORDS: Continuous authentication, behavioral biometrics, mobile

phones

1 Introduction

In recent years, mobile phones have been an integral part in our daily ac-

tivities. These devices provide users access to multiple services, such as

messaging, banking and more through the different mobile applications.

For convenience, people usually allow these applications to store their

credentials and other personal information. This poses a serious security

risk when a malicious outsider gets access to the device. Different user

authentication methods have already been implemented to address this

concern. The use of PINs, face recognition and fingerprint recognition

are some of the methods available now. These entry-point based meth-

ods, however, are useless against intruders that attack after a successful

authentication [8]. Continuous authentication (CA), which is a method

involving constant monitoring if the legitimate user authenticated at the

beginning is still the same person using the device, is proposed as a com-

plementary solution to entry-based methods.

Multiple continuous authentication methods focusing on different be-

havioral modalities, such as walking gait, touch gestures, multi-modal,

input patterns, location familiarity and power consumption, have been

investigated [16]. Among these, touch gesture is one of the most explored

modalities due to it being a good candidate for a viable biometric [1].

This paper reviews the state-of-the-art of touch-based continuous au-

thentication systems for mobile phones. This paper is organized as fol-

lows. Section 2 gives an overview of touch-based CA systems. Section

3 presents different recent studies. Section 4 discusses user acceptance.

Section 5 explains possible attacks. Section 6 discusses the feasibility of

the technology. Lastly, Section 7 concludes the paper.

2 Continuous Authentication

Different continuous authentication systems have been proposed to work

as additional security feature on top of the existing entry-point based au-

thentication mechanisms. These systems either use physiological or be-

havioral biometrics to authenticate a user [3]. Physiological biometrics

use a person´s unique physical features found in the fingers, eyes, and

face. Meanwhile, behavioral biometrics use a person’s unique behavior

that is maintained when doing regular activities. This includes patterns

in actions, such as walking, writing and other daily tasks. Behavioral

biometrics have characteristics that make it more attractive to use for

authentication compared to physiological biometrics.

Liang et al. [10] characterize behavioral authentication as secure, con-

tinuous, transparent, and cost effective. Behavioral authentication is se-

cure since it works in the background when users perform certain ac-

tivities. This makes it impossible to steal, copy or forge the data used

for authentication. Thus, behavioral authentication is secure and robust

against smudge attacks, replay attacks, thermal attacks and adversary

attacks. Behavioral authentication is continuous and transparent since

it continuously does user profiling naturally based on the user´s interac-

tions with the system without constant interruption. It is also cost effec-

tive since it uses embedded sensors, such as microphones, touchscreens,

and accelerators, which are widely available and thus does not require

extra hardware.

Some of the common behavioral biometric traits used for continuous

authentication systems on mobile phones are gesture-based authentica-

tion, keystroke dynamics, behavioral profiling and gait recognition [11].

Gesture-based authentication involves capturing hand drawn shapes or

strokes, represented as ordered pair of numerical coordinates, as the user

interacts with the mobile phone. Keystroke dynamics refers to the mon-

itoring of a user´s typing pattern, including the duration and latency of

keypresses, sizes, and pressure. This paper will only discuss touch-based

continuous authentication (gesture-based and keystroke dynamics) since

touch input is the most frequent method we use with mobile phones and

therefore can be used to continuously authenticate the user.

Stylios et al. [14] summarize data collection and feature extraction for

both behavioral biometrics. For gesture-based biometrics, user actions in-

putted on the touch screen are converted into gesture output template.

These actions contain parameters such as speed, velocity, size, length,

direction and pressure, which are unique between users. The collected

data from the interaction between the user’s finger and the mobile screen

generates series of data that include time stamps, finger pressure, finger

blocked area, finger orientation, device orientation and the total number

of swipes. Meanwhile, for keystroke dynamics, typing input on the mo-

bile device is recorded. The extracted features used for this method are

duration, latency, pressure and location.

Authentication systems are commonly evaluated by their accuracy and

other related scores. These values are calculated from number of true

positives, true negatives, false positives and false negatives. False Ac-

ceptance Rate (FAR) measures how likely an unauthorized user will get

accepted while False Rejection Rate (FRR) measures how likely an autho-

rized user will get rejected. Equal Error Rate (ERR) is the point in which

FAR is equal to FRR and lower values mean more accurate system [5].

Below are the formulas to calculate these values:

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

FAR =
FP

FP + TN
(2)

FRR =
FN

FN + TP
(3)

TAR =
TP

TP + FN
(4)

3 Recent studies

This section summarizes recent studies on touch-based continuous au-

thentication systems.

Siirtola et al. [13] investigated the effect of context on continuous au-

thentication using touchscreen and accelerometer readings extracted from

swipe gestures. The researchers used the Hand Movement Orientation

and Grasp (HMOG) dataset since it is the only public multi-modal dataset

available. The authors focused on analysing two contexts, phone usage

and user’s physical activity. The aim was to prove that improving the

accuracy of authentication systems can be do by training separate mod-

els for specific context. The experiment was conducted using four sce-

narios: reading a document while sitting, reading while walking, navi-

gating while sitting and navigating while walking. The study compared

the performance of context-specific models and general models. Context-

specific models were trained and tested from the same scenario while gen-

eral models were trained using data from all scenarios. Their results

showed that context-specific models have lower equal error rate (EER)

than general models. For example, the average EER of the reading sce-

nario dropped from 21.3% to 11.7% and 15.8% to 7.0% for the sitting and

walking scenario, respectively. The study also concluded that accelerom-

eter signals should only be used with touch features when the user is

moving.

Stylios et al. [15] developed BioPrivacy, a behavioral biometrics contin-

uous authentication system that utilizes keystroke dynamics. The system

uses Multi-Layer Perceptron (MLP) as the system’s classifier. An android

keyboard application was built to collect the cellphone keystrokes. Data

is sent to an API endpoint, where it is stored in an online database. The

features that were extracted from the data are duration, latency, pres-

sure on keys and location points. The experiment had 39 participants,

who were all smartphone users and were familiar with the experimental

setup. The experiment consisted of 16 sessions that were each 2 min-

utes long, in which the participants had to input predefined sentence or

series of numbers either after immediately seeing them or after memo-

rizing. One participant is designated as the genuine user and the rest

are treated as the impostors. MLP was then used to evaluate the system.

Their approach achieved an accuracy of 97.18%, EER 0.02%, TAR 97.2%

and FAR 0.02%.

Ananya et al. [4] devised the first keystroke dynamics based continuous

authentication system that does not need preregistration. This is done by

creating the verification template after the initial login instead of during

the user enrollment in the training phase. They also developed metrics

to evaluate the performance of their system, namely Strokes to False Re-

jection (SFR) and Strokes to False Acceptance (SFA). SFR and SFA is the

mean number of keystrokes to reject a legitimate user and imposter re-

spectively.

Another study that utilized keystroke for continuous authentication is

[9]. A software keyboard application was also developed for collecting the

data. The classifier used for their approach was Support Vector Machine

(SVM). The experimental setup involved 315 participants, who required

to write predefined texts. The participants were split into 2 groups, 303

participants entered the text only once while the remaining 12 entered

the text 10 times to simulate authorized users. Receiver Operating Char-

acteristics (ROC) curve was calculated for each participant. Some of the

participants had an area under the curve less than 0.8 and were hardly

distinguishable. The evaluation on the users who were distinguishable

had a TPR of %92 at FPR %1.

Researchers also explored the use of multi-modal behavioral biometrics.

Mallet et al. [7] combined phone movement and touchscreen data in im-

plementing a multi-modal continuous authentication system. The public

datasets, HMOG and BioIdent, were used in training the model. Three

classifiers were used namely Random Forest (RF), K-Nearest Neighbors

(KNN) and SVM. RF performed the best among the three with an EER of

13.56% while SVM and KNN had an EER of 19.21% and 20.68%, respec-

tively. The lower performance of the SVM can be attributed to the small

dataset that was used. High recall scores were reported which meant

that the models performed well in identifying genuine users but the mod-

erate precision scores shows that impostors are sometimes not detected.

This means that the model has good usability but security should still be

improved. It is difficult to manage the tradeoff between these two when

developing a real-world CA system but security should be prioritized over

usability.

Touch-based CA systems have shown potential as an added layer of se-

curity in mobile phones with regards to being unobtrusive, but accuracy

problems still hinder the technology from being adapted in the consumer

market. This shortcoming in accuracy is mainly attributed to the lack of

training samples available. Buriro et al. [6] propose the use of Generative

Adversarial Networks (GAN) to augment the swiping gestures dataset

with synthetic samples. GAN has already been used for generating syn-

thetic data for image and video applications but their solution, named

SWIPEGAN, is the first to explore its use in generating more swiping

samples for behavioral biometrics. The study used the DRIVER-AUTH,

a publicly available data set containing 10,320 swiping samples from 86

users. The accuracy of the classifier improved, with TAR increasing from

84.66% to 91.65% and the FAR decreasing from 14.78% to 11.04%, after

adding the generated synthetic samples to the original training samples.

This approach is particularly useful for one-class classifiers, which need

larger number of samples to perform well compared to two-class classi-

fiers.

4 User acceptance

Continuous authentication is a new process that has not been incorpo-

rated as a standard security mechanism in mainstream mobile phones.

It is important to take into account how they feel about introducing such

new technology into a device that is valuable to them. There are usabil-

ity factors that hinders the adaptation of continuous authentication [5].

It has privacy challenges that may cause sensitive information to be ex-

tracted from the user. Power consumption is also a serious issue since

the implementation of such feature regardless whether the computation

is done on the cloud or in the device itself will consume more power than

the regular use. The reliability of the authentication can also be affected

by the user’s mood. Therefore, performance is impacted by the user’s emo-

tional state.

Rasynayaka et al. [12] surveyed roughly 500 respondents to assess the

usability of continuous authentication. Their results show that users are

now more accepting towards biometrics based security than 20 years ago.

The study also shows that users are welcoming towards multi-level secu-

rity schemes and find continuous authentication systems to be useful.

5 Attacks

Touch-based continuous authentication is resilient against some known

attacks such as replay attacks but is still vulnerable to some like mas-

querade attacks. The poor matching rate causes malicious users to not be

locked out of the system in some instances. Another attack that this CA

is vulnerable from is reconstruction attack.

Al-Rubaie et al. [2] investigated the possibility of reconstructing raw

data from user’s authentication profile. They selected one system to be the

compromised system and four others that would be the targets. First, fea-

ture vectors must be obtained to reconstruct the raw data. This step was

performed in two ways, full profile attack and decision value attack. Full-

profile attack involves obtaining the actual feature vectors stored in the

system. Decision value attack, on the other hand, begins with a random

feature vector. It performs small random changes onto the feature vector

and then monitors the decision value if it increases. This is repeated until

no more randomization can be performed to improve the decision value.

Next, the attack involves reconstructing the raw data using either numer-

ical estimation or randomization algorithm. Numerical estimation is only

tailored for one CA system while randomization can work with multiple

system. The reconstructed raw data is then injected as sensor input to

the other CA systems to simulate the attack. Their experiments showed

that the reconstruction attacks had a success range of 73% to 100%. To

address this, the authors recommends to avoid exposing user profiles for

example with the use of privacy preserving algorithms and to return only

binary classification result.

6 Discussion

Researchers have done multiple studies to further improve touch-based

continuous authentication systems. The incremental improvements should

be incorporated by future designers to build a CA system that could pos-

sibly be of practical use in the real world. It is still hard to say which

machine learning algorithm is the way to go or if swipe gesture outper-

forms keystroke dynamics since there is no standardized dataset or eval-

uation method that exists. However, it is clear that some practices im-

prove the performance or security of the CA and therefore should be an

excellent reference for future implementations. For example, higher ac-

curacy can be obtained by incorporating context into the model and by

augmenting the training sample with the use of GANS. The use of pri-

vacy preserving algorithms should also be observed to increase the secu-

rity. Researchers should also start measuring the energy consumption of

these systems since it will be an important factor in the adoption of this

technology. Overall, touch-based CA is a promising candidate for the im-

plementation of continuous authentication for mobile phones. Consumers

are open to the idea of adopting this new technology as long as it adds to

the security and does not take away privacy.

7 Conclusion

Multiple studies have pushed touch-based continuous authentication sys-

tems in mobile phones closer to real world adoption. The accuracy is not

high enough for deployment in actual devices but improvements are con-

stantly being achieved by researchers. There is no common benchmark

that is used to compare different implementations. Also, the publicly

available datasets are lacking. Privacy is still a problem with most ex-

isting implementations and power consumption has not been thoroughly

studied yet. Touch-based continuous authentication systems is promising

and could be adopted into mobile phones in the future.

References

[1] Mohit Agrawal, Pragyan Mehrotra, Rajesh Kumar, and Rajiv Ratn Shah.
Defending touch-based continuous authentication systems from active ad-
versaries using generative adversarial networks. CoRR, abs/2106.07867,
2021.

[2] Mohammad Al-Rubaie and J. Morris Chang. Reconstruction attacks against
mobile-based continuous authentication systems in the cloud. IEEE Trans-
actions on Information Forensics and Security, 11:2648–2663, 12 2016.

[3] Abdulaziz Alzubaidi and Jugal Kalita. Authentication of smartphone users
using behavioral biometrics. CoRR, abs/1911.04104, 2019.

[4] Ananya and Saurabh Singh. Keystroke dynamics for continuous authen-
tication. In 2018 8th International Conference on Cloud Computing, Data
Science Engineering (Confluence), pages 205–208, 2018.

[5] Ahmed Fraz Baig and Sigurd Eskeland. Security, privacy, and usability in
continuous authentication: A survey. Sensors, 21(17), 2021.

[6] Attaullah Buriro, Francesco Ricci, and Bruno Crispo. Swipegan: Swiping
data augmentation using generative adversarial networks for smartphone
user authentication. pages 85–90. Association for Computing Machinery,
Inc, 6 2021.

[7] Rushit Dave, Naeem Seliya, Laura Pryor, Mounika Vanamala, Evelyn R. Sow-
ells Boone, and Jacob mallet. Hold on and swipe: A touch-movement
based continuous authentication schema based on machine learning. CoRR,
abs/2201.08564, 2022.

[8] Mario Frank, Ralf Biedert, Eugene Ma, Ivan Martinovic, and Dawn Song.
Touchalytics: On the applicability of touchscreen input as a behavioral bio-
metric for continuous authentication. CoRR, abs/1207.6231, 2012.

[9] Hugo Gascon, Sebastian Uellenbeck, Christopher Wolf, and Konrad Rieck.
Continuous authentication on mobile devices by analysis of typing motion
behavior. 03 2014.

[10] Yunji Liang, Sagar Samtani, Bin Guo, and Zhiwen Yu. Behavioral biomet-
rics for continuous authentication in the internet-of-things era: An artificial
intelligence perspective. IEEE Internet of Things Journal, 7:9128–9143, 9
2020.

[11] Ahmed Mahfouz, Tarek M. Mahmoud, and Ahmed Sharaf Eldin. A survey
on behavioral biometric authentication on smartphones. Journal of Infor-
mation Security and Applications, 37:28–37, 12 2017.

[12] Sanka Rasnayaka and Terence Sim. Who wants continuous authentication
on mobile devices? In 2018 IEEE 9th International Conference on Biomet-
rics Theory, Applications and Systems (BTAS), pages 1–9, 2018.

[13] Pekka Siirtola, Jukka Komulainen, and Vili Kellokumpu. Effect of context
in swipe gesture-based continuous authentication on smartphones. 5 2019.

[14] Ioannis Stylios, Spyros Kokolakis, Olga Thanou, and Sotirios Chatzis. Be-
havioral biometrics and continuous user authentication on mobile devices:
A survey. Information Fusion, 66:76–99, 2 2021. Useful introduction for
mobile phones security.

[15] Ioannis Stylios, Andreas Skalkos, Spyros Kokolakis, and Maria Karyda.
Bioprivacy: Development of a keystroke dynamics continuous authentica-
tion system. 10 2021.

[16] Ioannis C. Stylios, Olga Thanou, Iosif Androulidakis, and Elena Zaitseva.
A review of continuous authentication using behavioral biometrics. In Pro-
ceedings of the SouthEast European Design Automation, Computer Engi-
neering, Computer Networks and Social Media Conference, SEEDA-CECNSM
’16, page 72–79, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

Active Learning for image processing

Elena Serkova
elena.serkova@aalto.fi

Tutor: Ti John

Abstract

Though computer vision is important field of information technologies, it

is limited by the costs of labelling data for training machine learning al-

gorithms. However, Active Learning can reduce these costs with high ac-

curacy of predictions. This paper reviews existing Active Learning models

used in image processing and compares their efficiency in the experiments

and real world. Moreover, the existing problems of Active Learning and

ways to solve them were analyzed.

KEYWORDS: Active Learning, image classification, object recognition, com-

puter vision, Convolutional Neural Network, acquisition function, Deep

Learning, Deep Active Learning, Bayesian Deep Learning

1 Introduction

Computer vision denotes a subfield of artificial intelligence that

teaches computers to extract meaningful information from images or videos

by performing object detection, tracking and recognition, image classifica-

tion and segmentation. Though human sight performs these tasks ef-

fectively, it suffers from fatigue and cannot analyze thousands of images

in a short time or notice imperceptible differences between objects [13].

Hence, computer vision has an advantage in the actions which require

high accuracy, quick reaction and long monotonous work.

Currently, the list of applications that use computer vision in-

cludes different areas, such as automotive safety, 3D model building, ma-

chine inspection, biometrics and medical imaging. However, machine

learning applications for computer vision depend on the quality of data

and usually require a large pool of labelled instances [13]. As labelling

many images is time-consuming and requires many hours of human labour,

the cost of computer vision applications increases significantly.

Active Learning, a subtype of machine learning, can solve this

problem. The main difference of this method is that algorithm can request

a relatively small number of labels for the data which it chooses itself

[14]. The instances to label are chosen in such a way as to maximize the

information gained.

This paper considers Active Learning applications in image pro-

cessing, identifies the problems in this field and the ways to solve them

and compares the most efficient approaches.

This paper is organized as follows. Section 2 reviews existing

research and revealed problems of machine learning. Section 3 describes

variety of Active Learning models and modifications. Finally, section 4

discusses and compares described methods.

2 Active Learning

In other types of machine learning, the algorithm is trained on thou-

sands of labelled objects. However, in some cases, such as speech recogni-

tion or drug discovery, labelling a training dataset is computationally ex-

pensive [14]. The same problem exists in computer vision because images

are usually complicated, noisy and contain many objects. This reduces

the economic value of the development of the machine learning model.

Active Learning provides a solution for this problem because it can learn

from the unlabelled dataset by requesting a relatively small number of

labelled instances.

Several approaches are mainly used to train an Active Learning

model. The pool-based sampling, the most common sampling method,

assumes that a large pool of data can be collected at once, after that the

informativeness of all the instances is evaluated. The model trained via

stream-based selective sampling analyses data instances sequentially. In

the membership query synthesis, the model can generate a new instance

to label instead of selecting from the existing dataset [14].

The Active Learning algorithm should not choose an unlabelled

instance to query randomly. Instead of it, the data points must be chosen

accordingly to their informativeness. This increases the efficiency of the

algorithm. The labels are provided by an oracle (usually a human expert).

This section states problems of Active Learning in the field of

image processing and provides an overview of recent research.

2.1 Related Research

In recent decades, the rapid development of information technolo-

gies increased significantly the amount of produced data. As a result,

Deep Learning models attracted more attention because they can extract

informative features from high-dimensional data and predict the target

variable by using a massive number of parameters [2]. However, interest

in combining Active Learning and Deep Learning models appeared rela-

tively recently. This subsection provides an overview of recent research in

Deep Learning models for Active Learning on image data.

Gal et. al. used recent advances in Bayesian Deep Learning to

apply Active Learning to high-dimensional image data [4]. The study ex-

plored the difficulties of Active Learning applications for high-dimensional

data and made a conclusion that Deep Learning models can solve the

dimensionality problem. Gal et. al. suggested using Bayesian Convo-

lutional Neural Networks (CNN) in combination with the regularisation

technique of dropout to obtain uncertainty data. The uncertainty infor-

mation was used as an input for 5 different acquisition functions, which

determine images for label requesting. One of the functions, random ac-

quisition, was used as a baseline for comparison. BALD, Variation Ratios,

and Max Entropy acquisition functions showed better results. Moreover,

Bayesian CNN showed better performance than deterministic CNN. This

proves the positive effect of uncertainty. As an example of the practical

application of Deep Bayesian Active Learning, the Gal et. al. presented a

skin cancer detection algorithm. They faced also the problem of an unbal-

anced dataset and solved it by reducing the class sizes to a fixed number

of samples.

Kirsch et. al. developed a Deep Learning algorithm BatchBALD

with a batch-based query strategy. Kirsch et. al. also used the advantages

of Bayesian Active Learning. They implemented an acquisition function

based on an approximation of the mutual information between a set of

data points and model parameters. While this approach causes additional

computational costs during acquisition, it reduces the total number of la-

belled data points and the learning time of the model [8]. The efficiency of

the model was tested with a balanced image dataset. Though this method

proved its practical potential, it has limitations and can be improved in

further works.

Another Deep Learning approach was suggested by Yin et. al.

They have also chosen batch mode as it is more practical. The authors de-

fined the problems in existing batch query strategies. The batch of queried

data points must be diverse. However, diversity can be hard to achieve be-

cause similarity is calculated from the feature vectors rather than being

extracted from a classification model. Moreover, a set of points close to

the decision boundary can be smaller than needed. The study proposed a

deep neural network-based algorithm that measures similarity more pre-

cisely and selects a subset of data points that are maximally uncertain,

minimally redundant and most diverse from the labelled subset [18]. The

accuracy was evaluated on an image dataset.

Though these studies are just several examples of research in the

considered field, they represent the main strategies of Deep Active Learn-

ing. The basic models, acquisition functions and their performance are

considered in the following sections.

2.2 Challenges and problems

An analysis of recent work on Active Learning in image processing

revealed several related problems. From the perspective of an machine

learning model, an image is a high-dimensional object. Every image has

such attributes as height and width in pixels. Moreover, every pixel has

characteristics of the colour. For example, if a greyscale picture has m

pixels in width and n pixels in height, it can be represented as an n*m

matrix, each cell of which equals the greyscale intensity of a pixel [n,

m] [15]. Thus, images are the objects of a high-dimensional space and

machine learning for computer vision is a high-dimensional problem.

Machine learning models are more efficient with low-dimensional

data or high-dimensional data processed with dimensionality reduction

techniques [9]. The problems that appear with the dimensionality in-

crease are called the Curse of Dimensionality [10]. One aspect of the

Curse of Dimensionality is the risk of overfitting if the number of fea-

tures is higher than the number of observations. Consequently, high-

dimensional data processing requires large training sets. High-dimensional

is also difficult to visualize and analyze. Another aspect is that the models

for high-dimensional data consist of thousands of parameters and finding

optimal values for them is more difficult because of slow convergence.

The majority of Active Learning models are trained under the

assumption that the dataset is balanced. However, the real-world data is

generally imbalanced, and one of the classes can be represented only by

several percent of the entire dataset [1]. In this case, the overall accuracy

remains high even if the minor class is completely ignored.

Though for such critical fields, such as medicine, labelling must

be done by experts, some developers of Active Learning models use crowd-

sourcing to collect labelled images. Originally, the considered Active Learn-

ing methods assume that the experts are trusted and label the instances

properly. Because of poor guidance, unreliable annotators or original am-

biguity of the data, the collected data may be noisy or irresponsibly la-

belled [5]. This is another issue developers should be aware of.

Described problems require additional experiments and research

in the development of Active Learning models used in image processing.

3 Overview of Active Learning models for image processing

A combination of Deep Learning and Active Learning is beneficial

because it would process high-dimensional data with lower labelling costs.

Nevertheless, this approach is complicated by several factors. Firstly, Ac-

tive Learning models require uncertainty values to query new samples,

but it is difficult to measure uncertainty in Deep Learning [4]. Secondly,

Deep Learning relies on large data sets and Active Learning is trained on

a small labelled pool.

Deep Learning models use layers of algorithms to process infor-

mation. The first layer in a model is called the input layer. Then data is

passed through many hidden layers, where the previous layer contributes

to the following one. The last layer of the model is called an output layer.

Several types of Deep Learning models can be used in image classification

[12]. This section describes the most popular model with variations and

modifications for Active Learning purposes.

3.1 Convolutional neural networks

A convolutional neural network (CNN) is the most popular Deep

Learning algorithm suitable for computer vision problems. It takes an im-

age as an input, processes pixel data using convolution function in hidden

layers and performs computer vision tasks, such as classification, recog-

nition and segmentation [16]. The CNNs need large amounts of data for

training, but many algorithms do not perform the uncertainty quantifica-

tion. Uncertainty assessment is crucial in the safety-critical fields, where

even rare incorrect predictions of an over-confident neural network can

result in severe damage. Moreover, uncertainty quantification is pivotal

for optimization and decision-making in Active Learning. The problem of

CNNs is that in a new for them situation they can become overconfident

in their output probability distribution [4].

Bayesian CNN represents each output prediction as a probability

distribution, but not as a single point. The weights of the CNN are also a

distribution, for instance, a Gaussian distribution with such parameters

as mean and variance [4]. Because of this feature, Bayesian CNNs can be

used for Active Learning.

However, it can be difficult, for example, to derive gradients for

the mean and variance of each weight in the backpropagation step [4].

The dropout regularization can be used to make this task simpler. During

dropout regularization, the outputs of some layers are randomly ignored.

It makes the training process noisy, and nodes must probabilistically take

on more or less responsibility for the inputs. This method is usually used

only for the training stage, but, in the case of Bayesian CNNs, keeping

dropout in the inference stage provides the data for uncertainty estima-

tion. If dropout is used, CNN returns a slightly different result for each

inference. The variance of the predicted results is a way to quantify the

uncertainty of the model.

Another property of Bayesian methods in machine learning is

marginalization instead of using a single setting of parameters [4]. In

machine learning and probability theory, marginalization is a method of

summing a probability of a variable that has a joint probability distribu-

tion with other variables. It allows determining the marginal contribution

of the variable by calculating the sum over the possible values of other

variables.

The possibility to extract uncertainty values from the model made

Bayesian Convolutional Neural Networks popular in recent years. The

results of different experiments with image data show that this method

in combination with Active Learning reduces computational costs with

better accuracy. Future modifications of the Bayesian approach can be

done via acquisition functions, which are analyzed in the next subsection.

3.2 Query strategies

Choice of samples for labelling is one of the most important tasks

of Active Learning models. Intuitively, it is more beneficial to query the

most informative data points which would increase the model accuracy.

This section describes different acquisition functions that can be used in

deep Active Learning models.

The basic approach, which can also be used as a baseline for eval-

uating other methods, is known as random acquisition. This acquisition

function chooses a data point uniformly at random from the unlabelled

set [14].

Another popular acquisition function is the maximum predictive

entropy search. The predecessor of this function, entropy search, used

an approximation of the posterior entropy of the model to select data ex-

amples for labelling [7]. The selected set of data points was supposed

to minimize the uncertainty about the parameters of the model. How-

ever, the computational cost of entropy search was high. To address this

problem, the entropy search was modified using the symmetry of mutual

information in the predictive entropy search.

Similar to predictive entropy search, acquisition function based

on variation ratios measures lack of confidence. This function tries to

maximize variation ratios, a measure of statistical dispersion in nominal

distributions defined as the proportion of cases that are not in the mode

category [3].

The acquisition function based on the mean standard deviation is

not so widely used and became more popular in recent years. The main

idea of this method is to maximize the dispersion of a dataset relative to

the mean value averaged over all classes that a data point can take.

Bayesian Active Learning by Disagreement (BALD) became a ba-

sis for another acquisition function, which evaluates the mutual informa-

tion between the predictions and parameters of the model. This approach

calculates the entropy of the model prediction and the expected entropy

of the prediction over the posterior of the parameters. The first element

must be high, and the second one is expected to be low. This indicates

that the prediction of the model is uncertain, but in general, the model

is certain for each set of settings from the posterior [4]. In other words,

the model is uncertain on selected data points on average, but some vari-

ants of the model produce output for these points with high certainty, and

these predictions differ from each other. Detecting and labelling these

data points helps to train the model faster.

The next considered approach is based on contrastive examples

acquisition and uses both uncertainty and diversity to acquire data [11].

Contrastive examples are represented by data points that are close to

each other in the feature space but classified differently by the model.

The points for labelling are selected based on two rules. Firstly, the dis-

tance between data points in their feature space must be small. Secondly,

predictive probability distributions for these data points must maximally

diverge. Chosen samples are good candidates for labelling.

A separate CNN can be used for the extraction of the most infor-

mative samples [17]. In the process of training, CNNs learns representa-

tion space, in which similar examples have smaller distance. The goal is

to choose data points that can reduce the uncertainty of the model after

addition to the train set. The efficiency of this approach depends on cho-

sen distance functions. Euclidean and Chebyshev distance are examples

of these functions.

Though considered acquisition methods are based on different un-

certainty or diversity metrics, they all have a common goal, to select the

most informative data points for labelling. The efficient acquisition func-

tion allows increasing the accuracy of the faster with less labelled points.

Described methods are compared in the next section.

4 Discussion

Though Active Learning proved its efficiency and potential for real-

life tasks, there are still many problems to solve. Choice of the model

settings is the first and most important one.

One of the previously described studies evaluated five acquisition

functions on image datasets using Keras MNIST CNN implementation

[4]. This study assessed a number of labelled data points required to

achieve 5 and 10 percent of erroneous predictions. BALD, Variation Ra-

tios, and Max Entropy achieved target test error with much fewer labelled

data points than Mean STD and Random acquisition functions. BALD,

Variation Ratios, and Max Entropy were also compared as an acquisition

function of Bayesian and deterministic CNN. Bayesian models learned

from fewer labelled data points and showed higher accuracy. It proves

that uncertainty, propagated throughout the Bayesian models, is benefi-

cial for deep Active Learning models.

Another research implemented the BatchBALD model and com-

pared the results with the basic BALD acquisition [8]. Acquisitions of a

set of points instead of a single data point increased diversity and showed

increased performance over BALD and other functions.

Previously considered methods, including the Deep Bayesian Ac-

tive Learning approach, require a balanced training dataset and without

modification can suffer from false accuracy. For example, in the case of

a melanoma diagnosis, the accuracy of a Deep Bayesian Active Learning

model can be improved by marking all the points as benign, because ma-

lignant is a minor class. However, different types of modifications were

proposed to tackle this problem.

The majority of data imbalance solutions are applied in the pre-

processing or training stage. During the preprocessing, two techniques

are commonly used: generating instances for the minority class or delet-

ing data points from the majority class [1]. The problem of imbalanced

data can be solved by the modification of the acquisition function and im-

plementation of a deep model, pretrained on the source data without an

initial labelled subset. The pretrained model stores classes and their prob-

ability for each instance. The instance is queried only if the class with the

highest probability has not already been encountered too often. Moreover,

the balancing step was added to reduce the propagation of unlebelled pool

imbalance to the labelled set. This step prioritizes the classes which are

underrepresented in the labelled pool.

Although the first approach is easier to implement, the gener-

ated dataset does not represent clearly the original one and can contain

misleading artificially generated datapoints. At the same time, modifica-

tion of acquisition functions can be used in many types of models with-

out changing the original dataset. The accuracy of this approach demon-

strates that it can be developed further and potentially used in many ap-

plication fields.

If the labelling or data collection is built on a crowd-sourcing ba-

sis, these models require additional modifications to reduce the noise and

eliminate labels from not trusted oracles. One way to select only reli-

able annotators is the majority voting-based method, which determines a

confidence interval for the oracle reliability and excludes annotators with

reliability below the threshold. Another solution is to use an Active Learn-

ing algorithm not only to select data points to label but also to select noisy

labelled instances to label again. Gang Hua et. al. proposed the Kernel

Machine Ensemble model which efficiently solves some of the problems

of crowd-sourced data via collaborative learning [6]. Each annotator has

his own Active Learning process with provided guidance. The learning

processes in total are not independent, as they have a pool of shared data

points. The framework uses a unified discriminative approach to model

the consistency of labels. As a result, the Active Learning model becomes

more robust to the noise, labellers’ performance can be evaluated.

5 Conclusion

This paper considered the existing problems of Active Learning ap-

plied to image processing, and described the most efficient approaches.

Active Learning demonstrated efficiency in image processing be-

cause it reduces costs by using smaller labelled dataset. Because of the

high dimensionality of visual data, Deep Learning models are more ben-

eficial than other machine learning models. However, adapting Deep

Learning models to Active Learning tasks is complicated by factors, such

as lack of uncertainty measurements, imbalanced data, and choice of ac-

quisition approach.

The Deep Bayesian Active Learning model provides required un-

certainty and achieves high accuracy with different acquisition functions,

such as BALD, Variation Ratios, and Max Entropy. BatchBALD acqui-

sition function, which adapts BALD to batch queries, improves Active

Learning further. Nevertheless, these models require modifications to be

used in practice because real-world data is imbalanced and noisy.

Recent advances in Active Learning show that these technolo-

gies can be used in many critical areas where the costs of labeling image

datasets outweigh the benefits of digitalization.

References

[1] Javad Zolfaghari Bengar, Joost van de Weijer, Laura Lopez-Fuentes, and
Bogdan C. Raducanu. Class-balanced active learning for image classifica-
tion. CoRR, abs/2110.04543, 2021.

[2] Shi Dong, Ping Wang, and Khushnood Abbas. A survey on deep learning
and its applications. Computer Science Review, 40:100379, 2021.

[3] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approxima-
tion: Representing model uncertainty in deep learning. In Proceedings of
the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, page 1050–1059. JMLR.org, 2016.

[4] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active
learning with image data. In Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70, pages 1183–1192, August 2017.

[5] Gang Hua, Chengjiang Long, Ming Yang, and Yan Gao. Collaborative ac-
tive learning of a kernel machine ensemble for recognition. In 2013 IEEE
International Conference on Computer Vision, pages 1209–1216, 2013.

[6] Gang Hua, Chengjiang Long, Ming Yang, and Yan Gao. Collaborative active
learning of a kernel machine ensemble for recognition. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV), December
2013.

[7] Michael Kampffmeyer, Arnt-Børre Salberg, and Robert Jenssen. Semantic
segmentation of small objects and modeling of uncertainty in urban remote
sensing images using deep convolutional neural networks. 07 2016.

[8] Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. Batchbald: Efficient
and diverse batch acquisition for deep bayesian active learning. CoRR,
abs/1906.08158, 2019.

[9] Daphne Koller and Simon Tong. Active learning: theory and applications.
2001.

[10] Nikolaos Kouiroukidis and Georgios Evangelidis. The effects of dimen-
sionality curse in high dimensional knn search. In 2011 15th Panhellenic
Conference on Informatics, pages 41–45, 2011.

[11] Katerina Margatina, Giorgos Vernikos, Loïc Barrault, and Nikolaos Aletras.
Active learning by acquiring contrastive examples. CoRR, abs/2109.03764,
2021.

[12] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiao-
jiang Chen, and Xin Wang. A survey of deep active learning. CoRR,
abs/2009.00236, 2020.

[13] Sourav Dey Roy and Mrinal Kanti Bhowmik. A comprehensive survey on
computer vision based approaches for moving object detection. In 2020
IEEE Region 10 Symposium (TENSYMP), pages 1531–1534, 2020.

[14] Burr Settles. Active learning literature survey. Computer Sciences Techni-
cal Report 1648, University of Wisconsin–Madison, 2009.

[15] Nakul Shahdadpuri. Real image of computer vision application and its
impact: Future and challenges. 12 2020.

[16] Neha Sharma, Vibhor Jain, and Anju Mishra. An analysis of convolu-
tional neural networks for image classification. Procedia Computer Sci-
ence, 132:377–384, 2018. International Conference on Computational In-
telligence and Data Science.

[17] Asim Smailagic, Pedro Costa, Hae Young Noh, Devesh Walawalkar, Kartik
Khandelwal, Adrian Galdran, Mostafa Mirshekari, Jonathon Fagert, Susu
Xu, Pei Zhang, and Aurélio Campilho. Medal: Accurate and robust deep
active learning for medical image analysis. In 2018 17th IEEE Interna-
tional Conference on Machine Learning and Applications (ICMLA), pages
481–488, 2018.

[18] Changchang Yin, Buyue Qian, Shilei Cao, Xiaoyu Li, Jishang Wei, Qinghua
Zheng, and Ian Davidson. Deep similarity-based batch mode active learning
with exploration-exploitation. pages 575–584, 11 2017.

Image generation with generative
models

Guangkai Jiang
guangkai.jiang@aalto.fi

Tutor: Yu Tian

Abstract

In recent years, the need for image generation with AI is growing and many

generative models have been invented and received much attention, such

as PixelRNN/CNN, VAEs and GANs. In this report, I aim to review the

state-of-the-art solutions, understand their core concepts and differences,

analyse their advantages and flaws, and compare them, in order to gain

some perspective on this promising field.

KEYWORDS: Image generation, Generative model, Pixel recurrent neu-

ral networks, Pixel convolutional neural network, Variational autoencoder,

Generative adversarial networks

1 Introduction

In recent years, image generation with AI has become an essential part

of entertainment industry, especially for the creation of films and games.

In earlier days, the computer generated images may seems unrealistic

however the gap between artificial and authentic images has dramati-

cally reduced over the years with the advancement of image generation

approach. The machine learning approach to generate images uses gen-

erative models. Generative models is one type of models in statistical

classification as opposed to discriminative models [10]. Unlike discrimi-

naive models that labels different classes of data, generative models gen-

erates new data instances similar to given data instead. Mathematically

speaking, with a set of data X and a set of labels Y, generative models

focus on the joint probability p(X,Y) while discriminative models focus

on conditional probability p(Y |X). The current state-of-art approach for

image generation with generative models is generative adversarial net-

works (GANs)[3]. Since the idea of GANs was invented in 2014 [5],it has

become one of the most effective models among generative models and

attracted many attentions. GANs is prized as “the most interesting idea

in the last 10 years in machine learning” by Yann LeCun as cited in [2].

GANs and their variances have out-performed most of other generative

methods, however, there are still some competing alternatives, such as

variational autoencoders (VAEs) and autoregressive models.

This paper reviews existing literature on generative models, such as au-

toregressive models, variational autoencoders and generative adversarial

networks, to understand their similarities and differences with the focus

on applications related to image generation.

The remaining part of the report is stuctured as follows:

Section 2 explores the application of generatives models with focusing

on image.

Section 3 reviews the core idea and difference of generative models.

Section 4 reviews autoregressive models.

Section 5 reviews variational autoencoders.

Section 6 reviews generative adversarial networks.

Section 7 compares the models mentioned above and makes conclusion.

2 Generative model and its applications

"A generative model describes how a dataset is generated, in terms of a

probabilistic model. By sampling from this model, we are able to generate

new data"[4]. With its unique feature, generative models can generate

instances of data that are highly similar in certain ways to original data.

This enables generating unlimited data with a relatively small amount of

original data, which is similar to the pseudo random generator generates

unlimited amount of numbers given only seed data. Generative models

have many applications related to images, such as super-resolution, com-

pression, morphing, and text-to-image [9].

3 Core idea and difference of generative models

The core task of any generative models is to estimate the probability dis-

tribution P (X) and then sample X from the learned function F (x). Differ-

ent generative models differ in the way they approximate the underlying

true probability distribution.

Due to the curse of dimensionality, it is unfeasible to compute the under-

lying true probability distribution. In order to limit the hypothesis space,

human knowledge is introduced as prior (existing knowledge or belief),

which lead to different Bayesian prior probability. Different Bayesian

prior probabilities and approaches towards the probability distribution

lead to various models.

Existing solutions use either explicit density or implicit density to esti-

mate probability distribution. With the explicit density approach, there

are models, like PixelRNN/CNN, which use tractable density and models,

like VAEs, which use approximated density. As for the implicit density

approach, GANs are the most popular models.

4 Autoregressive Models

Autoregressive models include Pixel Recurrent Neural Networks (Pixel-

RNN) and Pixel Convolutional Neural Networks (PixelCNN). PixelRNN/CNN

aim to explicitly estimate a distribution that can be used to tractably com-

pute the likelihood of an image and to generate new ones [12].

4.1 PixelRNN

PixelRNN models try to find a tractable probability distribution that can

be used to generate new images. The probability of a image x with a n×n

pixels can be written as the product of conditional distribution over all

pixels:

p(x) =

n2∏

i=1

p(xi|x1, ..., xi−1)

, where xi is the pixels and p(xi) is the probability of the i-th pixel xi given

all pixels x1, ..., xi−1.

PixelRNN models are trained with recurrent neural networks (RNN),

iterating pixels one by one. The training process is sequential and cannot

be parallelized due to the nature of the recurrent neural networks, thus

the training requires a relatively long time. However, as the pixels are

calculated one by one, it offers the unique usage of image completion. In

order to improve the training time, RNNs can be replaced with a convolu-

tional neural network (CNN), making the training process parallel, with

only little sacrifice on the quality of generated image.

4.2 PixelCNN

PixelCNN is based on PixelRNN, but, replaces the RNN with CNN to

speed up the training. For each pixel, a convolutional kernel is used

to calculate the probability distribution. As each pixel should not have

knowledge about the pixels after it, a mask kernel is applied to hide the

pixels after it.

Note that only the training process is parallelized, the image generation

is still pixel by pixel, similar to PixelRNN. Compared to PixelRNN whose

pixels see all pixels before them, the pixels in PixelCNN only see the pixels

close to them. The quality of the generated image is not as high as the

ones generated by PixelRNN, as all information beyond the convolutional

kernel is missing.

5 Variational autoencoders

VAEs can work with intractable posterior distribution by reparameteriz-

ing the variational lower bound to yield a differentiable unbiased estima-

tor of the lower bound, evidence lower bound (ELBO) [8].

A VAE consists of two multi-layer perceptrons, the encoder and the de-

coder. The original image data x is encoded by the encoder with Gaussian

Distribution pϕ(z|x) into representation z, and then z is reconstructed by

decoder pϕ(x|z) back to x̃. The loss function is consists of the reconstruc-

tion loss −Ez∼qϕ(z|xi)[logpϕ(xi|z)] and Kullback–Leibler divergence (KL di-

vergence) between encoder’s distribution qϕ(z|x) and p(z). Because there

is no analytical solution to optimize the likelihood, VAEs resort to opti-

mize the ELBO of log-likelihood of the observed data.

One major challenge face by VAEs is the heavy computation power re-

quired for high quality results and the training difficulty due to posterior

collapse, that is, when the input signal to posterior is either too weak or

too strong, rendering the learned latent space meaningless.

6 Generative adversarial networks

The prior belief of GANs is that given any vector sampled from Gussian

Distribution, it can be transformed to satisfy the underlying distribution

of the input data. GANs abandon the idea of finding explicit probabil-

ity distribution. Instead they take the approach of two player minimax

games[5]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ezz(z)[log(1−D(G(z)))]

GANs consist of two multilayer perceptrons, the discriminators and the

generators. Given original image data, the generators generate fake im-

ages via learning the distribution of the original image data, then the

original data and the fake data are both fed to the discriminators. The

discriminators aim to distinguish the original data from the fake data

while the generators aim to make the fake data indistinguishable from

the original.

The advantage of the minimax game is that it can be expressed with

Jensen-Shannon divergence (JS divergence):

C(G) = −log(4) + 2 · JSD(pdata||pg)

In contrast to KL divergence, JS divergence is symmetric [6], which

makes the minimax game more efficient to compute. Unlike other un-

supervised learning models, GANs use supervised loss function with self-

labeled (original image or fake image) data, which speeds up the training

process.

However, even as the state of art solution, GANs are still facing issues,

especially the difficulty in training the models. During train iterations,

the generators and discriminators need balanced mutual progress, if ei-

ther side is too strong, it would annihilate the other side and break the

training process[5]. There is also the issue of model collapse, that is, when

either generators or discriminators learned the weakness of the adversary

and got stuck in the local minimum, causing the model unable to improve

anymore over the iterations. Many variants of modified GANs are in-

vented aiming to conquer these problems.

6.1 Wasserstein GAN

Wasserstein GAN analysed the flaw in using JS divergence and proposed

the idea of replacing it with Wasserstein metric.

W (Pr,Pg) = inf
γ∈∏(Pr,Pg)E(x,y)∼γ [||x−y||]

This new model improves the stability of learning, gets rid of problems

like mode collapse, and provides meaningful learning curves useful for

debugging and hyperparameter searches [1].

6.2 Progressive GANs

Progressive GANs introduce a new training methodology for GANs, by

growing both the generator and discriminator progressively. In a pro-

gressive GAN, the generator’s first layers start from low resolution, and

subsequent layers model increasingly fine details as training progresses.

This technique speeds up the training and greatly stabilizes it, making it

faster then most comparable non-progressive GANs, and produces images

of higher quality [7].

6.3 DCGANs

The original GANs [5] are new and popular unsupervised learning al-

gorithms whose parameters of the networks are massive and difficulty

to train because they implement the generator and discriminator mainly

based on the fully connected layers to ,and the dimensions of images is so

high. Whereas CNNs is easier to train and have seen huge adoptions and

success in supervised learning computer vision applications. Deep Convo-

lutional Generative Adversarial Networks (DCGANs) combine GANs with

CNNs to help bridge the gap between the success of CNNs for supervised

learning and unsupervised learning. DCGANs make three major modi-

fications to the original GANs: replace pooling layers with fractionally-

strided convolutions, enable the network to learn the its own downsam-

pling; the trend towards eliminating fully connected lays on top of convo-

lutional features, as global average pooling increases model stability but

reduce convergence speed, a middle ground was chosen; use Batch Nor-

malization which stabilizes learning by normalizing the input to each unit

to have zero mean and unit variance, helps gradient flow in deeper models

and speed up the convergence [11].

7 Conclusion

Autoregressive models calculate tractable log likelihood and have a sim-

ple and stable training process , but they take a long time to generate

images and are too slow to be used in quick image generation tasks.

VAEs approximate the likelihood by optimizing ELBO, it is more effi-

cient than autoregressive models, but the generated samples tend to be

blurry because of the loss of information during encoding and reconstruc-

tion.

GANs can generate sharp images quickly, but as GANs train directly

with implicit probability density, they work in the way of black box. al-

though the training speed is fast, it is difficult to tune the training dy-

namics to train them successfully.

All three approaches solve the problem of image generation starting

from Bayesian probability distribution, they share the same core concept

and goal but differ in mathematical techniques and technical implemen-

tations. Their difference has granted them unique strength in different

scenarios, and they all inspired and paved the way for latecomers.

References

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan,
2017.

[2] Jamie Beckett. What’s a generative adversarial network? inventor ex-
plains. The NVIDIA Blog, May 2017.

[3] Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G. Willcocks. Deep
generative modelling: A comparative review of vaes, gans, normalizing flows,
energy-based and autoregressive models, 2021.

[4] D. Foster. Generative Deep Learning: Teaching Machines to Paint, Write,
Compose, and Play. O’Reilly Media, 2019.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

[6] Yongchao Huang. Kullback-Leibler (KL) divergence and Jensen-Shannon
divergence - a revisit to KLD and JSD, July 2020.

[7] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive
growing of gans for improved quality, stability, and variation, 2017.

[8] Diederik P Kingma and Max Welling. Auto-encoding variational bayes,
2014.

[9] Shakir Mohamed and Danilo Rezende. Tutorial on deep generative models.
UAI 2017 Australia, 2017.

[10] Andrew Ng and Michael Jordan. On discriminative vs. generative classi-
fiers: A comparison of logistic regression and naive bayes. In T. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems, volume 14. MIT Press, 2002.

[11] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised represen-
tation learning with deep convolutional generative adversarial networks,
2015.

[12] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel
recurrent neural networks, 2016.

Energy-efficient asymmetric multi-core
scheduling for virtual machines

Tommi Räsänen
tommi.rasanen@aalto.fi

Tutor: Jaakko Harjuhahto

Abstract

Virtual machines are increasingly used to perform computing tasks, mainly

by provisioning them as computing resources from large cloud data cen-

ters. These data centers consume a large amount of energy, thus it would

be desirable to optimize the energy-efficiency of the underlying hardware.

Energy-efficiency has been previously optimized on mobile hardware by us-

ing asymmetric multi-core processors (AMPs), which have cores with dif-

ferent performance characteristics. Thus, using AMPs could potentially

also improve the energy-efficiency of virtual machines.

The key challenge is scheduling; deciding which virtual machine tasks

should be executed on which physical processor core. This paper reviews

four different scheduling methods specifically designed for scheduling of

virtual machines with AMPs.

It was concluded that current scheduling methods focused on mapping

physical cores to virtual cores mainly based on virtualized core frequency.

Thus, it would be possible to improve energy-efficiency further with a schedul-

ing method that considers the performance requirements of the actual tasks

being executed by virtual machines.

KEYWORDS: asymmetric multi-core, heterogenous computing, schedul-

ing, virtual machines, virtualization, cloud, data center, energy-efficiency

1 Introduction

Computing tasks are increasingly performed by provisioning computing

resources from a cloud provider. Cloud providers operate large data cen-

ters, where physical machines are pooled and resources can be provi-

sioned by third parties according to the exact computing power needed.

This pooling means that the resources are virtualized and not physical

machines.

These data centers consume a large amount of energy. In 2005, the

energy consumption of data centers in the US accounted for 1% of total

energy consumption and is estimated to increase by around 15% per year

[1]. Therefore, it is important to implement methods to improve the en-

ergy efficiency of data centers.

One possibility for improving energy efficiency is by utilizing asymmet-

ric multi-core processors (AMPs). These processors have heterogenous

cores; some cores are less powerful and use less energy while other cores

are more powerful but consume more energy [2]. This application of het-

erogenous cores is already commercially used in mobile phones [2].

However, a key challenge with the use of heterogenous cores is schedul-

ing. Scheduling is the process whereby a scheduler, often the operating

system, decides which tasks are executed by each processor core. In order

to improve energy efficiency without reducing throughput, the scheduler

needs to identify which tasks require more computing power and must be

executed with the more powerful core and which tasks are less demand-

ing and may be executed with the less powerful core, improving energy

efficiency [3].

The scheduling of virtual machines is more complicated than that of

physical machines. This is because virtualization adds two more layers:

the hypervisor and the guest operating system scheduler [4].

The paper aims to review different methods presented in literature for

scheduling tasks within virtual machines that are physically running on

hardware powered by AMPs.

This paper is structured as follows. Section 2 covers some key concepts

that must be understood when reading the article. Next, Section 3 covers

AMP scheduling methods that have been proposed in literature. Then,

Section 4 discusses these proposed methods. Finally, Section 5 offers a

conclusion.

2 Concepts

This section explains some of the core concepts surrounding the schedul-

ing of asymmetric multi-core processors on virtual machines.

2.1 Scheduling

Scheduling is the process whereby a computer decides which tasks are

executed on processors [5]. Proper scheduling ensures that the system

remains responsive and achieves high efficiency.

In a traditional single processor setting with one core, only one task is

executed at a time, and the remaining tasks are held in a task queue.

However, with multiprocessor systems, it becomes possible to execute

multiple tasks in parallel. Usually, the processors share a common task

pool, or there may be different task pools according to different task pri-

orities [5].

Scheduling may be pre-emptive or cooperative [5]. Cooperative schedul-

ing means that processes have to explicitly yield the processor for use

by other processes, while pre-emptive scheduling allows the scheduler to

pause execution at any point. Most modern operating systems employ

pre-emptive scheduling.

A context switch is the event where the scheduler pauses the execution

of the current process and allows another process to execute [5]. These

context switches come with a cost; it is necessary to store the processor

state of the current process and then load the processor state of the next

process before execution may resume. Thus, an efficient scheduler must

balance between the cost of making context switches and keeping all run-

ning tasks responsive.

2.2 Virtual machines

Virtual machines allow multiple separate operating systems to be exe-

cuted on a single machine. The virtualized operating systems are not

necessarily aware that they are running on a virtualized machine [6].

The core of virtual machines is the hypervisor, also called a virtual ma-

chine monitor. This hypervisor is responsible for assigning physical hard-

ware resources to the virtualized machines [6]. For example, when the

guest OS tries to perform an I/O operation, the hypervisor intercepts this

call and then translates it into a call that the host OS can process. Once

the host system has processed the request, the hypervisor transforms the

response to conform with the expectations of the original guest OS. Thus

the whole process appears to the guest operating system as it had been

communicating with actual hardware [7]. Figure 1 shows the relationship

between the guest OS, the hypervisor and the host OS.

Host OS

Hypervisor

Virtual Machine

Guest OS

Scheduler

App 1 App ...
 App N

Virtual Machine

Guest OS

Scheduler

App A App B
 App C

Virtual Machine

Guest OS

Scheduler

Scheduler

App D
 App E

App X
 App Y

Figure 1. Overview of the relationship between the host OS scheduler, the hypervisor
and the guest OS schedulers. Adapted from [8] and [7].

Virtual machines have at least three properties that make them attrac-

tive for cloud providers: security, separation of hardware and software

management [6].

In the context of this review, virtual cores refer to virtualized proces-

sor cores that guest OSes posses. Physical cores refer to processor cores

present on the physical hardware where the host OS resides.

2.3 Asymmetric multi-core processor

An asymmetric multi-core processor (AMP) is a processor that has cores

with differing types. AMPs may have cores that differ in terms of microar-

chitecture or instruction set architecture [2]. Microarchitecture denotes

the way in which the functionality of the processor is implemented [9].

Instruction set architecture denotes the model for programming on the

processor. This includes supported opcodes, processor registers and data

types [9]. Examples include Intel x86, ARM A64 and PowerPC.

There are different kinds of asymmetric multi-core processors. In the

simplest case, the cores can be strictly ordered in terms of performance.

However, in some cases cores may be specialized and perform better at

specific tasks, such as video encoding. These types of AMPs are called

monotonic and nonmonotonic, respectively [2].

Method Requires

training

Fairness

guarantee

Energy

efficiency

Performance

guarantee

Implement-

able

Kazempour et al. No Yes No No Yes

Takouna et al. No No Yes Yes No

Wang et al. Yes No Yes No Yes

Lin et al. No No Yes Yes Yes

Table 1. Summary of the different scheduling methods presented in Section 3.

In addition, some processors have configurable performance character-

istics. In these configurable processors, distributed processor resources

can be dynamically assigned to specific cores. These AMPs are referred to

as reconfigurable AMPs, while non-reconfigurable AMPs are called static

AMPs [2]. Reconfigurable processors reduce the overhead associated with

context switches because the processor may be reconfigured instead of

performing a context switch. However, reconfiguring the processor incurs

overhead [2].

AMPs have been used in mobile phones phones for around a decade,

with the first mobile phone being released in 2013 [10]. Recently, AMPs

have also appeared in computers, with Apple releasing its M1 processor

and Intel releasing its Alder Lake processor [11].

The scheduling methods reviewed in this article apply to single microar-

chitecture, monotonic and non-reconfigurable cores. The more powerful

cores are referred to as fast cores, while the less powerful cores are re-

ferred to as slow cores.

3 AMP scheduling of virtual machines

The following section presents four methods that have been proposed in

literature for scheduling virtual machines on asymmetric multi-core pro-

cessors. The covered scheduling methods differ in their goals regarding

efficiency, fairness and performance. A summary of the methods and their

goals are listed in Table 1.

First, this paper will review a basic scheduling method that ensures fair

sharing of the physical fast cores, then it will review methods specifically

aiming to improve energy efficiency.

3.1 Fair sharing of fast cores

Kazempour et al. proposed a scheduler for ensuring equal sharing of phys-

ical CPU cores across virtual machines [3]. Their main goals were to en-

sure simplicity and to minimize thread migration overhead. The sched-

uler was implemented by modifying the open source hypervisor Xen. Xen

utilizes the concept of credits for scheduling virtual CPUs. In this case,

the credit concept was amended with separate fast credits and slow cred-

its for utilizing the fast and slow cores, respectively. Fast credits are dis-

tributed using a queue. All virtual CPUs are placed into this queue and

during events called accounting periods, both slow and fast credits are

distributed among virtual cores. Fast credits are assigned to the top n vir-

tual CPUs, where n is the number of physical fast cores. After distributing

the credits, the n last entries in the queue will be moved to the top, thus

each virtual CPU eventually gains fast credits. If there are fewer virtual

fast cores than physical fast cores, virtual slow cores will be tasked to

physical fast cores. Virtual cores that do not receive fast credits during

an accounting period receive slow credits. Migration overheads were re-

duced by using 30 ms as the accounting period, which was deemed a long

enough period to prevent excess context switching. They concluded that

the migration overhead was only a maximum of 4%.

Experiments conducted by the team showed that the scheduler offered

a performance improvement of up to 36% on some tasks, while suffering

minor performance losses on other tasks [3].

3.2 Task appropriate core scheduling

Takouna et al. present a scheduler that aims to execute CPU intensive

tasks on fast physical cores and I/O bound tasks on slow physical cores

[12]. The scheduler has separate fast and slow CPU queues. The fast

queue is used for CPU intensive virtual CPUs while I/O intensive virtual

CPUs are placed in the slow queue. The article does not specify how tasks

are classified as CPU intensive or I/O intensive, but simply states that

virtual machine characteristics should be analyzed. Their evaluation was

performed by pinning virtual cores to specific physical cores.

The scheduler was evaluated by pinning the slow physical cores to vir-

tual cores performing I/O intensive tasks while the fast physical cores

were pinned to virtual cores performing CPU intensive tasks [12]. The

researchers observed performance improvements of up to 70% and mea-

sured power savings of up to 25%.

3.3 Energy-efficient scheduling by mapping virtual cores to
power appropriate cores

Wang et al. propose a method that focuses solely on improving energy-

efficiency [13]. Their method is based on optimizing the performance per

watt value, i.e., whether the performance per watt value is higher when

executing a particular virtual CPU on a fast physical core versus execut-

ing it on a physical slow core. There is a difference in energy efficiency

depending on the characteristics of the virtualized versus the physical

core.

The efficiency is estimated, since obtaining actual energy efficiency data

for each process would be infeasible [13]. This estimation is performed by

first executing a series of performance benchmarks at each virtualized

CPU frequency. During the execution of the benchmarks, 22 different

performance metrics are collected and power consumption is measured

using a power meter. Furthermore, performance data is also collected

when executing the actual workload. However, the researchers note that

dynamic updating is difficult because CPUs may not have power meters.

The collected data is then used to estimate the energy efficiency in the

form of an energy-efficiency coefficient by using linear regression. These

estimated energy-efficiency coefficients are then used when assigning vir-

tual CPU cores to physical cores. The energy-efficiency coefficient uses a

model whereby a higher value indicates that it is more energy-efficient to

execute the process on a fast core. Thus, at each scheduling interval, the

estimated energy-efficiency coefficients are divided into two sets by first

sorting them according to the coefficient and then splitting the set at the

n-th element where n is the number of physical fast cores. Then when

scheduling is performed, slow physical cores prefer virtual cores from the

set of smaller values while fast physical cores prefer virtual cores from

the set of larger values. Scheduling is performed at the same interval as

the default Xen scheduler, since performing context switches more often

would result in additional overhead.

In their evaluation, they executed various workloads common for cloud-

hosted virtual machines, including running Java and PHP web servers

[13]. The resulting efficiency was on average about 10% better for the

proposed scheduling policy. However, there were also some experiments

(10 out of 64) where the observed energy efficiency was worse than with

the default Xen credit based scheduler.

3.4 Linear programming scheduler

Lin et al. propose a scheduling method that assigns virtual cores to physi-

cal cores by solving a linear programming optimization problem [14]. The

optimization problem minimizes power consumption, but also includes a

performance constraint. Power consumption is modeled based on phys-

ical core type (fast or slow), core frequency and core load (the ratio of

a time slot that a physical core is being used). Performance is modeled

as the sum of the actual assigned physical core frequencies times their

duration fraction, divided by desired virtual core frequency. The main

optimization target is the minimization of the power consumption. The

optimization has additional constraints for performance, to ensure that

virtual cores are executed on at most one physical core at a time, and fi-

nally that physical cores do not exceed their available computing power.

The researchers note that currently, this linear programming problem can

be solved quickly, since the number of virtual and physical cores are small

constants.

The researchers evaluated their scheduler against Xen’s credit based

scheduler by executing two tests: a small workload and a heavy workload

[14]. Executing the smaller workload showed an energy-efficiency im-

provement of 57.2%, while the larger workload showed an improvement

of 4.4%. The improvement in the larger workload was due to the large

workload periodically being executed on the slow physical core when us-

ing the original scheduler.

4 Discussion

When considering the scheduling policy by Kazempour et al. that en-

sures fair sharing of fast physical cores, the method does not achieve op-

timal power efficiency since all fast physical cores are always assigned to

virtual cores regardless of their virtualized frequencies. The researchers

also acknowledged this and suggested leaving fast physical cores unused

if fewer fast virtual cores had been provisioned [3]. However, efficiency is

still not optimal since the scheduler only considers the frequency of the

virtualized core and does not consider the actual tasks being executed.

Thus, it is possible that a CPU intensive task is given to the slow physical

core while the fast physical core is executing an I/O intensive task. The

researchers deemed scheduling of the individual tasks to be the respon-

sibility of an asymmetric-aware operating system, arguing that adding

this functionality to the hypervisor would result in duplicating existing

work [3]. Their proposed scheduler generally outperforms AMP unaware

schedulers by ensuring that the fast core is utilized as much as possible

and that it is fairly shared. Therefore it is fair to consider it better than

an AMP unaware scheduler, however this method does not provide an op-

timal scheduling in terms of performance or energy efficiency.

Task appropriate core scheduling is proposed by Takouna et al. and

their evaluation shows huge improvements in both energy-efficiency and

performance. However, their proposed method is more theoretical than

practical, since they do not offer a method for distinguishing tasks or vir-

tual machines that should be executed on specific physical cores. Instead

it is perhaps most useful by showing the potential improvements that can

be achieved with an optimal AMP scheduling policy.

Mapping virtual cores to power appropriate physical cores as suggested

by Wang et al. provides a noticeable improvement in the energy-efficiency

of virtual machines. However, the method requires a two-step training

process, offline and online, which would make it difficult to use for very

heterogenous workloads that occur in practice. It is also worth pointing

out that its effect on performance is not considered in detail.

Finally, the linear programming scheduler shows great improvement in

terms of energy-efficiency, particularly when executing small tasks. In

addition, the method is simpler to implement than the previous method,

since it does not require extensive collection of runtime performance pa-

rameters.

Since the evaluation scenarios of each method were very different, it is

difficult to compare the results directly. However, the linear programming

method seems to be the most promising of the methods, because it consid-

ers both energy-efficiency and performance, it aims to schedule slow vir-

tual cores on slow physical cores and it is relatively simple to implement

because it does not need extensive runtime data.

It is worth noting that none of the covered methods try to consider the

actual task being executed on the virtual machine, instead they all base

the target performance on the frequency of the virtualized core. If it were

possible to recognize I/O bound tasks being executed on fast virtual cores

and execute them on a slow physical core, energy-efficiency could be in-

creased further. However, this has previously been considered impractical

because cloud providers have no visibility into the applications that are

being executed on provisioned instances [13]. But recently, CPUs, such

as Intel’s Alder Lake, collect performance metrics as they are executing

tasks and use this for future scheduling. Perhaps it would be possible to

extend this technology to also cover virtual machines.

5 Conclusion

There have been a few different methods proposed specifically for AMP

scheduling in virtual machines. They offer an improvement when com-

pared to running an AMP on an AMP unaware scheduler. However, it

would theoretically be possible to achieve even greater power savings by

creating a scheduling method that considers the tasks being executed

in each virtual machine. Thus, there is still room for improvement in

this area. Future research could be conducted to implement a scheduler

that exploits the performance metrics gathered by modern AMP proces-

sors to improve AMP scheduling in virtual machines in terms of energy-

efficiency.

References

[1] Vimal Mathew, Ramesh K. Sitaraman, and Prashant Shenoy. Energy-
aware load balancing in content delivery networks. In 2012 Proceedings
IEEE INFOCOM, pages 954–962, 2012.

[2] Sparsh Mittal. A survey of techniques for architecting and managing asym-
metric multicore processors. ACM Comput. Surv., 48(3), February 2016.

[3] Vahid Kazempour, Ali Kamali, and Alexandra Fedorova. AASH: An asymmetry-
aware scheduler for hypervisors. SIGPLAN Not., 45(7):85–96, March 2010.

[4] Tianxiang Miao and Haibo Chen. Flexcore: Dynamic virtual machine
scheduling using VCPU ballooning. Tsinghua Science and Technology,
20(1):7–16, 2015.

[5] William Stallings. Operating Systems - Internals and Design Principles (7th
ed.). Pitman, 2011.

[6] John L. Hennessy and David A. Patterson. Computer Architecture, Sixth
Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 6th edition, 2017.

[7] Matthew Portnoy. Virtualization Essentials. SYBEX Inc., USA, 2nd edition,
2016.

[8] Ameer Alaasam, Gleb Radchenko, and Andrei Tchernykh. Comparative
analysis of virtualization methods in big data processing. Supercomputing
Frontiers and Innovations: an International Journal, 6:48–79, March 2019.

[9] William Stallings. Computer Organization and Architecture. Pearson Edu-
cation, 10th edition, 2016.

[10] Samsung. Spotlight on the Exynos 5 Octa. https://web.archive.org/web/
20130818205335/http://www.samsung.com/global/business/semiconductor/

minisite/Exynos/blog_Spotlight_on_the_Exynos5Octa.html, April 2013.

[11] Karthik Iyer. Apple M1 series vs Intel Core i9-12900HK: Which laptop CPU
is better? https://www.xda-developers.com/apple-m1-vs-intel-core-i9-12900hk/,
April 2022.

[12] Ibrahim Takouna, Wesam Dawoud, and Christoph Meinel. Efficient virtual
machine scheduling-policy for virtualized heterogeneous multicore systems.
In Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), pages 1–7, January 2011.

[13] Yefu Wang, Xiaorui Wang, and Yuan Chen. Energy-efficient virtual machine
scheduling in performance-asymmetric multi-core architectures. In Pro-
ceedings of the 2012 8th International Conference on Network and Service
Management (CNSM) and 2012 Workshop on Systems Virtualiztion Man-
agement (SVM), pages 288–294, 2012.

[14] Ching-Chi Lin, Chao-Jui Chang, You-Cheng Syu, Jan-Jan Wu, Pangfeng
Liu, Po-Wen Cheng, and Wei-Te Hsu. An energy-efficient hypervisor sched-
uler for asymmetric multi-core. In 2014 IEEE 3rd Global Conference on
Consumer Electronics (GCCE), pages 507–509, 2014.

Explainable Linear Regression

Anton Pirhonen
anton.pirhonen@aalto.fi

Tutor: Alexander Jung

Abstract

This paper reviews an explainable linear regression algorithm. The algo-

rithm utilizes input from a user to improve the explainability of a standard

linear model. The user input is used in the explainable empirical risk min-

imization process as a regularization term. The algorithm is implemented

and tested with the task of maximum daytime temperature prediction. The

experiments give information about the behaviour and the characteristics

of the algorithm. The experiments show that using the explainable lin-

ear regression with an accurate user signal can improve the validation

error of the model compared to standard linear regression. The asymp-

totic behaviour of the algorithm with respect to explainability is inspected.

Variations of the algorithm are proposed to address the potential issues

regarding the asymptotic behaviour and the explainability.

KEYWORDS: explainable linear regression, user signal, explainable em-

pirical risk minimization, EERM, explainable machine learning

1 Introduction

Machine learning is utilized in many domains, such as scientific research,

business and healthcare. A machine learning method is based on a mathe-

matical model which uses data to provide predictions. These models have

varying complexities. Some of them are explainable with simple math-

ematics, such as a few multiplication and addition operations, whereas

other models are essentially "black-boxes", meaning that it is impossible

to understand why the model makes a certain prediction. To utilize ma-

chine learning models efficiently, it is important to ensure that users can

trust the models’ decision making [1].

Zhang et al. [2] present an algorithm which formalizes explainable lin-

ear regression. The algorithm utilizes input from the user to make its

predictions explainable. In this paper, the algorithm is tested with the

task of maximum daytime temperature prediction. The experiment re-

sults are used to research the behaviour and the characteristics of the

algorithm.

The paper is organized as follows. Section 2 defines empirical risk mini-

mization and the related mathematical concepts. Those concepts are then

used in Section 3 to describe how the explainability of a machine learn-

ing model can be measured with explainable empirical risk minimization.

Section 4 presents the experiments conducted with the algorithm and re-

views the experiment results. The observations from the results are used

in Section 5 to propose variations of the algorithm to address the poten-

tial shortcomings regarding explainability. Finally, Section 6 concludes

the paper.

2 Risk minimization

This section presents the mathematical definition of risk minimization

and related concepts. Section 2.1 defines the concepts of a hypothesis and

a loss function, which are then used in Section 2.2 to define empirical risk

minimization. These definitions follow the notation and terms used by

Zhang et al. [2] and Jung [3].

2.1 Hypothesis and loss function

A supervised machine learning model learns a hypothesis h to compute a

predicted label ŷ from a data point (x, y). Each data point has a feature

vector and a true label. The feature vector x consists of one or more fea-

tures x = (x1, ..., xn)
T ∈ Rn, and y is the value of the true label, y ∈ R. The

hypothesis can thus be expressed as

h(·) : Rn → R : x 7→ ŷ = h(x).

The quality of predictions by a hypothesis h is measured with a loss

function. L((x, y), h). A loss function measures the deviation of the pre-

dicted label h(x) = ŷ from the true label y. The choice of loss function

depends on the type of the machine learning problem. The expected value

of the loss function for a data point determines the expected loss, which is

also called the risk.

L̄(h) := E{L((x, y), h)}. (1)

Machine learning attempts to find a hypothesis ĥ with minimum risk

L̄(ĥ) = min
h∈H

L̄(h). H denotes the hypothesis space of the machine learn-

ing method.

2.2 Empirical risk minimization

It is not possible to use minimum risk (1) in machine learning problems

where we do not know the underlying probability distribution for the mea-

sured data points [3]. Instead, it is possible to approximate the risk (1)

with the average loss using a training set of collected data points.

D = {(x(1), y(1)), ..., (x(m), y(m))}.

With this approximation we can replace the risk (1) with the empirical

risk

L̂(h|D) := (1/m)
m∑

i=1

L((x(i), y(i)), h).

As with equation 1, the goal is to find a hypothesis ĥ ∈ H that minimizes

the empirical risk

argmin
h∈H

L̂(h|D)

3 Explainable empirical risk minimization

This section describes how the explainability of an algorithm is measured.

Section 3.1 introduces the concept of a user signal. Section 3.2 describes

how explainability is quantified and how the user signal is used to mea-

sure explainability. Finally, Section 3.3 presents the definition of the ex-

plainable linear regression algorithm formalized by Zhang et al. [2].

3.1 User signal

To formalize explainable empirical risk minimization, Zhang et al. [2] in-

troduce a user signal u to each data point. The user signal u "characterizes

a data point from a perspective of a specific human user" [2].

Many different kinds of user signals can be measured. The user signal

u can, for instance, be the user’s prediction about the label y based on the

features x. Alternatively, the user signal can be a physiological measure-

ment, such as the users heart rate. The heart rate could be measured

from the user when presenting him or her the features, such as an image.

The experiment in Section 4 simulates the user’s prediction about the fol-

lowing day’s weather as the user signal. A data set D where a user signal

is introduced to each data point has the form

D = {(x(1), y(1), u(1)), ... , (x(m), y(m), u(m))}.

3.2 Quantifying explainability

Zhang et al. [2] measure the subjective explainability E(h|u) of a predic-

tion ŷ by hypothesis h regarding a data point (x, y, u) with

E(h|u) := C −H(h|u). (2)

In Equation 2 the term H(h|u) denotes conditional entropy (3) which quan-

tifies the users uncertainty about the prediction ŷ = h(x). Zhang et al. [2]

imply that a model with low conditional entropy (3) is more explainable

to the user.

H(h|u) := −E
{
log(p(h(x)|u))

}
(3)

The calibration constant C in Equation 2 is used to due to the conven-

tion that explainability is a non-negative quantity. In the explainable

linear regression algorithm, the conditional entropy (3) is estimated by

Ĥ(h(w)|u).

Ĥ(h(w)|u) = argmin
α∈R

(1/m)

m∑

i=1

(wTx(i) − αu(i))2

3.3 Explainable linear regression algorithm

The explainable linear regression algorithm formalized by Zhang et al. [2]

uses a loss function, squared error loss, with a regularization term, mea-

suring the subjective explainability, to compute the explainable empirical

risk LEER (4).

LEER =

m∑

i=1

(y(i) −wTx(i))2︸ ︷︷ ︸
Squared error loss

+ λ(wTx(i) − αu(i))2︸ ︷︷ ︸
Subjective explainability

(4)

Algorithm 1 is obtained when the explainable empirical risk is used with

a linear model.

Algorithm 1 Explainable linear regression
Require: explainability parameter λ, training set D

1: solve

ŵ ∈ argmin
α∈R,w∈Rn

m∑

i=1

(y(i) −wTx(i))2 + λ(wTx(i) − αu(i))2

return h(λ)(x) := xT ŵ

The input parameter λ is called the explainability parameter. It controls

the emphasis on the subjective explainability. High values of λ direct the

algorithm to minimize the risk from the subjective explainability. When

λ = 0 the explainable linear regression performs the same way as the

standard linear regression.

In addition to finding the weights w, the algorithm also finds a user

signal scalar α that minimizes the LEER (4). The α allows the user signal

u to be scaled to the magnitude of the predicted label.

The algorithm assumes that the features x and the user signal u are

realizations of jointly Gaussian random variables with mean zero [2].

4 Explainable linear regression experiments

This section presents the experiments conducted with the explainable lin-

ear regression algorithm (Algorithm 1). The goal of the experiments is to

learn about the performance and the characteristics of the algorithm. The

behaviour of the algorithm is studied with different user signals. Each

experiment contains multiple observations which are obtained with dif-

ferent levels of emphasis on the subjective explainability.

4.1 Experiment setup

In Section 4, the explainable linear regression algorithm (Algorithm 1)

is used to predict the maximum daytime temperature y in Kaisaniemi,

Helsinki. The features x are the maximum daytime temperature mea-

surements from nearby locations, Porvoo, Vuosaari, Hyvinkää, Nuuksio

and Tapiola, from the same day. User predictions about the maximum

daytime temperature were not available. Thus, the user signal u is sim-

ulated with the maximum daytime temperature measurement from the

previous day. The user signal value corresponds to the user predicting the

following day’s maximum temperature to equal the ongoing day’s maxi-

mum temperature. The location of the user signal measurement varies

depending on the experiment. These locations include Kaisaniemi, Nur-

mijärvi, Jyväskylä and Muonio. The features, the label and the user sig-

nal from a single day constitute a data point. The data point with index i

has the following structure

D(i) = (x
(i)
Hyvinkaa, x

(i)
Nuuksio, x

(i)
Porvoo, x

(i)
Tapiola, x

(i)
V uosaari, y

(i)
Kaisaniemi, u

(i)
Kaisaniemi).

In the experiments, the training set consists of 365 data points from the

year 2021 and the validation set from 366 data points from the year 2020.

The data points were measured and shared by the Finnish Meteorological

Institute [4]. The results are plotted with Matplotlib [5].

In each experiment, the explainable linear regression model is trained

with the data from the training set. The training produces a model, which

is determined by the weight vector w. A training error is obtained from

the training process and it is equal to the minimal mean explainable em-

pirical risk as defined in Section 3.3. The trained model is then used to

predict the labels of the validation set. The validation error is obtained

by calculating the mean squared error of the predicted labels and the true

labels. The validation error is used to measure the performance of the

model.

A scientific computing Python3 library, SciPy [6], was used to perform

the explainable empirical risk minimization. More specifically, the ex-

plainable empirical risk minimization used the scipy.optimize.minimize

function [7] utilizing the Broyden–Fletcher–Goldfarb–Shanno (BFGS) al-

gorithm. The number of iterations was limited to 500.

Analysis of convexity of the explainable empirical risk (Equation 4) was

performed to acquire information about the minimization result. The Hes-

sian matrix H for subjective explainability (ŷ − αu)2 with respect to the

predicted label ŷ and the user signal scalar α is a positive semidefinite

matrix with u ∈ R. The eigenvalues are λ1 = 0 and λ2 = 2(u2 + 1).

H =


 2 −2u
−2u 2u2




Thus, the explainable empirical risk (Equation 4) is a sum of non-negatively

weighted convex functions and therefore a convex function [8]. Convex

optimization tools can be used for finding a global minimum of the ex-

plainable empirical risk.

4.2 Data and the statistical assumptions

As mentioned in Section 3.3, Zhang et al. [2] assume that the features

x and the user signal u are realizations of jointly Gaussian random vari-

ables with mean zero. Statistical tests are used to examine whether the

data conforms to these assumptions.

Table 1 displays the means and normality tests of the features and the

user signals. The tests are conducted with the programming language R

[9]. Normality is tested with Shapiro-Wilk and Bowman-Shenton tests

which both share the null hypothesis that the data is obtained from a

Gaussian distribution. The values of Shapiro-Wilk and Bowman-Shenton

rows in Table 1 correspond to the p-values of these hypotheses. According

to Table 1, the null hypothesis of normality can be rejected with 95% con-

fidence for all features and user signals using either one of the tests. Ad-

ditionally, the means of the features and the user signals are above zero.

In the following experiments the means are not shifted to zero. Thus, the

weather data used for the experiments does not fulfill the assumptions by

Zhang et al. [2]. The experiments are expected to yield insights about the

performance and the characteristics of the explainable linear regression

algorithm despite the lack of normality and zero means.

xHyvinkaa xNuuksio xPorvoo xTapiola xV uosaari

Mean temperature (◦C) 9.7 9.3 9.2 9.7 8.8

Shapiro-Wilk 1.1e-03 2.9e-04 1.1e-03 1.1e-03 4.9e-03

Bowman-Shenton 1.1e-02 5.9e-03 2.0e-02 1.5e-02 3.1e-02

uKaisaniemi uNurmijarvi uJyvaskyla uMuonio

Mean temperature (◦C) 9.7 9.2 8.0 3.9

Shapiro-Wilk 1.3e-03 7.8e-04 6.3e-05 3.2e-03

Bowman-Shenton 1.8e-02 9.8e-03 3.1e-03 1.3e-02

Table 1. Means and normality tests for the user signal and the features

In addition to non-normal and non-zero mean data, the selection of

closely related, collinear features might affect the regression. According

to Gareth [10], "collinearity reduces the accuracy of the estimates of the

regression coefficients". Collinearity can be measured with the variation

inflation factor (VIF). Table 2 displays the variation inflation factor scores

related to each feature. Gareth [10] recommends using features with VIF

scores less than 5 or 10. The VIF scores of the chosen features exceed

the recommended limits. Additionally, the VIF scores of a linear model

using the combination of any two of the features exceed the recommended

VIF scores. This observation suggests, that choosing only one of the fea-

tures would be beneficial for the experiment. This problem was noticed

after conducting the experiments. Thus, the experiment setting can be

improved by choosing features which are not significantly collinear.

xHyvinkaa xNuuksio xPorvoo xTapiola xV uosaari

VIF 166 252 258 310 153

Table 2. The variance inflation factors (VIF) of the features

4.3 Experiment with an accurate user signal

In the first experiment the explainable linear regression algorithm (Al-

gorithm 1) is tested with a user signal measured at the label location,

Kaisaniemi. The user signal u is the maximum daytime temperature from

the previous day. Figure 1 displays the label and the user signal plotted

on a line chart. The figure shows that the difference between the user

signal and the label is small and their values are highly correlated. This

user signal can be thought of as a very good user signal which contains

valuable information about the label.

Figure 1. Label to user signal

Figures 2 and 3 show the training and validation error of the explain-

able linear regression, respectively. The errors are measured as a function

of the base two logarithm of the explainability parameter λ. The transfor-

mation to log2(1 + λ) is applied to enable visualizing errors with different

magnitudes of λ.

Figure 2 shows that the training error increases as a function on λ. The

training error of the explainable linear regression with λ = 0 corresponds

to the training error of the standard linear regression with squared error

loss as the loss function. The squared error loss is already minimized

when λ = 0. Thus, an increase in λ will incur a greater training error due

to the algorithm having to select the weights to compromise between the

risk from the squared error loss and the subjective explainability.

Figure 2. Training error

In Figure 3, the validation error first decreases until log2(1+λ) ≈ 0.9 and

then starts to increase. In this experiment, the explainable linear model

using the optimal explainability parameter has a smaller validation error

than the standard linear model (λ = 0). This observation implies that

using an accurate user signal in model training can slightly improve the

model’s predictions.

Figure 3. Validation error

4.4 Using noisier user signals

The user signal of the first experiment, as seen in Figure 1, is a very ac-

curate user signal. This section experiments with signals from greater

distances to introduce noise to the user signal. User signals with noise

are expected to give less reliable information about the label value. The

new user signal locations, Nurmijärvi, Jyväskylä and Muonio, are located

33, 235 and 869 kilometers from Kaisaniemi, respectively. Models trained

with these user signals are compared with the model of the first experi-

ment from Section 4.3. Additionally, the range of the explainability pa-

rameter λ is increased.

Figure 4 visualizes the user signal from Muonio. The deviation between

the user signal and the label is greater than in the last experiment. The

root mean squared errors (RMSE) between the user signals and the label

are shown in Table 3. The RMS errors increase as we move further away

from the label location.

Figure 4. Label to Muonio user signal

uKaisaniemi uNurmijarvi uJyvaskyla uMuonio

RMSE (◦C) 2.6 3.0 3.8 7.7

Table 3. The root mean squared errors (RMSE) between the user signals and the label

Figure 5 displays the training error of the explainable linear regression

using a noisier user signal from Muonio. The training error increases

faster than in the first experiment. A similar increase in the growth rate

of the training error is observed with the user signals from Nurmijärvi

and Jyväskylä, although the growth rate of the training error was not as

large as with user signal from Muonio.

Additionally, the training error with the user signal from Muonio in-

creases steadily until λ ≈ 25 before starting to plateau. The plateauing

behaviour is inspected in a further experiment in Section 4.6.

Figure 5. Training error with user signal from Muonio

Figure 6 shows the validation error with user signals from Nurmijärvi.

The validation error with Nurmijärvi user signal increases steadily and

with the explainability parameter λ. A closer inspection of the validation

error in Figure 7 shows that the Nurmijärvi user signal is not able to im-

prove the validation error compared to the standard linear regression. A

similar behaviour is observed with the validation errors using user sig-

nals from Jyväskylä and Muonio. Only the Kaisaniemi user signal was

able to improve the validation error of the explainable linear regression

compared to the standard linear regression.

Figure 6. Validation error with user signal from Nurmijärvi

Figure 7. Zoomed validation error with user signal from Nurmijärvi

The Muonio validation error in Figure 8 shows an error plateauing be-

haviour similar to that observed with the Muonio training error in Fig-

ure 5.

Figure 8. Validation error with user signal from Muonio

The experiments with user signals containing more noise demonstrate

that the capability of the user signal to improve the model’s validation

error depends on the quality of the user signal. Only the Kaisaniemi user

signal was able to improve the validation error of the explainable linear

regression compared to the standard linear regression. In this experi-

ment, a greater root mean squared error between the user signal and the

label in Table 3 corresponded with greater validation errors.

4.5 Weight behaviour

In this section, the behaviour of the linear model weights are observed.

Figure 9 shows the behaviour of the linear model weights as λ increases.

The Nurmijärvi user signal is used. The distances between the features

and the user signal measurement locations are displayed in Table 4. Fig-

ure 9 shows that as λ increases the features measured near the user sig-

nal, in Hyvinkää and in Nuuksio, retain higher weights than the three

other features, which quickly near zero. Root mean squared errors in Ta-

ble 4 confirm that the measuring stations which are located close to the

user signal measurement location measure maximum daytime tempera-

tures closer to the user signal. When the deviation from the user signal

is heavily penalized with large values of λ, the linear regression weights

favor the features which predict the user signal. The behaviour of the

weights might also be affected by collinearity discussed in 4.2. Thus, the

effect of the explainable linear regression on the feature weighing should

be researched more. Additionally, Figure 9 shows that the explainable

linear regression weights become closer to zero with large values of λ.

Figure 9. Linear regression weights with user signal from Nurmijärvi

Feature x1 x2 x3 x4 x5

Location Hyvinkää Nuuksio Porvoo Tapiola Vuosaari

Distance (km) 19 24 49 32 34

RMSE (◦C) 0.82 0.76 1.90 1.46 2.71

Table 4. Distance and RMSE between the user signal and a feature

4.6 Asymptotic behaviour of the explainable linear regression
algorithm

The observation of plateauing training and validation error made in Sec-

tion 4.4 and the observation of weights nearing zero as with large values

of λ in Section 4.5 arouse interest in the asymptotic behaviour of the ex-

plainable linear regression algorithm with respect to the explainability

parameter λ. This section studies the regression weights and the user

signal scalar α with large values of λ.

Figure 10 shows the regression weight behaviour using the user signal

from Muonio. Figure 11 plots the values of the α with the same user

signal. These figures show that as λ increases, both the weights and α

near zero.

Figure 10. The weights as a function of λ with user signal from Muonio

Figure 11. The value of user signal scalar α as a function of λ

When λ is increased enough, the risk from the subjective explainability

is so heavily penalized that the algorithm starts to focus on minimizing it

almost exclusively. It is possible to minimize the subjective explainability

by setting the weight vector w and the α to zero. Thus, the resulting

risk from subjective explainability will also equal zero. In this case, the

model predicts zero despite the values of the features. This explains the

plateauing behavior of errors observed in Section 4.4. As λ increases, the

validation error of the model approaches the squared error loss of a linear

model with all weights set to zero.

The observed asymptotic behaviour might be a downside of defining ex-

plainability using conditional entropy. Consider a user, who makes predic-

tions about the following day’s maximum temperature. He or she might

be surprised that a model using his or her input to create a more explain-

able model predicts the maximum temperature to always be zero when

the focus on subjective explainability is extremely large. In this case,

the model’s prediction might deviate from what the user would expect

when supplying the user signal. In this context, defining explainability

as the deviation between the user prediction and the model prediction

might work better.

5 Improving the explainable linear regression

This section explores possibilities of improving the explainable linear re-

gression. This section proposes two different variations of the algorithm:

the other for situations where the user signal does not need to be scaled,

and the other for performing the α scaling and explainable linear regres-

sion separately.

5.1 Explainable linear regression without α

As noted in Section 4.6, both the weights w and α near zero when sub-

jective explainability is increased enough. The α in Figure 11 starts to

decrease immediately when λ is increased. Even though the weight ze-

roing behaviour is not as significant with small values of λ, it might still

have an unnecessary effect on the regression, favouring smaller weights.

In the special case, when the user attempts to predict the value of the

label, the user signal could be used without scaling. In this case, the

subjective explainability could be defined as the squared error between

the user prediction and the model prediction (wTx(i) − u(i))2. This could

be useful in situations similar to experiment conducted in Section 4.

Explainable linear regression without the scalar α would not have the

drawback of the algorithm zeroing the weights and the α when minimiz-

ing the risk from the subjective explainability. Was α removed, the ex-

plainable linear model would perform the regression between the user

signal and the label. With large values of the explainability parameter λ,

the linear model would fit the user signal instead of the label.

5.2 Performing the scaling and the regression separately

The weight zeroing behaviour could potentially be avoided by performing

the user signal scaling and the explainable linear regression separately.

In the first step, both the user signal and the label are normalized to mean

zero. After that the algorithm finds α that minimizes the squared error

between the user signal and the label.

α ∈ argmin
α∈R

m∑

i=1

(y(i) − αu(i))2

The goal of process is to scale the user signal u as close to the label y as

possible. After finding the optimal α, the explainable linear regression

could be used to fit the weights w only.

ŵ ∈ argmin
w∈Rn

m∑

i=1

(y(i) −wTx(i))2 + λ(αu(i) −wTx(i))2

This would avoid the weight and user signal diminishing behaviour re-

sulting from attempting to find the α and the weights at the same time.

6 Conclusion

This paper reviewed an explainable linear regression algorithm proposed

by Zhang et al. [2]. The algorithm finds a linear model that minimizes the

explainable empirical risk consisting of the squared error loss and a reg-

ularization term measuring subjective explainability. The algorithm was

implemented with Python3 and scientific computing library SciPy [6]. The

experiment data was provided by the Finnish Meteorological Institute [4].

The implemented algorithm was tested with the task of maximum day-

time temperature prediction. The experiments utilized various user sig-

nals and suggested that the user signal effect on the validation error de-

pended on the quality of the user signal. Using an accurate user signal

with the explainable linear regression had the potential to decrease the

validation error of the linear model compared to standard linear regres-

sion. This decrease in validation error was identified with one user signal

that had the lowest root mean squared error with the label. Using the

other three, more inaccurate user signals only increased the validation

error. Another observation was that the explainable linear regression

weights potentially favoured the features that predicted the user signal

as the emphasis on the subjective explainability increased.

The explainable linear regression algorithm asymptotically approaches

a linear model with zero weights as the explainability parameter λ in-

creases. This results from the minimization of the risk from the subjective

explainability term. The algorithm minimizes the subjective explainabil-

ity by setting the regression weights w and user signal scalar α close to

zero. A linear model with zero weights is not useful for maximum daytime

predictions and might also be confusing for the user.

This paper proposed two methods for improving the asymptotic behaviour

of the algorithm. The first method can be used in problems where the user

tries to predict the label. The second method separates the user signal

scaling with α into a separate process, after which the linear regression

is performed. Whether the proposed methods improve the explainable

linear regression algorithm in terms of validation error or explainability,

requires further research.

References

[1] Nadia Burkart and Marco F Huber. A survey on the explainability of super-
vised machine learning. Journal of Artificial Intelligence Research, 70:245–
317, 2021.

[2] L. Zhang, G. Karakasidis, A. Odnoblyudova, L. Dogruel, and A. Jung. Ex-
plainable empirical risk minimization, 2022.

[3] Alexander Jung. Machine Learning. Springer, Singapore, 2022.

[4] The finnish meteorological institute, 2022. https://en.ilmatieteenlaitos.fi/download-
observations.

[5] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science
& Engineering, 9(3):90–95, 2007.

[6] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson,
K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones,
Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Hen-
riksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods, 17:261–272, 2020.

[7] Scipy manual: scipy.optimize.minimize, 2022. https://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.minimize.html.

[8] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[9] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2017.

[10] Gareth James. An introduction to statistical learning : with applications in
R. Springer texts in statistics. Springer, New York, 2013 - 2013.

Co-inference techniques for Edge and
Fog computing

Soumya Lekkala
soumya.lekkala@aalto.fi

Tutor: Vesa Hirvisalo

Abstract

With the increase in the number of Internet of Things (IoT) devices, there

is a large volume of data being generated and meeting the demanding

requirements of the IoT applications has been challenging with cloud com-

puting alone. This led to the new paradigms, edge and fog computing. The

main purpose of these paradigms is to satisfy the real-time critical appli-

cation needs by utilizing less energy thus improving the performance in

a distributed computing environment. When Deep Learning (DL) is used

within IoT, these paradigms need efficient inference methods to provide low

latency, energy-efficient, high-performance results. However, it is a chal-

lenge to lower the inference costs. To minimize these inference costs, and to

improve the accuracy many inference techniques are proposed. This paper

overviews the co-inference techniques of edge and fog computing, such as

model compression, offloading, model partitioning and model early exit.

KEYWORDS: Internet of Things, Deep Learning, Machine Learning, Ar-

tificial Intelligence, Edge computing, Fog Computing, Co-inference tech-

niques

1 Introduction

Recently, the IoT is a trending word and plays a significant role in day-

to-day activities. With the ever-growing data and the extensive use of IoT

applications, approximately 41.6 billion IoT devices and 79.4 Zettabytes

(zt) of data is projected to be generated in 2025 [1]. These globally con-

nected digital devices constitute the IoT and possibly generate a large

amount of data, which is stored in the cloud, and the current network ar-

chitectures will not be able to process it. Data traffic might occur due to

the simultaneous access of data from various regions, and this can cause

some delays in processing the data.

Moving massive data from IoT devices to the cloud may not be efficient

due to bandwidth limits, and it will be challenging to meet the extremely

low latency needs of applications like health monitoring and self-driving

automobiles [2]. Cloud computing cannot afford the bandwidth needed,

and a little delay in the detection of obstacles might cause a major ac-

cident in self-driving cars. To mitigate these bandwidth constraints and

to achieve the low-latency requirements of the applications and real-time

decision making, edge and fog computing have been proposed.

Edge and fog computing are the cloud computing extensions that are

still being researched. The edge and fog computing domains, on the other

hand, have their own set of criteria and constraints, necessitating the em-

ployment of efficient inference methods when applied together with AI.

One such method is Deep Neural Networks (DNNs) for reliable inference

[3]. On-Device inference techniques, such as designing compact networks,

model compression methods and co-inference techniques at the edge, such

as offloading, DNN model partitioning and model early exit. These infer-

ence techniques are designed to lower inference costs.

This paper overviews edge and fog computing, and highlights their chal-

lenges along with the co-inference techniques in edge and fog computing.

Section 2 defines edge and fog computing, while Section 3 overviews Ma-

chine Learning (ML) and Artificial Intelligence (AI). Section 4 discusses

the co-inference techniques in edge and fog computing. Finally, Section 5

gives the concluding remarks.

2 Edge and Fog Computing

Cloud computing is the offering of computing services on demand. Cloud

computing reduces the maintenance cost, and the information technology

overhead to the end-users [4]. However, cloud data centres are built far

away from the end-users, which might result in data transmission de-

lays. With the ever-growing use of IoT devices, satisfying the demands

for critical and low-latency applications is not possible [5]. Edge and fog

computing are proposed to address these issues of cloud computing.

2.1 Edge Computing

Edge computing is a type of cloud computing that extends beyond the

cloud. Here, computation happens at the network’s edge in close proxim-

ity to the IoT device, reducing the latency and enabling real-time services.

These computation devices are referred to as Edge nodes. Edge computing

provides storage and computing resources closer to the user and located

near end devices [6].

2.2 Fog Computing

Fog computing is a type of computing that sits between the edge and the

cloud. Fog nodes receive a significant volume of data, analyze it, and only

transfer the most critical information to the cloud. Fog nodes are more

scalable than edge computing since they are closer to the cloud and can

be placed in multiple geographical locations.

Figure 1 shows how cloud, edge and fog computing are connected. Edge

nodes are near the IoT devices and fog nodes are near the cloud.

Figure 1 Cloud, Edge and Fog computing

2.3 Challenges of Edge and Fog Computing

By shifting some computational resources, fog and edge computing could

provide a number of benefits. The main purpose of these paradigms is

to create an IoT network environment with a large number of intercon-

nected distributed heterogeneous devices with the goal of deploying and

managing critical applications closer to the user. However, designing such

platforms meeting all of their needed properties is very difficult [7].

Resource management, security and privacy, and network management

are the main challenges of edge and fog computing. Edge and fog comput-

ing emerged to bring the computational resources near to the end nodes,

and closer to the IoT devices. Resource management techniques are re-

quired to optimize the utilization of available resources to provide scala-

bility and desired performance and to utilize all the benefits provided by

edge and fog computing. The main challenges in resource management

are resource estimation - to estimate the number of resources required to

perform a particular task, resource discovery - to identify the available

resources, resource allocation - to get the identified resources and allocate

them for the task and resource optimization - a technique to optimize the

utilization of available resources [7].

New security and privacy issues also have been raised along with the

advantages of edge and fog computing. Due to the distributed architec-

ture of these paradigms, authentication has become a major issue. Main-

taining confidentiality, integrity and authentication called as CIA triad

model has been a major challenge [8]. Maintaining and protecting the

personal details of the user is also challenging in a distributed network.

Since edge and fog computing involves heterogeneous devices distributed

across, one more challenge here is managing the network to accommodate

all the tasks which are needed to be performed [7].

3 Machine Learning and Artificial Intelligence

AI is defined as the decision making and human intelligence capabilities

of computers. AI has been developed rapidly over the years and is used in

day-to-day life applications. ML methods are instrumental for the design

and analysis of AI [9]. ML refers to training the data sets, identifying

patterns, and making decisions without human intervention. There are

several basic to complex ML algorithms, such as decision trees, k-means

clustering and logistic regression. Deep learning is a different branch

of ML, which allows automatic learning by taking in a large amount of

unstructured data, and has more complex algorithms [1].

The development process for software systems becomes much more diffi-

cult when it includes ML-based components. The training iterations that

are used to develop the best possible prediction model are at the heart of

the machine learning process. Modern software development approaches,

such as DevOps, have become popular, and they often emphasize fre-

quent development iterations and continuous software delivery. DevOps

is a software development methodology that emphasizes collaboration be-

tween software development and operations to deliver software changes

more quickly. Integrating ML model workflow with DevOps is required

for faster results in the development process [10].

A group of highly intensive computational models is referred to as DL.

Fully connected multi-layer neural networks are an excellent example, as

they need a precise estimation of a huge number of network parameters.

The cornerstone for reaching this goal is the availability of a significant

volume of data. DL also has many challenges, one such is training the

models. Huge volumes of training data is required to get the highly ef-

ficient and desired outcomes [11]. These challenges call for distributed

and federated learning. Distributed learning has centralized data but

multiple nodes for model training, whereas federated learning has decen-

tralized data and training but effectively has a central model. The recent

trend is towards learning environments, such as Ray and Rlib for Rein-

forcement Learning (RL). Ray RLlib is a distributed execution toolkit for

RL based on the Ray framework.

Edge and fog computing when applied together with AI requires efficient

inference techniques. There are various types of DNNs, such as Convo-

lutional Neural Networks (CNNs), Artificial Neural Networks (ANNs),

Recurrent Neural Networks (RNNs), and with these DL models can be

integrated with the edge computing environment.

4 Co-inference Techniques

Inference is the process of deploying the DNN models onto a device, which

then looks for the patterns which it has been trained to identify. Inference

in the cloud may incur additional network delays, and this cannot be toler-

ated for time-critical applications. Training and inference can be done in

many ways. DNN models are designed to reduce these inference costs and

to improve accuracy. To optimize these inference costs and co-inference in

the edge, few inference techniques are available.

4.1 On-Device Inference

Generally, the computational costs of the DNN models can be reduced us-

ing two approaches. One approach is to design the model compact and

efficient. The other is to optimize the trained networks. Common opti-

mization technique is model compression.

Designing Compact Networks:

Usually, scientists strive to reduce the number of parameters while pre-

serving accuracy. Their goal is to develop a compact and efficient model.

A variety of models are used for this purpose. Instead of the normal con-

volution, these models do a factorized convolution, thereby reducing the

computational parameters while maintaining great accuracy [1].

Model Compression:

Model compression reduces the model complexity and resources with a

slight loss in accuracy. Parameter pruning and sharing, Knowledge distil-

lation and quantization are a few of the model compression techniques.

Parameter pruning removes the redundant parameters to improve the

performance. Model pruning strategies are classified as structural or non-

structural. Non-structural pruning depends on the specific algorithm or

hardware [12] whereas structural pruning does not depend on a specific

platform and can be run directly on the model. Structural pruning is more

effective than non-structural.

The on-device inference is made possible by knowledge distillation, a

model compression method, which teaches a smaller network to under-

stand the behaviour of the large network by trying to replicate its out-

put. Visual recognition, speech recognition, natural language processing

(NLP), and recommendation systems are all examples of how knowledge

distillation is utilized in artificial intelligence. Additionally, knowledge

distillation can be utilized for a variety of other objectives, including data

privacy and defense against hostile attacks. Three distillation schemes

for both student and teacher models are present based on whether the

teacher model is being updated simultaneously with the student model or

not [13]. 1) Offline distillation, here teacher network is pre-trained and

then during distillation it is used to train the student model. 2) Online

distillation - To further improve the performance of the student model

and both student and teacher models updated simultaneously [14].3) Self

distillation, this is can be viewed as a type of online distillation where the

same network is used for both student and teacher models.

Figure 2 Knowledge Distillation - Basic teacher student network model.

Quantization achieves higher computation speed without sacrificing ac-

curacy by using low bit data computation. Deep Compression: a three-

stage pipeline, Compressing DNNs with pruning, trained quantization

and Huffman coding all together reduces the storage requirements of neu-

ral networks by 35x to 49x without compromising accuracy. [12] A Huff-

man code is an encoding algorithm used for lossless data compression

[15].

Figure 3 Three stage pipeline of Deep Compression

4.2 Coinference at the Edge

The aforementioned inference techniques make the inference directly on

the end device. However, these are not feasible for deploying a complex,

high computation model. Here, one good option is to offload the computa-

tions to local end devices or to segment the models into partitions [1]

Offloading

Offloading plays a significant role in edge computing through dynamic

partitioning between cloud data centres and edge servers and edge de-

vices [16]. Through offloading, it is possible to scale the computational

servers and improve their performance. Computational offloading is used

to achieve fast inference by offloading computations to more stable remote

servers thus reducing the computation load on the devices and improving

the performance. Leveraging the remote servers to supplement the com-

puting capabilities of less powerful devices, such as mobiles, is the main

purpose of offloading [17]

DNN Model Partitioning

Offloading techniques are highly dependent on the network and unpre-

dictable server availability. Model partitioning takes into account the

structure of the DNN and divides its layers into several parts. For compu-

tation, some layers are offloaded to the server, some are executed on the

end devices directly. This approach reduces latency and provides better

performance. The most common method of partitioning DNN models is

done horizontally whereas vertical partition is done on CNN models. By

utilizing the computational capacity of the end devices, the power con-

sumption of the IoT device is also reduced. However, there will be a delay

at the partitioning points. When it comes to partitioning the DNN model,

special attention should be given on where to partition it. Neurosurgeon

is a system that intelligently splits DNN models at the granularity of neu-

ral network layers to achieve the optimal latency and energy usage at the

end device [18].

Figure 4 illustrates how DNN model partitioning can be done and allo-

cated to multiple devices, few are offloaded to the edge nodes, few directly

to end devices such as mobiles, and few to the cloud.

Figure 4 DNN Model Partitioning at edge adapted from [1]

Model Early Exit

To lessen the increasing costs, side branches are added to the main branch

of neural architecture, allowing specific samples to exit early stages avoid-

ing layer-by-layer processing for all layers.

BranchyNet is one such fast inference with an early exit model. BranchyNet,

a neural network architecture in which side branches are added to the

main neural network branch, to allow some test samples to escape early,

is presented to reduce these rising inference costs. This new architecture

takes advantage of the fact that characteristics learnt earlier in the deep

network’s life cycle can typically properly predict a substantial chunk of

the data population. BranchyNet significantly decreases the runtime and

energy usage for the majority of samples by departing these samples with

prediction at earlier levels and so avoiding layer-by-layer processing for

all layers [19].

Figure 5 shows how the partial DNN model employs the model early

exit approach for DL inference at the edge to extract features by quitting

at an early stage, decreasing communication delays and resulting in rapid

inference.

Figure 5 Model Early Exit adapted from [1]

5 Conclusion

Edge and fog computing are the future technologies, and there is a lot of

research being done in these fields. When these domains are combined

with AI, effective inference approaches are required to get the most out of

them. The ML models are trained and appropriate inference techniques

are selected based on the application usage, needs (such as low latency,

high availability, energy-efficient), and design. Many experiments are still

ongoing on these co-inference techniques and new techniques are emerg-

ing to satisfy the critical requirements of the industry.

References

[1] Zhuoqing Chang, Shubo Liu, Xingxing Xiong, Zhaohui Cai, and Guoqing
Tu. A survey of recent advances in edge-computing-powered artificial in-
telligence of things. IEEE Internet of Things Journal, 8(18):13849–13875,
2021.

[2] Ben Zhang, Nitesh Mor, John Kolb, Douglas S. Chan, Ken Lutz, Eric All-
man, John Wawrzynek, Edward Lee, and John Kubiatowicz. The cloud
is not enough: Saving IoT from the cloud. In 7th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 15), Santa Clara, CA, July 2015.
USENIX Association.

[3] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aled-
hari, and Moussa Ayyash. Internet of things: A survey on enabling tech-
nologies, protocols, and applications. IEEE Communications Surveys Tuto-
rials, 17(4):2347–2376, 2015.

[4] M. A. Vouk. Cloud computing – issues, research and implementations. IEEE
Journal of computing and information technology, 16(4):235–246, 2008.

[5] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang.
Edge intelligence: Paving the last mile of artificial intelligence with edge
computing. Proceedings of the IEEE, 107(8):1738–1762, 2019.

[6] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh
Jalali, Amirreza Niakanlahiji, Jian Kong, and Jason P Jue. All one needs to
know about fog computing and related edge computing paradigms. Journal
of Systems Architecture.

[7] Schahram Dustdar, Cosmin Avasalcai, and Ilir Murturi. Invited paper:
Edge and fog computing: Vision and research challenges. In 2019 IEEE
International Conference on Service-Oriented System Engineering (SOSE),
pages 96–9609, 2019.

[8] Anjum Khairi, M Farooq, M Waseem, and S Mazhar. A critical analysis on
the security concerns of internet of things (iot). Perception, 111, 2015.

[9] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach.
2002.

[10] Lucy Ellen Lwakatare, Ivica Crnkovic, and Jan Bosch. Devops for ai –
challenges in development of ai-enabled applications. In 2020 International
Conference on Software, Telecommunications and Computer Networks (Soft-
COM), pages 1–6, 2020.

[11] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T Dud-
ley. Deep learning for healthcare: review, opportunities and challenges.
Briefings in Bioinformatics, 19(6):1236–1246, 05 2017.

[12] S Han, H Mao, and WJ Dally. Compressing deep neural networks with
pruning, trained quantization and huffman coding. arxiv 2015. arXiv
preprint arXiv:1510.00149.

[13] Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowl-
edge distillation: A survey. International Journal of Computer Vision,
129(6):1789–1819, Jun 2021.

[14] Defang Chen, Jian-Ping Mei, Can Wang, Yan Feng, and Chun Chen. Online
knowledge distillation with diverse peers. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 34(04):3430–3437, Apr. 2020.

[15] Jan Van Leeuwen. On the construction of huffman trees. In ICALP, pages
382–410, 1976.

[16] Congfeng Jiang, Xiaolan Cheng, Honghao Gao, Xin Zhou, and Jian Wan.
Toward computation offloading in edge computing: A survey. IEEE Access,
PP:1–1, 08 2019.

[17] Li Lin, Xiaofei Liao, Hai Jin, and Peng Li. Computation offloading toward
edge computing. Proceedings of the IEEE, 107(8):1584–1607, 2019.

[18] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge,
Jason Mars, and Lingjia Tang. Neurosurgeon: Collaborative intelligence
between the cloud and mobile edge. SIGARCH Comput. Archit. News,
45(1):615–629, apr 2017.

[19] Surat Teerapittayanon, Bradley McDanel, and H.T. Kung. Branchynet: Fast
inference via early exiting from deep neural networks. In 2016 23rd Inter-
national Conference on Pattern Recognition (ICPR), pages 2464–2469, 2016.

Automated probing of firewalls for small
business networks

Anand Vasudevan
anand.vasudevan@aalto.fi

Tutor: Tuomas Aura

Abstract

This paper explores a way to automatically probe firewalls for security

flaws in a small network with an IPSec VPN configured in tunnelling

configuration in a controlled environment. It describes the workings of

a firewall, VPN, IP address spoofing and packet sniffing. It uses a set of

python scripts with scapy and nmap to simulate network packets from var-

ious attackers that have gained complete control over the internet (Dolev

Yao attacker). The final test suite is meant to run in a vagrant virtual

machine environment for the CS-E4300 course at Aalto University.

KEYWORDS: firewall, small network firewalls, automated firewall testing,

IPSec VPN

1 Introduction

A firewall is a network security tool that is responsible for keeping out un-

necessary packets of communication from an internal network. Firewalls

are present at the very edge of a network, between any internal devices

on the network (e.g., computers and smartphones) and the internet. This

way, all network packets that are going to, or coming from, the internet

have to pass through the firewall before they can arrive at their destina-

tion.

This paper aims to explore an automated testing tool that is used to

check the efficacy of a firewall used in a small home or office network.

These kinds of networks are usually not professionally monitored for se-

curity flaws, and so, they are more susceptible to attacks from bad actors

on the internet. When network complexities, such as IoT devices and

VPNs, are added to the mix to the mix, the attack surface only increases

[7].

This paper explores a method used for checking firewall correctness in

a small network scenario with three locations all connected to each other

through the internet. This testbed is quite similar the one used for the

CS-E4300 Network Security course at Aalto University [8]. Each of the

networks has multiple devices internally. The cloud server hosts services

that were previously contained on the same premises and on the same

network as the users. The devices on the client side are now connected

to the cloud using a site-to-cloud VPN (Virtual Private Network). This

increases the complexity of the firewall rules that need to be set up on

either side.

A further aim is to create an automated suite of tests that probes the

networks in the testbed and checks if they are correctly configured. The

operation and working of this suite should be described in this paper. This

test suite should run automatically on a regular basis to check if there

have been any changes to the firewall configuration. The test should also

be triggered manually when a new device is added to any of the sites. The

test suite should be able to pinpoint what firewall vulnerabilities exist

in each network and hint at what rule would be required to patch that

vulnerability.

The outcome will be a set of scripts that are tailored to work in a setup

similar to the testbed, not a generic all-encompassing tool that will work

for all different network topologies.

The rest of the paper is structured as follows. Section 2 will explore

other work done in the field of firewalls for small networks and firewall

checking. Section 3 elaborates the exact problems that can arise in config-

uring a firewall for this testbed and how some of those can be mitigated.

Section 4 will elaborate on the solution implementation and operation,

and explore its functionalities. Section 5 will show the results of different

test case scenarios the solution works effectively under. Section 6 will dis-

cuss potential improvements to the solution and its limitations. Section 7

will conclude the paper.

2 Background

2.1 Firewall

A firewall is a perimeter defence mechanism used to ensure that only

necessary traffic is allowed to enter (or exit) a network. In general, fire-

walls work on the Internet layer of the Internet protocol suite, TCP/IP

(Transmission Control Protocol/ Internet Protocol) suite, to filter IP pack-

ets. There are two broad types of firewalls: stateful and stateless. State-

less firewalls are simple packet filters that analyze each packet without

any memory or context. Stateful firewalls, on the other hand, are more

complex and remember the nature of different connections established

from the network.

In this paper, we will proceed with the assumption that the firewalls are

implemented using simple stateless packet filters. This filters packets

based on a fixed set of rules, set by a network administrator, that contains

a pre-condition and a resultant action. The conditions match different

fields in the IP packet, mainly the source and destination IP address, the

source and destination port, and the protocol used to transport the data.

The actions include "pass", "log", or "drop". More specifically, the paper

targets a use case where the firewall is set up using the "iptables" [13]

command on a Linux router.

2.2 Virtual Private Network

A Virtual Private Network (VPN) is a tool used to extend a virtual net-

work across different geographic locations. It is most commonly used

along with security measures to encrypt and protect the data between

the different locations it covers. While there are many types of VPNs,

this paper will focus on the use of an Internet Protocol Security (IPsec)

VPN [12] that is typically used to connect two different sites together, as

opposed to VPNs that connect a single device to a site or another single

device. The testbed configuration uses IPSec in tunnel mode, ensuring

security by encrypting and encapsulating the original IP packet that it

needs to transport within an IPSec IP packet.

In the testbed, ideally, IPSec is configured between the gateways of the

different sites in tunnel mode [6]. This is a type of VPN which is set up

using the routers at both ends of the networks that want to be bridged to

each other. Every packet that passes through one router, destined towards

the other end of the IPSec tunnel, is encrypted and encapsulated within

an IPSec packet. So to anybody sniffing packets outside the tunnel, they

will only see the headers of the encapsulating packet and all of the details

of the original packet will be encrypted, including the original headers

on the packet. This way the devices within each network can continue

to operate without any reconfiguration or knowledge about the change in

the network configuration.

Figure 1. Simple IPSec packet encapsulation

3 Project aim

3.1 Testbed

The testbed used is quite similar the one used for the CS-E4300 Network

Security course at Aalto University [8]. However, our program should be

flexible enough to work with multiple client sites connecting to multiple

different server sites.

Figure 2. Testbed for the paper

3.2 Output format

The final project should produce a binary executable file that future stu-

dents of the CS-E4300 course can viably use to check the correctness of

their project submissions. The program will provide an output with dif-

ferent categories of data: the basic setup of the network, the firewall con-

figuration for the functioning of the VPN, and extra firewall configuration

for added security. On each of these fronts, the program will run a suite

of tests and provide an output for each.

The execution of the program can be augmented by providing a con-

figuration file with details about the network topology, VPN setup, and

exemptions to the assumed flow of data. This will allow users to alter the

program to work with different network configurations and topologies.

Additionally, the default functionality of the program can be easily edited

to work with different requirements for future iterations of the course.

Although this kind of rudimentary program is not feasible for any large

scale use in the real-world, it can be a good starting point to verify the

basic functionality of a similar topology. There are plausibly many real

world setups that closely resemble the project testbed that we have se-

lected, as shown in the project PDF [9].

4 Solution

4.1 Tools and technologies

The project is implemented using python scripts because of pythons ubiq-

uity in Linux systems and its ease of use to program and maintain. The

python scapy [5] packet management library is used to carry out different

network functions including sending packets, spoofing IP addresses, and

sniffing packets. Additionally, the nmap program [1] is used to probe the

gateway to see if there are any open ports that an attacker could target.

Spoofing IP packets

IP address spoofing [10] is a technique used to change the source IP ad-

dresses of an IP packet to be different from the real IP address of the

sender. This can be used to deceive the receiver of the packet to believe

that the sender was the machine with the spoofed IP address.

Sniffing packets

Sniffing a network packet is a way for a computer to monitor and see the

details of internet packets that are targeted to, or pass through, one of its

network interfaces. A packet sniffer, also knows as a packet analyzer [4],

is a program that captures the packet, extracts information about it, and

logs the information to some location.

Running tests

In the testbed, all the computers are created using virtual machines using

vagrant [2], all using Ubuntu 18.04. The tests have to be executed on

different virtual machines, sometimes simultaneously. This is because the

router needs to be used to sniff the different packets that passes through it

and check if there are responses to the spoofed packets sent by the clients.

There is a YAML configuration file into which the user can enter the

gateway IP addresses of each of the clients and the cloud location into.

The test suite is initiated by running a single script on the host machine

which triggers the appropriate test to be run on the virtual machine and

collates all the results into a single location.

4.2 Test cases covered

The attacks on the system can be categorized in two ways: where the

attack originates and whom the attack targets. The attack can originate

from a client site, a server site, or the rest of the internet (Dolev Yao

attacker [11]). The attack can target a client site or a server site.

The use case for the testbed in question is that the devices from the

client site and the server site do not need to be in contact with any de-

vices other than their corresponding client or server, and a designated

administration server that is in charge of maintenance and updates. This

means that the firewall and VPN should be configured to ensure that the

two sites are connected to the cloud server and no other non-VPN traf-

fic should be allowed to flow through the gateways. Additionally, the two

client sites are to be isolated from each other, i.e., client A should not be

able to tamper with the server B.

Positive cases

The positive cases covered include ensuring that the tunnel is set up prop-

erly by checking the appropriate IPsec ports are open and checking that

the client can successfully communicate with the server. Without any ad-

ditional tests, these positive cases does not guarantee that the VPN and

firewall are configured appropriately, but combined with the results of the

negative cases a complete picture of the system is visible.

Outside attackers

In the testbed, since the router handles all the traffic between the sites, a

Dolev Yao attacker can be simulated by controlling the router to intercept

and spoof packets.

If the router can successfully access either of the servers using a spoofed

packet, pretending to be a random outside IP address that doesn’t belong

to any client, any real-world attacker can also access the server. This is a

severe security flaw that exposes the servers and means that the firewall

was not set up to filter non-client IP addresses from accessing the server.

If the router can successfully access a server using a spoofed packet, pre-

tending to be one of the client gateways, then a real-world attacker who

is on-path [3] will be able to spoof an IP address to target the server. This

means that the firewall configuration does not prevent non-VPN tunnel

packets from reaching the server.

Cross site attackers

A real world analogue to the testbed in this paper would be a startup com-

pany that offers cloud services to replace bare-metal servers for multiple

clients. In this scenario, even another client hosted in the same cloud lo-

cation could be a potential attacker to a clients server. For example, client

B could send a packet to server A to poision the data.

Another such attack, which is more difficult to execute by client B, in-

volves client B spoofing the IP address of client A and making a request

to the server through the VPN tunnel. TO defend against this, the VPN

needs to be configured to separate the two clients into their own tunnels

without allowing traffic from one tunnel to be passed to the other server.

The firewall and VPN configuration should ensure that these types of at-

tacks are not possible.

4.3 Test results

The results of the all the tests are written in a text file and shown to the

user per test. There is a message shown for each use case to indicate

what kind of problems their configuration has without revealing what the

immediate fix could be.

5 Conclusion

The aim of the project was to explore the field of automated firewall and

VPN configuration testing and to make a tool that can be used by students

taking the CS-E4300 course at Aalto University. After exploring the pos-

sible security vulnerabilities in a firewall and ways to combat these using

python, this was accomplished using python scripts, the scapy library, and

nmap.

The same testing suite can be used for the WireGuard VPN project of

the CS-E4300 as well. Since both the projects use the same testbed with

minimal changes in the expected outcome, this same program can be used

with minimal modifications.

There is considerable scope for improvement for this type of app being

used as a more generic teaching tool. With some additional graphical

reporting that visual explains the weaknesses in the system combined

with some graphics explaining the correct solution, this tester could be a

more useful method of teaching.

Another possible improvement would be to enable this project to check

for any bonus edge scenarios that are not part of the project description.

For example, Docker containers can be used on the server side instead of

running a dedicated server for each client. In a real-world scenario, this

would come with considerable cost savings, and hence is another use case

that adds complexity in the firewall rules.

References

[1] Nmap: the Network Mapper - Free Security Scanner.

[2] Vagrant by HashiCorp.

[3] What is an on-path attacker?

[4] Packet analyzer, April 2022. Wikipedia, the free encyclopedia.

[5] Scapy, April 2022.

[6] Tunneling protocol, April 2022. Wikipedia, the free encyclopedia.

[7] Gunes Acar, Danny Yuxing Huang, Frank Li, Arvind Narayanan, and Nick
Feamster. Web-based Attacks to Discover and Control Local IoT Devices. In
Proceedings of the 2018 Workshop on IoT Security and Privacy, IoT S;P ’18,
pages 29–35, New York, NY, USA, August 2018. Association for Computing
Machinery.

[8] Tuomas Aura. tuomaura/cs-e4300_testbed, January 2022. original-date:
2020-11-17.

[9] Tuomas Aura and Aleksi Petonen. Project 2 Network Security CS-E4300,
2021-2022, September 2021.

[10] Bastian Ballmann. Understanding Network Hacks. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2015.

[11] Danny Dolev. On the Security of Public Key Protocols. IEEE TRANSAC-
TIONS ON INFORMATION THEORY, (2):11, 1983.

[12] Naganand Doraswamy. IPSec. Prentice-Hall PTR Web infrastructure se-
ries. Prentice Hall PTR, Place of publication not identified, 2nd ed. edition,
2003.

[13] Herve Eychenne. iptables(8) - Linux man page.

Task Allocation for Vehicular Fog
Computing: A Review

Lizzy Tengana
lizzy.tenganahurtado@aalto.fi

Tutor: Wencan Mao

Abstract

Vehicular Fog Computing (VFC) has emerged as an answer to the demand

of efficient computational power in vehicular scenarios. Reaching com-

putational resources in the cloud implies a network delay that latency-

sensitive applications cannot afford. Hence, binding computational units

to vehicles and stations along the road (fog nodes) can enable vehicle clients

to borrow these resources and offload tasks that require more computa-

tional capacity than what is locally available. However, scheduling tasks

efficiently in an extremely dynamic vehicular environment is known to be

an NP-hard problem [5] due to the combinatorial nature of matching a

set of tasks to a set of fog nodes while considering the constraints of each

participant. Thus, this article reviews the state-of-the-art approaches to

task allocation for vehicular fog computing and provides a summary of the

challenges faced in the literature thus far as well as the ones forthcoming.

KEYWORDS: Vehicular fog computing, edge computing, computation of-

floading, dynamic task allocation.

1 Introduction

The emerging growth of computational power in a hyper-connected world

has brought the idea of real-time applications from fiction to reality. Ap-

plications such as autonomous driving, augmented reality, emergency fail-

ure reaction and smart city management require resource intensive tasks

to be performed with almost no delay [5, 15, 19]. From real-time object

recognition to crowdsourced decision-making, these tasks cannot afford

the round trip time to reach the cloud and be resolved [20, 21], thus, ve-

hicular fog computing (VFC) has risen as a feasible solution to bring a

pool of computational resources near service consumers and data sources

[3].

A fog computing node usually refers to any server located in the path

from the cloud to the clients of the network [10]. Vehicular for computing

focuses on the challenges that emerge from allowing computing resources

to change their physical location dynamically, i.e., fog node mobility. The

VFC field studies the interaction between clients and fog nodes, partic-

ularly, how to optimize the way in which vehicular clients can harness

idle computing resources from mobile and stationary fog nodes [6]. The

complexity of introducing mobile fog nodes lies on the heterogeneity of re-

sources that each node brings; in this scenario, efficient task allocation

strategies are needed to make the best use of the computational power

available at any given moment.

The complexity of task allocation is far from trivial. It has been found

to be a non-convex and NP-hard optimization problem because of its re-

strictions regarding processing and transmission latency, quality of infor-

mation and energy utilization [5]. Several approaches to optimize task

allocation have been proposed covering a variety of contexts and objec-

tives. For instance, the energy efficiency aspect of VFC has been widely

researched [1, 4, 7, 8, 16, 17], thus, this work reviews the latest directions

in the VFC field beyond that of energy efficiency, which include the min-

imization of processing and transmission latency [5, 14, 19, 20, 21], the

maximization of quality of information [19, 20] and quality of results [21],

ensuring reliability and fault tolerance [5], and decision making under

information asymmetry and uncertainty [18].

This paper is organized as follows. Section 2 presents the background

and key aspects relevant to VFC. Section 3 presents the the state-of-the-

art approaches to task allocation in VFC. Section 4 discusses the perfor-

mance of said strategies and gives an outlook to future trends in task

allocation in VFC. Finally, Section 5 provides concluding remarks.

2 Fundamentals of Task Allocation in Vehicular Fog Computing

This section comprises the core concepts in the study of task allocation

in VFC, ranging from fundamental definitions to the main challenges to

consider when transitioning from a stationary resource ecosystem to one

that can take advantage of the temporary proximity of heterogeneous re-

sources.

2.1 The need for Vehicular Fog Computing

As stated in the introduction, the VFC field is concerned with finding the

best possible use of idle computing resources in the path from the cloud to

the edge of the network [10]. These idle resources are located in fog nodes

(servers) that can be either stationary or mobile. In particular, having mo-

bile fog nodes near the edge of the network, as in taxis, buses and other

vehicles, introduces the complex problem of optimizing the demand and

supply of resources in many vehicular use cases. These VFC use cases in-

clude autonomous driving [18], augmented reality [18], visual-based div-

ing assistance [19], emergency failure management [5] and collection of

information of common interest [15, 20].

2.2 Task Allocation Complexity

In VFC, task allocation refers to transferring resource-intensive compu-

tation from resource-constrained clients to external fog nodes that posses

enough idle resources to lend them to nearby consumers [11]. This client-

server environment is highly dynamic due to the mobility of its actors, and

finding the best possible match between tasks and fog servers requires an

exhaustive search among all possible pears, i.e., a combinatorial effort

that would take non-deterministic polynomial time to complete [18]. Con-

sequently, due to the time complexity of this problem, modern strategies

to task allocation in near real-time imply a trade-off between service la-

tency and accuracy of results.

2.3 Task Migration

The challenge of task migration is often encountered in VFC because

there are no guarantees of task completion in complex mobile environ-

ments once the allocation has been decided. This migration process can

be managed in a centralized [5, 21] or decentralized [19] manner. Central-

ized approaches usually place the responsibility of reassigning incomplete

tasks on a zone head, which monitors the whole life-cycle of tasks within

its communication range. Decentralized approaches, on the other hand,

may leave this decision to the task owner.

2.4 Network Latency

One of the main motivations for pushing computational resources closer to

the edge of the network is precisely the need to optimize the performance

of latency-sensitive tasks [2]. Critical tasks, such as emergency failure

reaction in autonomous driving require a handling time of less than 50ms

[13]. However, optimizing only the latency would leave behind critical ob-

jectives in different use cases. In this sense, Zhu et al. [21] consider the

joint optimization of service latency and quality loss to improve real-time

situational awareness and cooperative lane change. In subsequent works,

Zhu et al. optimizes data quality and latency in the particular case of

image processing for visual-based assisted driving [19] and visual crowd-

sourcing of events of common interest [20]. Hou et al. [5] highlights the

importance of reliable task allocation and fault tolerance under latency

constraints to enable auto/assisted driving and emergency failure man-

agement for the future of intelligent transportation systems. Shi et al.

[14] introduces task prioritization into the latency optimization problem

to promote idle resource sharing among vehicles using a dynamic pricing

model.

2.5 Bandwidth Consumption

The exponential growth of internet connected electronic devices and the

emergence of intelligent transportation systems constantly increases the

need of higher data transfer throughput, which is reflected in network

bandwidth consumption. As indicated by Hou et al. [5], the heterogene-

ity of computing resources, failure rates and communication equipment

among fog nodes hinders the forecasting of bandwidth consumption. Fur-

thermore, Zhu et al. [21] observe that under limited bandwidth, the size

of the data is the main factor in transmission delay.

2.6 Security and Privacy

There are few works related to the security and privacy of task alloca-

tion in VFC. Hou et al. [5] explores the reliability and reprocessing needs

when allocating critical tasks. The authors propose allowing partial com-

putation offloading of tasks than can be executed in parallel and repro-

cessing of tasks as necessary. Here, reliable communication occurs within

a software defined network (SDN) and its complexity of orchestration is

overcome by using a fault-tolerant particle swarm optimization algorithm

(PSO).

2.7 Situational Awareness

Situational awareness refers to collecting raw data from any given con-

text, translating it into structured information and infer an accurate big

picture of a situation with respect to a specific goal [12]. As the goal often

involves decision making, it is paramount that this whole processing oc-

curs in a timely manner. Given that there are not two identical tasks that

would happen in the exact same context, there is a need for dynamic task

prioritization [14], as well as data-sharing schemes, such as crowdsourc-

ing, to obtain the most relevant up-to-date information [9].

3 Modern Approaches to Task Allocation in VFC

3.1 Optimization

Linear programming optimization (LPO) and particle swarm optimiza-

tion (PSO) have been studied to offload tasks from clients to vehicular

fog nodes [21, 5]. Linear programming optimization (LPO) has been used

to solve an optimization matrix that has tasks from client vehicles and

available fog nodes as the rows and columns, and task transmission rate

between them as the values [21]. Then, an efficient linear programming

solver finds an optimal matching for the tasks and the available fog re-

sources.

On the other hand, algorithms based on particle swarm optimization

(PSO) have also been used to find the best allocation of tasks to fog nodes

with respect to given metrics (e.g., service latency) [21, 5]. Using PSO, all

possible task allocation decisions for a set of tasks and fog nodes comprise

a search space, and the particles represent a subset of candidate decisions

that can change over time to find an optimal solution. Within the search

space, the next move of a particle is influenced by the best candidate it has

found so far and the global optimum candidate found so far by the swarm.

By this iterative process, the swarm is expected to eventually converge to

the optimal task allocation decision.

3.2 Task Allocation as a Partially Observable Markov Decision
Process

Task allocation has also been modeled as a Partially Observable Markov

Decision Process (POMDP). Zhu et al. [19], for instance, designed a POMDP

that considered the workload fluctuation in vehicular fog nodes as a Markov

chain. This chain has a transition probability matrix that represents dif-

ferent workload states within time intervals and is updated regularly

with the goal of maximizing cumulative task utility at each time inter-

val. In this framework, the task allocation is initiated by a client vehicle,

which broadcasts a message within its range of communication, then, the

nearby fog nodes reply with their location and transition probability ma-

trix, and finally, the client selects fog node that offers the least communi-

cation delay.

3.3 Reinforcement Learning

Due to the high complexity of the task allocation problem, deep learn-

ing algorithms have been proposed to learn the best allocation strategies

from the data itself [20, 14]. Zhu et al. [20] modelled the task alloca-

tion problem as a Markov decision process where vehicles are agents that

interact with an environment by transitioning through different states

and collecting rewards. As possible states in VFC can be infinite, the au-

thors proposed an advanced Deep Q-network (DQN), which approaches

the state scalability issue by learning the optimal parameters of a neural

network. DQN in based on Q-learning (or quality learning), a reinforce-

ment learning algorithm that can find the optimal policy in a Markov

decision process based solely on experience.

Another example of task allocation using reinforcement learning was

presented by Shi et al. [14]. In this work, task allocation is again for-

mulated as a Markov decision process, then, a fog node controller collects

information about the agents in its environment and feed it into a soft

actor-critic (SAC) reinforcement learning algorithm. This SAC makes de-

cisions based on the outputs of three neural networks (NN), on for the

actor and two for the critic, where the actor NN focuses on improving its

task allocation policy while the critic NNs jointly evaluate the policy and

influence the actor’s decisions. This SAC strategy can manage infinite

action spaces, as in the case of VFC, and enable a maximum entropy con-

figuration to allow the exploration of more alternative strategies within

an action space.

3.4 Task Allocation as a Stable Matching Problem

Task allocation between client vehicles and fog nodes is a combinatorial

problem that can be approached as a stable matching problem where both

clients and fog nodes maintain preference lists based on their own priori-

ties [18]. For instance, Zhou et al. [18] presented a task offloading as a two

dimensional stable matching problem with preferences based on service

latency and dynamic prices of computation. A client’s preference list is

sorted according to its goal of minimizing the latency of task computation

and network transmission. On the other hand, a fog node’s preference list

is organized to maximize its earnings, thus, the fog node only accepts a

client proposal when there no other proposals in its list. This task allo-

cation process based on preference lists occurs in rounds; first, the client

vehicles propose their tasks to idle fog nodes, then the fog nodes count the

number of proposals and if some receive more than one, those would raise

the price of their computation and notify their prospect clients. This step

is repeated until there is only one client vehicle proposing to a fog node.

4 Discussion and Future Directions

Solving the task allocation problem entails the optimization of a dynamic

matching problem known to be NP-hard [18]. Therefore, finding the ab-

solute best matching between tasks and fog nodes is infeasible in near

real time. Nonetheless, there can be infinite ways of approaching the

search for the a good-enough matching under given constraints, including

latency and quality of service. Thus, the relevant constraints for a "good"

dynamic matching depend on the use cases, and the state-of-the-art ap-

proaches and results are not straightforwardly comparable. Tables 1 and

2 present a side-by-side overview of the strategies found in recent litera-

ture as a tool to identify the similarities, differences and nuances of task

allocation for vehicular scenarios.

4.1 Open Issues

Issues that require further research regarding task allocation in vehicular

fog computing are detailed as follows:

• Cache systems: benefiting from similar tasks that have taken place in

the past and have an efficient access to the most relevant ones [19].

• Vehicular coordination: collaborative situational awareness by having

real time access to road state information [19]

• Mobile node diversity: considering not only traditional transportation

systems like cars and buses, but also other vehicles that can contribute

to a resource pool, such as drones [19, 20].

• Distributed learning: recent advances in federated and parallel learn-

ing can increase the efficiency of training AI algorithms [20] and the

availability of information of common interest.

• Standardization: in order to have an extensive appropriation of vehic-

ular fog computing, standardizing protocols are a need yet to be met

[15].

5 Conclusion

This work presented an overview of the state-of-the-art strategies for task

allocation in vehicular fog computing. These strategies strive to overcome

the time complexity challenge of exhaustive search by proposing differ-

ent optimizations that go beyond service latency to include quality of in-

formation, reliability guarantees, fault-tolerance, task prioritization and

utility schemes. Furthermore, VFC has the potential to benefit from re-

cent advances in Artificial Intelligence, and bring latency-sensitive use

cases, such as reliable autonomous driving, closer to reality.

Table 1. Task allocation methods, context/use cases, objectives and constraints.

State-of-

the-art

Method Context / Use

cases

Objective Constraints

Folo [21] Linear pro-

gramming opti-

mization (LPO).

Binary particle

swarm optimiza-

tion (BPSO).

Time critical and

data intensive

tasks.

Optimization

of latency and

quality of service.

Service latency.

Quality loss of re-

sults. Fog capacity.

EC-SDIoV

[5]

Particle swarm

optimization.

Autonomous/

assisted driv-

ing, emergency

failure manage-

ment.

Fault-tolerant

task allocation

and latency

optimization.

Latency.

Chameleon

[19]

Partially Observ-

able Markov De-

cision Process.

Visual-based as-

sisted driving.

Optimize latency

and image reso-

lution awareness

as a proxy for

data quality.

Latency. Data qual-

ity. Processing de-

lay. Spatiotemporal

variation in vehicu-

lar traffic density.

Flexsensing

[20]

Reinforcement

learning: Deep

Q-network

(DQN)

Vehicle-based

crowdsourcing of

visual data.

Maximize quality

of information

(QoI) and mini-

mize processing

latency.

Latency.

Priority-

aware

[14]

Reinforcement

learning: Soft

Actor-Critic

(SAC) neural

networks

Sharing com-

putational re-

sources among

vehicles.

Maximize the

average utility

when sharing

comutational

resources.

Latency. Priority.

Utility.

Matching-

learning

[18]

Matching-

learning based

on latency and

dynamic prices of

computation.

Autonomous

driving, visual

based assisted

driving.

Optimization of

task allocation

under informa-

tion asymmetry

and uncertainty.

Information asym-

metry. Information

uncertainty. Non-

negative utilities.

Reward fairness.

Table 2. Task allocation inputs, outputs, time complexity and performance.

State-of-

the-art

Inputs Outputs Time Complexity Performance

Folo [21] Traces of clients

and mobile fog

nodes. Location

of zone head.

Unassigned task

set.

Task as-

signment

decision.

LPO: O((|J ||K| +

2|K|+1)3.5xB2), fog

nodes J, tasks K,

bit count B. BPSO:

heuristic (not pro-

vided).

Average service

latency reduced

by 27% and qual-

ity loss reduced

by 56% (against

random fog node

selection).

EC-SDIoV

[5]

Location of

clients, fog

nodes, zone

head. CPU cy-

cles, data size

and latency per

task.

Best position

of the particle

swarm. Re-

constructed

target func-

tion.

O(u∗MaxG∗2p+q+1) Service latency is

improved between

14% and 72% com-

pared to different

task allocation

schemes.

Chameleon

[19]

Object recog-

nition profiles.

Trajectories of

fog nodes and

clients.

Task as-

signment

decision.

Not provided. 65% reduction in

service latency and

a 83% increase in

average image reso-

lution.

Flexsensing

[20]

Traffic traces of

clients and fog

nodes.

Task as-

signment

decision.

Depends on for-

ward and backward

propagation of the

DQN.

51% reduction in in

average processing

latency and 34% in-

crease in quality

of information col-

lected.

Priority-

aware

[14]

Task set. In-

put data size per

task. CPU cy-

cles required per

task. Delay con-

straint per task.

Task priority.

Task as-

signment

decision.

O(KT), T is a given

time period, K is

the set of vehicles

within the commu-

nication range of a

task owner vehicle.

Aprox. 100% com-

plete tasks for

beyond 15 vehi-

cles/km

Matching-

learning

[18]

Vehicles with

residual com-

putational re-

sources. Pending

tasks.

Task as-

signment

decision.

O(Nz)(N ≥ M) or

O(Mz)(M ≥ N),

z is the number of

price raising opera-

tions.

Round-trip delay of

nearly 100ms and

17% delay reduc-

tion compared to

exhaustive search.

References

[1] Zheng Chang, Zhenyu Zhou, Tapani Ristaniemi, and Zhisheng Niu. En-
ergy efficient optimization for computation offloading in fog computing sys-
tem. In GLOBECOM 2017-2017 IEEE Global Communications Conference,
pages 1–6. IEEE, 2017.

[2] Mung Chiang and Tao Zhang. Fog and iot: An overview of research oppor-
tunities. IEEE Internet of things journal, 3(6):854–864, 2016.

[3] Alisson Barbosa De Souza, Paulo AL Rego, Tiago Carneiro, Jardel Das C
Rodrigues, Pedro Pedrosa Rebouças Filho, Jose Neuman De Souza, Vinay
Chamola, Victor Hugo C De Albuquerque, and Biplab Sikdar. Computation
offloading for vehicular environments: A survey. IEEE Access, 8:198214–
198243, 2020.

[4] Ruilong Deng, Rongxing Lu, Chengzhe Lai, Tom H Luan, and Hao Liang.
Optimal workload allocation in fog-cloud computing toward balanced delay
and power consumption. IEEE internet of things journal, 3(6):1171–1181,
2016.

[5] Xiangwang Hou, Zhiyuan Ren, Jingjing Wang, Wenchi Cheng, Yong Ren,
Kwang-Cheng Chen, and Hailin Zhang. Reliable computation offloading
for edge-computing-enabled software-defined iov. IEEE Internet of Things
Journal, 7(8):7097–7111, 2020.

[6] Xueshi Hou, Yong Li, Min Chen, Di Wu, Depeng Jin, and Sheng Chen. Ve-
hicular fog computing: A viewpoint of vehicles as the infrastructures. IEEE
Transactions on Vehicular Technology, 65(6):3860–3873, 2016.

[7] Yuyi Mao, Jun Zhang, and Khaled B Letaief. Dynamic computation of-
floading for mobile-edge computing with energy harvesting devices. IEEE
Journal on Selected Areas in Communications, 34(12):3590–3605, 2016.

[8] Olga Munoz, Antonio Pascual-Iserte, and Josep Vidal. Optimization of radio
and computational resources for energy efficiency in latency-constrained ap-
plication offloading. IEEE Transactions on Vehicular Technology, 64(10):4738–
4755, 2014.

[9] Jianbing Ni, Aiqing Zhang, Xiaodong Lin, and Xuemin Sherman Shen. Se-
curity, privacy, and fairness in fog-based vehicular crowdsensing. IEEE
Communications Magazine, 55(6):146–152, 2017.

[10] Carlo Puliafito, Enzo Mingozzi, Francesco Longo, Antonio Puliafito, and
Omer Rana. Fog computing for the internet of things: A survey. ACM
Transactions on Internet Technology (TOIT), 19(2):1–41, 2019.

[11] Firdose Saeik, Marios Avgeris, Dimitrios Spatharakis, Nina Santi, Dim-
itrios Dechouniotis, John Violos, Aris Leivadeas, Nikolaos Athanasopoulos,
Nathalie Mitton, and Symeon Papavassiliou. Task offloading in edge and
cloud computing: A survey on mathematical, artificial intelligence and con-
trol theory solutions. Computer Networks, 195:108177, 2021.

[12] Mahadev Satyanarayanan. Edge computing for situational awareness. In
2017 IEEE International Symposium on Local and Metropolitan Area Net-
works (LANMAN), pages 1–6. IEEE, 2017.

[13] Philipp Schulz, Maximilian Matthe, Henrik Klessig, Meryem Simsek, Ger-
hard Fettweis, Junaid Ansari, Shehzad Ali Ashraf, Bjoern Almeroth, Jens
Voigt, Ines Riedel, et al. Latency critical iot applications in 5g: Perspective
on the design of radio interface and network architecture. IEEE Communi-
cations Magazine, 55(2):70–78, 2017.

[14] Jinming Shi, Jun Du, Jingjing Wang, Jian Wang, and Jian Yuan. Priority-
aware task offloading in vehicular fog computing based on deep reinforce-
ment learning. IEEE Transactions on Vehicular Technology, 69(12):16067–
16081, 2020.

[15] Jingjing Wang, Chunxiao Jiang, Kai Zhang, Tony QS Quek, Yong Ren, and
Lajos Hanzo. Vehicular sensing networks in a smart city: Principles, tech-
nologies and applications. IEEE Wireless Communications, 25(1):122–132,
2017.

[16] Changsheng You, Kaibin Huang, Hyukjin Chae, and Byoung-Hoon Kim.
Energy-efficient resource allocation for mobile-edge computation offloading.
IEEE Transactions on Wireless Communications, 16(3):1397–1411, 2016.

[17] Pengtao Zhao, Hui Tian, Cheng Qin, and Gaofeng Nie. Energy-saving of-
floading by jointly allocating radio and computational resources for mobile
edge computing. IEEE Access, 5:11255–11268, 2017.

[18] Zhenyu Zhou, Haijun Liao, Xiaoyan Wang, Shahid Mumtaz, and Jonathan
Rodriguez. When vehicular fog computing meets autonomous driving: Com-
putational resource management and task offloading. IEEE Network, 34(6):70–
76, 2020.

[19] Chao Zhu, Yi-Han Chiang, Abbas Mehrabi, Yu Xiao, Antti Ylä-Jääski, and
Yusheng Ji. Chameleon: Latency and resolution aware task offloading for
visual-based assisted driving. IEEE Transactions on Vehicular Technology,
68(9):9038–9048, 2019.

[20] Chao Zhu, Yi-Han Chiang, Yu Xiao, and Yusheng Ji. Flexsensing: A qoi and
latency-aware task allocation scheme for vehicle-based visual crowdsourc-
ing via deep q-network. IEEE Internet of Things Journal, 8(9):7625–7637,
2020.

[21] Chao Zhu, Jin Tao, Giancarlo Pastor, Yu Xiao, Yusheng Ji, Quan Zhou,
Yong Li, and Antti Ylä-Jääski. Folo: Latency and quality optimized task
allocation in vehicular fog computing. IEEE Internet of Things Journal,
6(3):4150–4161, 2018.

Cloud and Local Game Streaming

Sergei Kaukiainen
sergei.kaukiainen@aalto.fi

Tutor: Esa Vikberg

Abstract

KEYWORDS: Gaming, cloud gaming, video games, quality of service

1 Introduction

Major progress in information and communications technology (ICT) in

recent decades have enabled many new services for consumers’ everyday

life. Probably one of the biggest has been video streaming over the in-

ternet. Another service that has grown its popularity in the same way,

especially during the last few years, is cloud gaming or sometimes called

Games/Gaming as a Service (GaaS). This can be explained partly for two

reasons. Since the global pandemic hit the world and everybody had to

spend more time at home, people started to find new ways to spend time

or get back to old hobbies. This can be seen in statistics as time spent

on video gaming has increased globally 39%[12]. At the same time as

Covid-19 introduced itself, the industrial world got hit by a global mi-

crochip shortage that made Graphics Processing Units (GPUs) and next-

generation gaming consoles very hard to get. In these cases, cloud gaming

offered a good alternative since it wasn’t necessary to require a new con-

sole or powerful computer to play demanding games.

The idea behind cloud gaming service [22] is that games run on a remote

server in data centers and content are streamed over the internet to the

user’s device. This essentially means that even light-power devices like

phones, tablets, and older PCs can run new, high-demanded AAA games

anywhere on the go. It does not only make gaming more accessible but

also saves a lot of costs since the user does not need to update the hard-

ware to meet the requirements needed for those AAA games.

This paper is organized as follows. Section 2 presents the related work

and states the motivation behind this paper. Section 3 gives an overall

history of cloud gaming. After this, Section 4 introduces the technical as-

pects of cloud gaming services. Section 5 reviews the biggest currently

available services on the market, their providers, and gives a short com-

parison between them. And lastly, Section 6 provides concluding remarks

2 Related work

First cloud gaming services found their way to the market in the late

2000s. Since then, markets have changed tremendously, especially during

the last couple of years and cloud gaming has gained a lot of popularity.

This has resulted in many research papers that have studied cloud gam-

ing from different perspectives. Cai et al. studies in their paper cloud

gaming platforms and different optimization techniques [9]. Subjective

quality assessment of cloud gaming was studied by Martini et al. [22].

Some work was provided on the future of cloud gaming [20] [10] and the

possible use of cloud gaming in education [28]. Excellent network analy-

sis and overall technical aspects of cloud gaming systems were surveyed

by [26] [14] [27]. This paper tries to combine many aspects of current re-

searches into one. The motivation behind this paper is to elaborate on the

history of cloud gaming, give an overall picture of the GaaS mechanics,

and lastly combine that with the review of available products currently

on the market.

3 History

When talking about the history of cloud gaming, we can illustrate it as

a long series of retries, rebranding and hits and misses. First-time cloud

gaming was introduced in 2000 by Finnish startup G-Cluster [23]. Their

goal was to bring GaaS to the market for a wide audience. Unfortunately

for G-Cluster, at the time the market was still not developed enough and

the firm could not reach enough potential users. In 2010 G-Cluster started

to target IPTV users.

In 2005 Crytek, a video game development studio behind popular Crysis

games began its research on cloud gaming [21]. However, in 2007 Cry-

tek concluded that global communication infrastructure was not ready for

cloud gaming yet and put all research on hold.

Figure 1. Simplified timeline from 2020 to 2022

In the late 2000s and early 2010s, the cloud gaming industry stepped

into a new chapter. First OnLive and Gaikai were found. In 2010 OnLive

[20] [19] launched their commercial cloud gaming service and a year later

Gaikai followed. Both acquired support from big publishers, although

only Gaikai was successful enough to be profitable. Both were later ac-

quired by Sony Computer Entertainment, Gaikai in 2012 [9] and OnLive

[4] in 2015. Sony introduced its cloud gaming platform Playstation Now

in 2014. It was successful deal because in 2021 Playstation Now had 3.2

million active subscribers [24].

In 2013, Nvidia brought its cloud gaming service Nvidia Grid to the

market which was later rebranded as formally known GeForce Now. Orig-

inally Grid aimed to partner with Gaikai to provide games as a service but

Sony got Gaikai first [16]. Later Nvidia partnered with Agawi, Cloudunion,

Cyber Cloud, G-cluster, Playcast, and Ubitus [15]. Now GeForce Now is

one of the major service providers. In 2018 also Google and Microsoft en-

tered the market and are branded now as Google Stadia and Microsoft

xCloud. To follow the example of the other cloud providers, Amazon intro-

duced its cloud gaming service in 2020 named Luna.

4 Technical aspects of cloud gaming

In this chapter, we jump into the technical part of the paper. First, we will

look at the simplified architecture of the cloud gaming system and review

its different parts and their requirements. After this, we will compare

different network requirements and streaming qualities. In both sections,

we will compare four of the most popular service providers Nvidia GeForce

Now, Sony Playstation Now, Google Stadia, and Microsoft xCloud.

4.1 Components and cloud system

Let’s review the technical aspect of the cloud gaming system. For many

years cloud gaming was held back because of the lack of proper infrastruc-

ture. Gaming services require good bandwidth so that games themselves

would stay playable in terms of performance. And of course, this is not

the only challenge that GaaS encounter, as the whole cloud system is very

complex from the technical point of view. Below in figure 1 is illustrated

simplified version of a typical framework of a GaaS.

Figure 2. Simplified GaaS architecture [17] [11]

The main idea behind cloud gaming is that all game-related actions and

logic, like scene rendering or storage, are executed on the cloud server-

side. Therefore client-side only needs to handle capturing the user’s in-

puts and sending them to the server and audio and video decoding when

the server responds.

GaaS require two data streams [26]. The first data stream is trans-

mitted to the cloud and contains the user’s input events. The second data

stream is from the cloud to the user’s device and contains a rendered scene

from the game. This data stream is the most problematic because it trans-

mits many large data packets thus requiring good bandwidth and reliable

network protocol.

As the network connection is prone to delays and packet losses, cloud

architecture needs to use reliable network protocols with certain proper-

ties. One of these is the absence of retransmission if packet loss happens

during transmission. Typically both, uplink and downlink streams, uses

User Datagram Protocol (UDP) based protocols [14]. UDP does not use ac-

knowledgment, retransmission, or timeout and is therefore preferable for

time-sensitive applications. It is better that the packet is dropped than

it is delayed because of retransmission [18]. For uplink streams, which

are used to deliver user inputs to the cloud, typical choices for network

protocol are UDP, UDP based custom protocol, or Datagram Transport

Layer Security (DTLS). Although DTLS can also be UDP based. Down-

link streams which deliver audio and rendered video of the game, we can

see protocols like Real-Time Streaming Protocol (RTSP), Real-time Trans-

port Protocol (RTP), Web Real-Time Communication (WebRTC), and other

UDP based custom protocols.

For video encoding, there are many codecs to choose from with different

encoding speeds and compression efficiency. Despite this, as we can see in

Table 1, H.264 codec, also referred to as MPEG-4, is the typical choice at

the moment. Salah et al. [25] reported that applying H.264 video codec at

the server-side boosted the whole process almost by 8.86%, which might

explain the popularity of the codec. In 2021, H.264, was according to a

Bitmovin annual global survey [8] used by 83% of the developers. H.254

has at the moment successor H.265 that provides better compression ra-

tio than H.264 but codec increases latency which prevents major switch

to H.265 [27].

Table 1. Used protocols for different actions [14] [27]

Streaming User’s inputs Video codec

GeForce Now RTP Custom (UDP) H.264

Stadia RTP, RTCP DTLS H.264

PS Now Custom (UDP) Custom (UDP) H.264, VP9

Microsoft xCloud Custom (UDP) - H.264

4.2 Streaming capabilities of different services

The beauty of cloud gaming is that users do not need to have powerful

gaming systems to run and play new AAA games. But they do need to

have a good and stable internet connection. Below in Table 2 are gath-

ered minimum network requirements for different streaming qualities.

We can see that you don’t actually need that high bandwidth to play, as

Playstation Now requires a minimum of 5Mb/s for 720p video quality. The

highest requirements are for Stadia and GeForce Now. Stadia offers 4k

locked at 60FPS for a minimum of 35 Mb/s. In comparison to Stadia’s 4k,

Netflix’s 4k video stream consumes around 15 Mb/s [14]. For the same

speed as Stadia, GeForce Now offers 1440p or 1600p video quality up to

120FPS. Nvidia is the only one that offers a frame rate up to 120FPS, the

video quality of other services’ is locked at 30FPS or 60FPS. The reason

why quality differs from 1440p to 1600p is that some MacBooks have a

resolution of 2560 x 1600px and the GeForce Now service adapts to it.

Table 2. Network requirements [1] [2] [5] [3]

720p 1080p 1440p/1600p 4k

GeForce Now 15 Mb/s 25 Mb/s 35 Mb/s -

Stadia 10 Mb/s 20 Mb/s - 35 Mb/s

PlayStation Now 5 Mb/s 15 Mb/s - -

Microsoft xCloud 10 Mb/s 20 Mb/s - -

5 Overview of current market

Firstly in this chapter, we take a look at different service providers in the

current industry. The chapter provides also a small glance at the popular-

ity of these companies by presenting numbers of active subscribers. We

also try to categories current services to give the reader a better overall

picture of current markets and their potential.

5.1 Current services

Currently, gaming console and PC gaming markets are mostly divided

by a few big companies and markets rarely see new entries. Gaming

consoles are dominated by Sony, Microsoft and Nintendo, and vital PC

parts for gaming like CPU and GPU are dominated by Intel, Nvidia and

AMD. Cloud gaming on the other hand has just started to develop. We see

many same companies that dominate other gaming platforms providing

also GaaS but the industry has also many smaller potential companies

providing cloud gaming services and also many, in some way, surprising

companies trying to enter the industry.

At the moment of writing this paper, there was found much over twenty

companies that offer cloud gaming services. The biggest companies on

the market in early 2022 are Nvidia GeForce Now, Sony Playstation Now,

Google Stadia, Microsoft xCloud and Amazon Luna. Other popular ser-

vices to name a few are Shadow by Blade, Boosteroid, Playkey, Vortex

and Blacknut. All these companies offer the same idea, users play games

through the company’s servers via subscription.

For local streaming we have services like Steam Link, Nvidia Gamestream,

and Moonlight. They offer a platform that allows users to stream games

from their local machine to their other devices. This way if the user al-

ready has a powerful system and a game library, they don’t need to pay

extra money for a subscription and possibly lose their gaming data as well.

To name some other not-so-traditional platforms there are companies for

example like Paperspace, Parsec and Playkey.io. Paperspace and Parsec

are similar to each other. They rent users cloud desktops that can be

used, besides gaming, for heavy computation, rendering or just working

remotely alone or collaborating with multiple people. Playkey.io is owned

by the previously mentioned Playkey. Where just Playkey has data cen-

ters that render users gaming in tradiotional way, Playkey.io has taken

the idea behind mining cryptocurrency and applied it to cloud gaming. So

the idea behind Playkey.io is that computing is decentralized and miners

and others having powerful systems can lend their computing power to

players. Lenders then get paid for this in Playkey Tokens or PKT’s shorter

which is a cryptocurrency made by Playkey. These PKT’s can then be used

like normal cryptocurrencies and exchange for other cryptocurrencies or

money.

5.2 Userbase

To put the popularity of cloud gaming into numbers let’s take a look at

the size of the active userbases. To take a look at previously presented

companies let’s compare the biggest players in the market. From big to

small, Microsoft xCloud has over 18 million active users [29], EA Play has

over 13 million [13], GeForce Now has over 12 million [6] and Playstation

Now has over 3.2 million active users [7]. Alone these four companies

have nearly 50 million active users which creates a huge market. To put

this into perspective, according to Statista, cloud gaming market value

was in 2021 worldwide approximately 1.5 billion US dollar [13]. Statista

also forecasts market value to grow over 6.5 billion by 2024.

6 Conclusion

In this paper, we have reviewed the history of cloud gaming, showed the

technical side of GaaS systems, and examined current cloud gaming ser-

vices on the market. On the technical side, it was surprising how similar

protocols were used by currently the most popular service providers. For

delivering user’s inputs to the cloud and for delivering video and audio

streams to a user were used basically just different variations of UDP

protocol. Also, for video encoding same H.264 codec was used by all four

of the reviewed services. It was positive that it is possible to game as

low as with 5 Mb/s bandwidth. Although the highest video streams at

1440p 120FPS or 4k 60FPS required a minimum of 35 Mb/s bandwidth.

This could be, especially in bigger families where there are many network

users, difficult to achieve.

In the current market overview, it was found over twenty cloud gaming

providers globally. This tells about the popularity of cloud gaming and it

will be interesting to see how this sector develops in the future.

References

[1] Geforce now -pilvipelaamisen järjestelmävaatimukset.

[2] Kaistanleveys, datankäyttö ja striimauslaatu - stadianbsp;ohjeet.

[3] Network requirements microsoft xbox cloud gaming.

[4] Onlive official web page.

[5] Ps now’n käytön aloittaminen.

[6] John Ballard. Here’s why nvidia’s cloud gaming service is the real deal, Oct
2021.

[7] Sammy Barker. Ps now has a respectable 3.2 million subscribers, May 2021.

[8] Bitmovin. Bitmovin’s 5th annual video developer report 2021.

[9] Wei Cai, Ryan Shea, Chun-Ying Huang, Kuan-Ta Chen, Jiangchuan Liu,
and Cheng-Hsin Hsu. A survey on cloud gaming: Future of computer
games. IEEE Access, 4:1–1, 01 2016.

[10] Wei Cai, Ryan Shea, Chun-Ying Huang, Kuan-Ta Chen, Jiangchuan Liu,
Victor C. M. Leung, and Cheng-Hsin Hsu. The future of cloud gaming
[point of view]. Proceedings of the IEEE, 104(4):687–691, 2016.

[11] Wei Cai, Ryan Shea, Chun-Ying Huang, Kuan-Ta Chen, Jiangchuan Liu,
Victor C. M. Leung, and Cheng-Hsin Hsu. The future of cloud gaming
[point of view]. Proceedings of the IEEE, 104(4):687–691, 2016.

[12] Clement. Covid-19 impact on the gaming industry worldwide - statistics
facts. 2021.

[13] J. Clement. Global cloud gaming market size 2024, Oct 2021.

[14] Andrea Di Domenico, Gianluca Perna, Martino Trevisan, Luca Vassio, and
Danilo Giordano. A network analysis on cloud gaming: Stadia, geforce now
and psnow. Network, 1(3):247–260, 2021.

[15] Ben Gilbert. Nvidia details the grid, a card built for powering cloud com-
puting, Jan 2013.

[16] Sean Hollister. Nvidia announces geforce grid: Cloud gaming direct from a
gpu, with games bynbsp;gaikai, May 2012.

[17] Chun-Ying Huang, Cheng-Hsin Hsu, Yu-Chun Chang, and Kuan-Ta Chen.
Gaminganywhere: An open cloud gaming system. In Proceedings of the 4th
ACM multimedia systems conference, pages 36–47, 2013.

[18] James F. Kurose and Keith W. Ross. Computer networking: A top-down
approach. Pearson, 2013.

[19] JP Mangalindan. Cloud gaming’s history of false starts and promising
reboots, Oct 2020.

[20] Bryce Mariano and Simon G. M. Koo. Is cloud gaming the future of the
gaming industry? In 2015 Seventh International Conference on Ubiquitous
and Future Networks, pages 969–972, 2015.

[21] Matt Martin. Crysis core. GamesIndustry.biz, Apr 2009.

[22] Maria Martini, Abdul Wahab, Nafi Ahmad, and John Schormans. Subjec-
tive quality assessment for cloud gaming. J, 4:404–419, 08 2021.

[23] Arto Ojala and Pasi Tyrväinen. Developing cloud business models: A case
study on cloud gaming. IEEE Software, 28:42–47, 07 2011.

[24] Jim Ryanv. Sony game network services segment, 2021.

[25] Mosa Salah, Ahmad A. Mazhar, and Manar Mizher. Optimization of video
cloud gaming using fast hevc video compression technique. International
Journal of Advances in Soft Computing and its Applications, 13(3):249–265,
2021.

[26] Steven Schmidt. Assessing the quality of experience of cloud gaming ser-
vices. 2021.

[27] Ivan Slivar. Quality of experience driven video encoding adaptation strate-
gies for cloud gaming under network constraints. PhD thesis, University of
Zagreb. Faculty of Electrical Engineering and Computing . . . , 2021.

[28] Mirko Suznjevic and Maja Homen. Use of Cloud Gaming in Education. 02
2020.

[29] Tom Warren. Xbox game pass subscribers hit 18 million, Jan 2021.

Visualizing firewall configuration
anomalies

Joose Lehtinen
joose.lehtinen@aalto.fi

Tutor: Tuomas Aura

Abstract

Firewall configuration anomalies are often signs of configuration errors.

Configuration errors may allow a third party access to devices they are not

authorized to access and may cause digital or in some cases even physical

security risks. This paper presents an algorithm for visualizing firewall

configuration anomalies. The algorithm is based on the idea of dividing

the space of possible network packets into segments based on the rules the

packets on that hypercube match and visualizing those segments. The al-

gorithm is particularly suited for finding shadowed, correlated and re-

dundant rules. The visualization can also be used for further algorithmic

analysis.

KEYWORDS: firewall, configuration anomalies

1 Introduction

Firewall configurations are used to protect private networks from external

attacks. They allow or block network traffic between networks by compar-

ing them to a set of rules. These rules may relate to the transport-layer

protocol, IP addresses and ports of the communicating parties [2]. Some

services in the network, for example NetBIOS services, may be insecure

and therefore should not be accessible from outside the network [5]. Ac-

cess to one vulnerable service can often be used to attack other services

in the same network. Because of this, even a single vulnerability in the

firewall configuration can compromise the entire network.

Anomalies and vulnerabilities are rarely intentional and are both easy

to cause by mistake. Because of this, internal inconsistencies and other

anomalies may be signs of mistakes in the configuration and may indicate

the existence of vulnerabilities in the firewall configuration. For example,

a rule overriding another rule might have been intended to affect a differ-

ent IP address range.

This paper implements an algorithm to help find and visualize configu-

ration anomalies in firewall policies.

The paper first explains different types of anomalies presented by prior

research. Then the paper presents an algorithm for visualizing firewall

policies and explains how it helps at finding anomalies. The implementa-

tion is inspired by the algorithm presented by Abbes et al. [1]. The result

of the algorithm is a matrix, from which anomalies can be found either

manually or with simple algorithms. The implementation is suitable for

visualizing shadowed, correlated and redundant rules.

Earlier attempts at trying to find and resolve configuration anomalies

include use of decision trees [1, 3, 4]. In contrast, we break the packet

space into a structure resembling a list. Each list entry may represent

arbitrarily complex subspace of packet space. This should give us advan-

tage in terms of anomalies we can detect, but will cost considerably more

computational resources.

Section 2 explains the types of anomalies in firewall configurations. Sec-

tion 3 introduces an algorithm for visualizing anomalies in firewall config-

urations. Section 4 evaluates the performance of the algorithm in terms

of space complexity and the types of anomalies it can detect. Section 5

concludes the paper.

2 Firewall anomalies

Yuan et al. [6] detail different types of firewall anomalies. They explain

six types of firewall anomalies that apply to systems with a single firewall:

policy violations, shadowing, generalization, correlation, redundancy and

verbosity. We will look at each type in bit more detail and also look at

some examples.

Policy Violations Policy violations occur when the firewall does not follow

the higher-level policies it is supposed to follow. Policy violations cannot

be detected without some knowledge from outside the firewall itself.

Shadowing A rule is shadowed if preceding rules already match all the

packets that the shadowed rule would match, but assign a different ac-

tion. A shadowed rule is often a sign of misconfiguration because shad-

owed rules are never used, and usually firewall rules are added with the

intention that all rules are significant. Figure 1 is a simple example of a

policy where a rule is shadowed. The second rule is never used because

any packet matching the rule would have already matched the first rule.

Figure 1. Example of a policy with a shadowed rule

rule description accepted?

destination port in range 0-1024 denied 0 0 1 1

destination port 443 (HTTPS) accepted 1 0 0 1

any packet denied 0 1 1 1

is packet accepted by policy? 0 0 0

Generalization A rule is generalization of another rule if a preceding rule

affects a subset of packets matched by the generalizing rule but the rules

define different actions. A generalization is not necessarily a misconfigu-

ration. In fact, generalizations are a common practice in firewall configu-

rations [6]. In figure 2, the second rule is generalization of the first rule.

This is an example of a policy where a generalization is not a misconfigu-

ration.

Figure 2. Example of a policy with generalization

rule description accepted?

destination port 443 (HTTPS) accepted 1 0 1

any packet denied 0 1 1

is packet accepted by policy? 0 1

Correlation Two rules correlate if their packet spaces intersect but they

specify a different action. Similar to generalizations, correlations are a

common practice in firewall configurations [6]. In figure 3, the first and

second rules correlate. It is not obvious what the intended behaviour of

the policy is, so we can not tell whether the policy is misconfigured or not.

Figure 3. Example of a policy with correlation

rule description accepted?

destination port 443 (HTTPS) allowed 1 0 0 1 1

source port in range 0-1024 denied 0 0 1 0 1

any packet denied 0 1 1 1 1

is packet accepted by policy? 0 0 1 1

Redundancy A rule is redundant if removing it would not alter the be-

havior of the firewall. Removing redundant rules may help reduce packet

processing time and memory consumption [6]. In figure 4, the first rule is

redundant, because the second rule would match and accept any packet

matched by the first rule. This might be intended to improve the read-

ability of the policy, but the first rule could also be removed.

Figure 4. Example of a policy with redundancy

rule description accepted?

destination port 443 (HTTPS) allowed 1 0 0 1

destination port in range 0-1024 allowed 1 0 1 1

any packet denied 0 1 1 1

is packet accepted by policy? 0 1 1

Verbosity A firewall policy is verbose if it could be expressed with smaller

number of rules. Verbosity is not necessarily a misconfiguration, but less

verbose policies generally require less memory and processing power. Ver-

bose policies may be created in practice when system administrators iter-

atively add new rules [6].

Figure 5. Example of a policy with verbosity

rule description accepted?

destination port 443 (HTTPS) allowed 1 0 0 1

destination port 444 (SNPP) allowed 1 0 1 0

any packet denied 0 1 1 1

is packet accepted by policy? 0 1 1

If anomalies are found, the network administrator should try to under-

stand what caused that anomaly. For example, if a rule is redundant

because of a later, more general rule, it may have been meant as an ex-

ception and have been labeled wrong. If the mistake that led to someone

writing an anomalous rule is not found, the underlying mistake might

persist in the configuration even if an anomaly detection algorithm finds

no further anomalies.

3 Anomaly visualization

This section discusses the implementation of the algorithm. The algo-

rithm is largely based on ideas presented by Hu et al. [2], but the details

of the implementation are different. Hu et al. use binary decision dia-

grams to represent the packet space segments, while we use ranges of IP

addresses and ports. The output of the algorithms should be equivalent,

despite the different implementations.

Subsection 3.1 discusses how the packet space is represented and the

details of operations on that packet space that we need for the algorithm.

Subsection 3.2 discusses the high level algorithm implemented using com-

ponents discussed in subsection 3.1.

3.1 Representation of packet space

Each packet in the network can be represented as a vector. The elements

of the vector may represent IP addresses, ports and a protocol. We repre-

sent each packet as a vector with length of 6. The vector’s elements are

source and destination ipv4 addresses and ports, the used protocol and

the network adapter. Network adapter is not commonly included in the

firewall policy in the literature.

Figure 6 shows three examples of packets represented in the vector

space.

Figure 6. Examples of packets represented as vectors

source

IP

destination

IP

source

port
destination port

network

protocol

network

interface

1.1.1.1 2.2.2.2 22 22 0 (TCP) 0

1.1.1.1 3.3.3.3 40006 443 0 (TCP) 0

3.3.3.3 1.1.1.1 443 40006 0 (TCP) 1

Firewall rules can be thought of as boxes or hyperrectangles in this vec-

tor space, along with a binary value indicating whether the rule allows or

blocks traffic. For purposes of this paper, we define packet space segment

as lists of these hyperrectangles. The algorithm we implement requires

addition and subtraction for packet space segment. Addition simply ap-

pend one of the lists into the other. Subtraction loops over each hypercube

in the subtrahend and removes them from the minuend in sequence. Sub-

tracting individual hypercube is done by looping over the hypercube list

of the minuend and subtracting it from each hypercube separately. These

differences are then collected to a new list, which is returned as the dif-

ference. Hypercubes with non-positive volume are not added to this list.

The difference between individual hypercubes is calculated by going

over each axis, removing the parts of the minuend that do not overlap

with the subtrahend along that axis from the minuend, and adding them

to the difference. If the hypercubes don not intersect, the difference is the

minuend and there is no need to split it into smaller parts. The differ-

ence of two hypercubes can, in the worst case, consist of 2*d hypercubes,

where d is the number of dimensions of the packet space. The figure 7

shows how hypercube difference is calculated in two dimensions. B (the

small rectangle in the middle) is subtracted from A (the large rectangle).

The resulting difference consists of 4 rectangles.

Figure 7. Visualization of hypercube difference in two dimensions

A

A-B

A-B B A-B

A-B

3.2 High level algorithm

The goal of the algorithm is to divide the entire packet space into non-

overlapping segments, each described by unique mapping from the rules

in the firewall policy to boolean values indicating whether the rule would

be applied to this segment or not. This information can be used to gener-

ate a matrix, which can visualize which segments are affected by which

rules.

When the algorithm is initialized, it creates a list of packet space seg-

ments. A segment containing the entire packet space is added to the seg-

ment list. This segment is associated with an empty list denoting, which

rules match to this segment.

After the algorithm is initialized, all firewall rules are applied sequen-

tially. My implementation goes from the last rule to the first, but having

done that, I would recommend going from first rule to the last, because

that is probably easier to implement. When a new rule is applied, it is

applied to each segment separately. Each time a new rule is applied, a

new list of segment is constructed from the old list. First the packet space

of the rule is subtracted from the segment, forming a segment that does

not fit the rule. Then this new segment is subtracted from the original

segment, forming a new segment that is the intersection of the original

segment and the rule. Then these segments are added to the the new list

of segments, while the old segment is removed form the old list. These

segments are also associated with a list denoting which rules match to

this segment. The list is constructed from the old list associated with the

old packet space segment, with information about the applicability of the

currently handled rule added to it.

The resulting list contains mutually exclusive segments of the packet

space associated with the information about which rules match each seg-

ment. The individual hypercubes are also mutually exclusive, but that

is not required for the algorithm to work. The results of the algorithm

can be viewed in a form of a matrix. The matrix can either be used to

manually find configuration anomalies as demonstrated in section 4.1 or

as basis for further algorithmic analysis.

4 Performance evaluation

This section evaluates the algorithm presented in the previous section.

First we describe what types of anomalies we can detect using the algo-

rithm. Then, subsection 4.2 evaluates computational complexity of the

algorithm. Subsection 4.1 shows an example of how the algorithm could

be used to find anomalies in a firewall policy.

In this paper, we do not try to find policy violations, because that would

require some representation for the policy, which we do not have. Our ap-

proach could be used to find some cases of verbosity. A pair of rules with

the same action that would combine to a single hypercube could be found

fairly easily. However, most types of verbosity would be more difficult to

find. For all we know, this approach could be useless for finding all but the

most simple cases of verbosity. Finding and visualizing verbosity is there-

fore outside of the scope of this paper. Shadowed rules could be detected

fairly easily algorithmically. We would only have to find rules before the

shadowed rule that match its packet space and assign a different action.

Redundant rules can also be found fairly easily algorithmically by remov-

ing individual rows from the firewall policy. If the action assigned to a

packet space segment does not change as a result of removing a rule, that

rule is redundant. This does not require running the algorithm again, be-

cause the assigned actions can be calculated from the visualized matrix.

Correlations can also be found algorithmically using the visualization by

comparing two of the rules. If the rules’ packet spaces intersect and the

rules assign different actions, they are by definition correlated.

4.1 Analyzing sample firewall policy

Figure 8 shows the packet space visualization of a hypothetical firewall

policy. We will analyze this policy manually to demonstrate how the table

could be used to find anomalies. From the table we can see, that the fourth

rule is redundant, as all packets it matches have already been matched by

the third rule. Less obviously the second rule is also redundant, because

any packet it matches will also be matched by the last rule, which will

assign the same action. The first and third rules are correlated. This

anomaly could potentially be a misconfiguration, but we should consult

the firewall policy to know for sure.

Figure 8. Packet space segments of example policy

rule description accepted?

packet to office printer 0 0 0 1 1 0 1 0

packet from outside to non-standard port 0 0 0 0 0 1 1 0

packet to port 443 (HTTPS) 1 0 1 0 1 0 0 1

packet to the web server’s port 443 1 0 0 0 0 0 0 1

any packet 0 1 1 1 1 1 1 1

is packet accepted by the policy? 0 1 0 1 0 0 1

4.2 Evaluating space complexity

Each new rule may divide the packet space along each axis to up to 3

segments, creating 2 new segments. There are 5 dimensions along which

we have a reasonably large number of possible values: IP addresses, ports

and protocol. Therefore, it stands to reason that (2n + 1)5 is an upper

bound for the space complexity of the algorithm, where n is the number of

rules in the firewall policy.

We create malicious inputs trying to show that the upper bound is tight.

In the malicious policy, each rule defines IP address ranges and port

ranges that include all previous ranges and the endpoints are not end-

points of any of the previous ranges. Each rule defines a protocol range,

which is included in all previous ranges and the enpoints are not end-

points of any previous of any of the previous ranges. The algorithm seems

to divide such malicious policy to 2/15(2n5+5n4+20n3+25n2+23n) hyper-

cubes, where n is the number of rules. As a practical example, a malicious

policy with just 12 rules generates 85304 hypercubes.

Because we have both an upper bound and an example case as 5th de-

gree polynomials, the worst case space complexity of the algorithm is a 5th

degree polynomial. Generally, the space complexity should be a polyno-

mial of degree d, where d is the number of rule dimensions. If we assume

there are only small number of possible protocols the space complexity

would be 4th degree polynomial.

5 Conclusion

This paper implements an algorithm to help visualize firewall policies.

The visualization is intended to help find configuration anomalies. The

paper then discusses the capabilities and limitations of the algorithm. We

demonstrate that the algorithm’s results can be used for manual analy-

sis, although its results could be better used as a starting point for other

algorithms. The implementation is particularly suitable for visualizing

shadowed, correlated and redundant rules. The algorithm runs in polyno-

mial space.

References

[1] Tarek Abbes, Adel Bouhoula, and Michaël Rusinowitch. Detection of firewall
configuration errors with updatable tree. International Journal of Informa-
tion Security, 15(3):301–317, 2016.

[2] Hongxin Hu, Gail-Joon Ahn, and Ketan Kulkarni. Detecting and resolv-
ing firewall policy anomalies. IEEE Transactions on dependable and secure
computing, 9(3):318–331, 2012.

[3] Amina Saâdaoui, Nihel Ben Youssef Ben Souayeh, and Adel Bouhoula. Fare:
Fdd-based firewall anomalies resolution tool. Journal of Computational Sci-
ence, 23:181–191, 2017.

[4] Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet
classification using multidimensional cutting. In Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for com-
puter communications, pages 213–224, 2003.

[5] Avishai Wool. Firewall configuration errors revisited. arXiv preprint arXiv:0911.1240,
2009.

[6] Lihua Yuan, Hao Chen, Jianning Mai, Chen-Nee Chuah, Zhendong Su, and
Prasant Mohapatra. Fireman: A toolkit for firewall modeling and analysis.
In 2006 IEEE Symposium on Security and Privacy (S&P’06), pages 15–pp.
IEEE, 2006.

