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Exercise 1 - PS7

Consider the following matrix:

A =

4 1 −1

2 5 −2

1 1 2

 .

(a) Find all the eigenvalues of A and determine their multiplicity.

(b) Show that A is diagonalizable. Specifically, form a matrix P such

that D = P−1AP is diagonal and verify that D = P−1AP holds.
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Exercise 1 - Solution

The eigenvalues are r1 = 3 (multiplicity 2) and r2 = 5 (multiplicity 1).

An eigenvector for r2 is v 2 =

1

2

1

. We can also find two linearly

independent eigenvectors for r1, e.g. v 1 =

 1

−1

0

 and w 1 =

1

0

1

.

Therefore, we can form

P =

 1 1 1

−1 0 2

0 1 1

 ,

and the diagonal matrix D is

D =

3 0 0

0 3 0

0 0 5

 .
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Exercise 2

Consider the following system of difference equations:

xt+1 = −5xt + 2yt

yt+1 = −2xt − yt ,

with t = 0, 1, 2, . . . .

(a) Find the general solution.

(b) Find the solution for the initial conditions x0 = 2 and y0 = 5.

(c) Is the steady state (x∗, y∗) = (0, 0) globally asymptotically stable?

Why or why not?
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Exercise 2 - Solution

The system’s coefficient matrix has one eigenvalue r = −3 with

multiplicity 2 and only one linearly independent eigenvector. An

eigenvector is v =

(
1

1

)
, and a generalized eigenvector is w =

(
0
1
2

)
.

The general solution is(
xt
yt

)
=
(
c0(−3)t + tc1(−3)t−1

)(1
1

)
+ c1(−3)t

(
0
1
2

)
.

In the solution for the initial conditions x0 = 2 and y0 = 5, we have

c0 = 2 and c1 = 6. The steady state is not stable because |r | = 3 ≥ 1.
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Exercise 3

Consider the following system of difference equations:

xt+1 = −2xt − 15yt

yt+1 =
1

2
xt + ayt

with t = 0, 1, 2, . . . and where a ∈ R is a parameter.

(a) Find all the values of a such that the system has a unique steady

state.

(b) From now on, assume a = 7
2 . Find all the steady states.

(c) Find the general solution.

(d) Find the solution for the initial conditions x0 = −5 and y0 = 1.

(e) Is any steady state globally asymptotically stable? Why or why not?
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Exercise 3 - Solution

The system has a unique steady state when det(I-A) is not zero, which is

when a is not 7/2.

Any (x∗, y∗) such that x∗ + 5y∗ = 0 is a steady state.

The system’s coefficient matrix has eigenvalues r1 =
1
2 and r2 = 1, and

the corresponding eigenvectors are v 1 =

(
−6

1

)
and v 2 =

(
−5

1

)
. The

general solution is(
xt
yt

)
= c1

(
1

2

)t
(
−6

1

)
+ c21

t

(
−5

1

)
.

When the initial conditions are x0 = −5 and y0 = 1, the solution is(
xt
yt

)
=

(
−5

1

)
,

so that c1 = 0 and c2 = 1. Notice that the solution is constant because

the initial condition is a steady state. However, every steady state is

unstable because |r2| = 1 ≥ 1.
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Exercise 4

Consider the following system of difference equations:

xt+1 = 4xt − 8yt − 8

yt+1 =
5

8
xt − 2yt + 1

with t = 0, 1, 2, . . .

(a) Find the steady state.

(b) Is the steady state unique? Why or why not?

(c) Find the general solution.

(d) Find the solution for the initial conditions x0 = 1 and y0 = 1.

(e) Is the steady state globally asymptotically stable? Why or why not?
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Exercise 4 - Solution

We have that det(I − A) = −4 ̸= 0, so there is a unique steady state

which is (x∗, y∗) = (8, 2). The system’s coefficient matrix has

eigenvalues r1 = −1 and r2 = 3, and the corresponding eigenvectors are

v 1 =

(
8
5

1

)
and v 2 =

(
8

1

)
. The general solution is

(
xt
yt

)
= c1(−1)t

(
8
5

1

)
+ c2(3)

t

(
8

1

)
+

(
8

2

)
.

In the solution for the initial conditions x0 = 1 and y0 = 1, we have that

c1 = − 5
32 and c2 = − 27

32 . The steady state is not stable because |ri | ≥ 1

for i = 1, 2.
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Exercise 5

Solve the following initial value problems:

(a) y ẏ = t, y(
√
2) = 1;

(b) y2ẏ = t + 1, y(1) = 1;

(c) ẏ = y3

t3 , y(1) = 1;

(d) ẏ = t3

y3 , y(1) = 1.
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Exercise 5 - Solution

(a) By separating variables,

ydy = tdt.

Integrating both sides ∫
ydy =

∫
tdt

and then evaluating the integrals yields

y2 = t2 + 2C .

At the initial condition, it must hold that

1 = 2 + 2C ,

from which we easily get C = − 1
2 . Thus the unique solution of the

IVP is

y(t) =
√

t2 − 1.

10



Exercise 5 - Solution

(b) By separating variables,

y2dy = (t + 1)dt.

Integrating both sides ∫
y2dy =

∫
(t + 1)dt

and then evaluating the integrals yields

y3 =
3

2
t2 + 3t + 3C .

At the initial condition, it must hold that

1 =
3

2
+ 3 + 3C ,

from which we obtain C = − 7
6 . Thus the unique solution of the IVP

is

y(t) =
3

√
3

2
t2 + 3t − 7

2
.
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Exercise 5 - Solution

(c) By separating variables,

1

y3
dy =

1

t3
dt.

Integrating both sides ∫
1

y3
dy =

1

t3
dt

and then evaluating the integrals yields

1

y2
=

1

t2
+ (−2)c .

At the initial condition, it must hold that

1 = 1 + (−2)c ,

from which we obtain C = 0. Thus the unique solution of the IVP is

y(t) = t.

12



Exercise 5 - Solution

(d) By separating variables,

y3dy = t3dt.

Integrating both sides ∫
y3dy = t3dt

and then evaluating the integrals yields

y4 = t4 + 4c .

At the initial condition, it must hold that

1 = 1 + 4c ,

from which we obtain C = 0. Thus the unique solution of the IVP is

y(t) = t.
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