Problem Set 7

Hung Le
3/12/2021

Exercise 1-PS7

Consider the following matrix:

$$
A=\left(\begin{array}{ccc}
4 & 1 & -1 \\
2 & 5 & -2 \\
1 & 1 & 2
\end{array}\right)
$$

(a) Find all the eigenvalues of A and determine their multiplicity.
(b) Show that A is diagonalizable. Specifically, form a matrix P such that $D=P^{-1} A P$ is diagonal and verify that $D=P^{-1} A P$ holds.

Exercise 1 - Solution

The eigenvalues are $r_{1}=3$ (multiplicity 2) and $r_{2}=5$ (multiplicity 1).
An eigenvector for r_{2} is $\boldsymbol{v}_{2}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$. We can also find two linearly
independent eigenvectors for r_{1}, e.g. $\boldsymbol{v}_{1}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$ and $\boldsymbol{w}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$.
Therefore, we can form

$$
P=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right)
$$

and the diagonal matrix D is

$$
D=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

Exercise 2

Consider the following system of difference equations:

$$
\begin{aligned}
& x_{t+1}=-5 x_{t}+2 y_{t} \\
& y_{t+1}=-2 x_{t}-y_{t},
\end{aligned}
$$

with $t=0,1,2, \ldots$.
(a) Find the general solution.
(b) Find the solution for the initial conditions $x_{0}=2$ and $y_{0}=5$.
(c) Is the steady state $\left(x^{*}, y^{*}\right)=(0,0)$ globally asymptotically stable? Why or why not?

Exercise 2 - Solution

The system's coefficient matrix has one eigenvalue $r=-3$ with multiplicity 2 and only one linearly independent eigenvector. An eigenvector is $\boldsymbol{v}=\binom{1}{1}$, and a generalized eigenvector is $\boldsymbol{w}=\binom{0}{\frac{1}{2}}$.
The general solution is

$$
\binom{x_{t}}{y_{t}}=\left(c_{0}(-3)^{t}+t c_{1}(-3)^{t-1}\right)\binom{1}{1}+c_{1}(-3)^{t}\binom{0}{\frac{1}{2}} .
$$

In the solution for the initial conditions $x_{0}=2$ and $y_{0}=5$, we have $c_{0}=2$ and $c_{1}=6$. The steady state is not stable because $|r|=3 \geq 1$.

Exercise 3

Consider the following system of difference equations:

$$
\begin{aligned}
& x_{t+1}=-2 x_{t}-15 y_{t} \\
& y_{t+1}=\frac{1}{2} x_{t}+a y_{t}
\end{aligned}
$$

with $t=0,1,2, \ldots$ and where $a \in \mathbb{R}$ is a parameter.
(a) Find all the values of a such that the system has a unique steady state.
(b) From now on, assume $a=\frac{7}{2}$. Find all the steady states.
(c) Find the general solution.
(d) Find the solution for the initial conditions $x_{0}=-5$ and $y_{0}=1$.
(e) Is any steady state globally asymptotically stable? Why or why not?

Exercise 3 - Solution

The system has a unique steady state when $\operatorname{det}(I-A)$ is not zero, which is when a is not $7 / 2$.
Any $\left(x^{*}, y^{*}\right)$ such that $x^{*}+5 y^{*}=0$ is a steady state.
The system's coefficient matrix has eigenvalues $r_{1}=\frac{1}{2}$ and $r_{2}=1$, and the corresponding eigenvectors are $\boldsymbol{v}_{1}=\binom{-6}{1}$ and $\boldsymbol{v}_{2}=\binom{-5}{1}$. The general solution is

$$
\binom{x_{t}}{y_{t}}=c_{1}\left(\frac{1}{2}\right)^{t}\binom{-6}{1}+c_{2} 1^{t}\binom{-5}{1} .
$$

When the initial conditions are $x_{0}=-5$ and $y_{0}=1$, the solution is

$$
\binom{x_{t}}{y_{t}}=\binom{-5}{1},
$$

so that $c_{1}=0$ and $c_{2}=1$. Notice that the solution is constant because the initial condition is a steady state. However, every steady state is unstable because $\left|r_{2}\right|=1 \geq 1$.

Exercise 4

Consider the following system of difference equations:

$$
\begin{aligned}
& x_{t+1}=4 x_{t}-8 y_{t}-8 \\
& y_{t+1}=\frac{5}{8} x_{t}-2 y_{t}+1
\end{aligned}
$$

with $t=0,1,2, \ldots$
(a) Find the steady state.
(b) Is the steady state unique? Why or why not?
(c) Find the general solution.
(d) Find the solution for the initial conditions $x_{0}=1$ and $y_{0}=1$.
(e) Is the steady state globally asymptotically stable? Why or why not?

Exercise 4 - Solution

We have that $\operatorname{det}(I-A)=-4 \neq 0$, so there is a unique steady state which is $\left(x^{*}, y^{*}\right)=(8,2)$. The system's coefficient matrix has eigenvalues $r_{1}=-1$ and $r_{2}=3$, and the corresponding eigenvectors are $\boldsymbol{v}_{1}=\binom{\frac{8}{5}}{1}$ and $\boldsymbol{v}_{2}=\binom{8}{1}$. The general solution is

$$
\binom{x_{t}}{y_{t}}=c_{1}(-1)^{t}\binom{\frac{8}{5}}{1}+c_{2}(3)^{t}\binom{8}{1}+\binom{8}{2} .
$$

In the solution for the initial conditions $x_{0}=1$ and $y_{0}=1$, we have that $c_{1}=-\frac{5}{32}$ and $c_{2}=-\frac{27}{32}$. The steady state is not stable because $\left|r_{i}\right| \geq 1$ for $i=1,2$.

Exercise 5

Solve the following initial value problems:
(a) $y \dot{y}=t, y(\sqrt{2})=1$;
(b) $y^{2} \dot{y}=t+1, y(1)=1$;
(c) $\dot{y}=\frac{y^{3}}{t^{3}}, y(1)=1$;
(d) $\dot{y}=\frac{t^{3}}{y^{3}}, y(1)=1$.

Exercise 5 - Solution

(a) By separating variables,

$$
y d y=t d t
$$

Integrating both sides

$$
\int y d y=\int t d t
$$

and then evaluating the integrals yields

$$
y^{2}=t^{2}+2 C
$$

At the initial condition, it must hold that

$$
1=2+2 C
$$

from which we easily get $C=-\frac{1}{2}$. Thus the unique solution of the IVP is

$$
y(t)=\sqrt{t^{2}-1}
$$

Exercise 5 - Solution

(b) By separating variables,

$$
y^{2} d y=(t+1) d t
$$

Integrating both sides

$$
\int y^{2} d y=\int(t+1) d t
$$

and then evaluating the integrals yields

$$
y^{3}=\frac{3}{2} t^{2}+3 t+3 C
$$

At the initial condition, it must hold that

$$
1=\frac{3}{2}+3+3 C
$$

from which we obtain $C=-\frac{7}{6}$. Thus the unique solution of the IVP is

$$
y(t)=\sqrt[3]{\frac{3}{2} t^{2}+3 t-\frac{7}{2}}
$$

Exercise 5 - Solution

(c) By separating variables,

$$
\frac{1}{y^{3}} d y=\frac{1}{t^{3}} d t
$$

Integrating both sides

$$
\int \frac{1}{y^{3}} d y=\frac{1}{t^{3}} d t
$$

and then evaluating the integrals yields

$$
\frac{1}{y^{2}}=\frac{1}{t^{2}}+(-2) c
$$

At the initial condition, it must hold that

$$
1=1+(-2) c,
$$

from which we obtain $C=0$. Thus the unique solution of the IVP is

$$
y(t)=t
$$

Exercise 5 - Solution

(d) By separating variables,

$$
y^{3} d y=t^{3} d t
$$

Integrating both sides

$$
\int y^{3} d y=t^{3} d t
$$

and then evaluating the integrals yields

$$
y^{4}=t^{4}+4 c
$$

At the initial condition, it must hold that

$$
1=1+4 c
$$

from which we obtain $C=0$. Thus the unique solution of the IVP is

$$
y(t)=t
$$

