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LEARNING OUTCOMES

Students are able to solve the lecture problems, home problems, and exercise problems on
the topics of week 49:

O Virtual work densities of the Bernoulli and Timoshenko beam models
O Displacement analysis by beam elements
O Virtual work densities of the Reissner-Mindlin and Kirchhoff plate models

O Displacement analysis by plate models
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6.1 CONTINUOUS APPROXIMATIONS

Virtual work density expressions can be used with various approximation types in line,
rectangle, circular, etc. domains. Valid selections for a simply supported Kirchhoff plate in

bending on a rectangle domain Q =[0,L]x[0,H] are, e.g.,

O Polynomial basis approximation w(Xx, y) =agXxy(x—L)(y—H)
O Double sine series approximation w(x, y) = Z?:l ern=1 aj Sin(iﬂ'%)Sin(jﬂ'%)

Although parameters aj, &;; etc. of the continuous approximations on € may not be
displacements of certain points, the recipe for finding their values is the same as for the
nodal values and an approximation based on element interpolants on Q° (Q=uUQ° and

NQ° = D).
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CONTINUOUS SERIES SOLUTION

To find an approximate solution with a continuous series approximations for

displacements/rotations and the virtual work density of a model

O Start with a linear combination of given functions with unknown coefficients (weights)
ay,8y,...,a,. The series should satisfy the displacement/rotation boundary conditions no

matter the coefficients.

O Substitute the series into the virtual work density expressions and continue with the

recipe of the course to find the values of the coefficients.

Examples of useful function sets are polynomials of increasing order, harmonic functions
of decreasing wavelength, etc. Mathematically, the function set used should be complete so

that the interpolation error reduces in the number of terms.
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EXAMPLE 6.1 Consider pure bending of a rectangle Kirchhoff plate Q=(0,L)x(0,H).

Derive the series solution w(x, y) = Z i1 ZJ ;1 &j sin(iz— )Sln(j7r )by considering the
coefficients a; as the unknowns of the virtual work expressmn. Thlckness t, Young’s
modulus E, and Poisson’s ratio v, and distributed load f, = ptg in direction of z —axis are

constants.

Answer a; _16[]; 2/[('f) ( ")2P i, jef1,3,5,..}, & =0 otherwise

y ijr
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Shape functions need not to be polynomials. The well-known double sine-series solution
to plate bending problem on a rectangle is an example of this theme. The solution uses

the orthogonality properties of the sine and cosine functions (like)
L..X..X___L L"K—L__i
jo sin(iz=)sin(jz-—)dx =&; - and jo sin(iz-=)d = —[1- (-1
U iniz Lysinl iz L)dy = 5. - H o intiz Ly = oo o)
jo sm(l;zH)5|n(17z|_|)dy_5,J > and jo sm(mH)dy_iﬂ[l (-1)']

When the series approximation is substituted there, virtual work expression becomes a
variational expression for the unknown coefficients. Using then orthogonality of the
sines and cosines on QQ=(0,L)x(0,H), virtual work expressions of the internal and

external forces boil down to
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- B o0 ES  LH iz ,jrop
oWt =N N7 S5a; 2, a:

Xy . ,.
SWO =37 3T Say fij, where _j j (X, y)sm(mt)sm(m%)dxdy.

As the terms are not connected in the virtual work expression (the matrix of the equation
system implied by the principle of virtual work is diagonal), the fundamental lemma of

variation calculus implies that

aij=16f__12/[(if) ( "Y1 i, je{,35,..} €

ijr

With L=H =5m, t=1cm, E=210GPa, v=0.3, p= 8000kg,g 981— and
%

100 terms.
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6.2 BEAM MODEL

Timoshenko Bernoulli

Normal planes to the (material) axis of beam remain planes (Timoshenko) and normal to
the axis (Bernoulli) in deformation. Mathematically tig = Up + 0 x Ppq (rigid body motion

with translation point P). In addition, normal stress in small dimensions vanishes.
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e In terms of the displacement components u(x), v(x), w(x) and rotation components

#(X), 6(x), w(x) of the translation point, the Timoshenko model displacement

components are ( G = (Ui +Vj +Wk)+ (4 +80] +wk)x(yj + zk))
Uy (X, y,2) =u(x) +0(X)z -y (X)y,

Uy (X, Y,2) =V(X) - $(X)z,

Uz (X, Y, 2) = W(X) +(X) Y

In Bernoulli model, additionally 8 =—dw/dx and v =dv/dx so that normal planes

remain normal to the axis.

e The kinematic assumption of the beam model means that o, =oy, =0.
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EXAMPLE 6.2. Consider the beam of length L shown. Material properties E and G, cross-
section properties A and |, and loading f are constants. Determine the deflection and

rotation (¢ = —dw/ dx) at the free end according to the Bernoulli beam model.

%@-llllllllllllll

Z L _
Lt £13
Answer w(L) = and (L) =——(L)=——"—
(L= 8EI (L) ( ) 6El
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e Mathematica solution according to the Bernoulli model is obtained with the problem

description:
model properties geometry

1 BEAM {{E, G}, {A, Ty, Iz}, {0, 0, f}} Line[{1, 2}]
{XJYJZ} {UXJUYJUZ} {QXJQYJGZ}

1 {0, 0, 0} {0, 0, 0} {0, 0, 0}

2 {L, 0, 0} {0, 0, uz[2]} {0, 6Y[2], 0}
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EXAMPLE 6.3. Consider the beam of length L shown. Material properties E and G, cross-
section properties A and |, and loading f are constants. Determine the deflection and

rotation at the free end according to the Timoshenko beam model.

lllllllllllll,x
S —
”Timoshenko effect”
~ 1+ (/L) 2 7 |- L -
Answer W(L)_lf—lfl(l 4E| ) and 9(L)——1f—|'3
8 El " «,GAL? 6 El
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e Mathematica solution according to the Timoshenko model is obtained with the problem

description (xy = x, =6/7 are the shear correction factors for a circular cross-section):

model properties geometry

1 BEAM {{E, G, xy, xz}, {A, I, I}, {0,0, f}} Line[{1, 2} ]
{XJYJZ} {UXJUY:UZ} {QXJQYJGZ}

1 {0, 0, 0} {0, 0, 0} {0, 0, 0}

2 {L, 0, 0} {0, 0, uZ[2]} {0, 6Y[2], @}

L2 4
+
EI AGkz

{uZ[z] Llf2

£13
; 3

oY[2] = -
» OY[2] ey
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BEAM MODEL VIRTUAL WORK DENSITY

Beam element combines the bar, torsion, and the xz-plane and xy-plane bending modes

(dsu/dx )" [ A —s, -s,][ du/dx ]
swiit =—{d%sv/idx® ! E =S; lz ly |5 d?v / dx? >_%Glrr%’
d%swidx® | |=Sy ly,  lyy ||dPw/dx®
su)' (%] [ ¢ ' [m,
SWSt =3 8v b fy p+q—dow/dx, (my ¢
OW| f,) L dov/dx | ‘m, |

Bar and bending modes are connected unless the first moments S, S and the cross moment

|,y (off-diagonal terms of the matrix) of the cross-section vanish.
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e If the loading modes are not connected, the simplest element interpolants

(approximations) to u and ¢ are linear and those for v and w cubic (£ = x/h):

. 1_65 ! Ux1 . 1_65 ! ‘9x1
{1 o o1 0

. T . 5
L-&)*1+28)| (uy) a-&2a+28)] [ uy )
_£)\2 PAY —6
V(X) =1 =e)e > <-(-9-Z--1-> and w(Xx) =+ h-¢)"¢ ) y 1>
(3-286)E2 | |Uy2 (3-28)&7 Uz
| he2e-n ) G2, C hefE-1) ~Oy2)

If the loading modes are connected, a quadratic three-node interpolant (approximation) to
u is needed. Therefore, the clever selection S, =S, =0 and I, =0 of the material

coordinate system simplifies calculations a lot.
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BEAM COORDINATE SYSTEM

The x-axis of the material system is aligned with the axis of the body. The coordinates of
end nodes define the components of i. The orientation of j is one of the geometrical

parameters of the element contribution and it has to be given in the same manner as the

moments of area.

NOTICE: Mathematica code assumes that the y and Y axes are aligned, i.e., j =J unless

the direction of y-axis is specified explicitly in the beam element description.
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MOMENTS OF CROSS-SECTION

Cross-section geometry of a beam have effect on the constitutive equation through moments

of area (material is assumed to be homogeneous):

Zero moment: A:I dA

First moments: S, :I ydA and S, :I zdA

. 2 2
Second moments: |, :j y“dA, 1y :j z°dA, and 1, =I yzdA
Polar moment: |, :j y% +z°dA = 1 +1yy

The moments depend on the selections of the material coordinate system. The origin and

orientation can always be chosen so that S, =S, =1,, =0.
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EXAMPLE 6.4. The beam of the figure is loaded by its own weight and a point force acting
on the right end. Determine the displacement and rotation of the right end starting with the
virtual density of the Bernoulli beam model. The x-axis of the material coordinate system is
placed at the geometric centroid of the rectangle cross-section. Beam properties A, 1y, |,

and E of the planar problem are constants.

A

pg
L] F

_ 1 pgAl

Answer: uxzz—% and 6\(2_48 =
yy

Week 49-19



e The moments of cross-section S, =S, =0, |

The left end of the beam is clamped and the right end simply supported. As the material
and structural coordinate systems coincide Uy, =Uyx, and 6Oy, =6,, the

approximations of u and w simplify to

{u} X/ Luy, du / dx 1{ Uy o }
W) | L(x/L)?(L-x/L)6> d°w/dx?| L [(2-6x/L)&
yy: 1zzand Iy, =0. As here v=¢=0,

fy = fy =0and my =m, =m, =0, virtual work densities take the forms

T T
. dou / dx EA O du / dx ou 0
SWO! = — and 5WeXt={ } { } =
. {dzaw/dxz} {0 Elydezwldxz} ow| [ pgA

§Wint__{5ux2}T£ A 0 {sz}
- 8% ) 2|0 1y 2-6x/L)° || &2 ]
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5Wext _ {5UX2}T 0
665 | |L(x/L)?>(L-x/L)pgA|

Integrations over the domain Q =]0, L[ give the virtual work expressions

T
é\Nint:j‘ 5Wgtdgz_{5ux2} E|A O {sz}
° o) LIO 4ly (&2

T
éWext:J‘Q §W8(tdQ:{5uX2} pgALZ{O} .

o8 - 12 |1
T
Suxo| E|A 0 |fuy, AL% [0
& 2 L w | B2 12 |1
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e Virtual work expression of the point force follows from definition of work (or from the

expression of formulae collection)

T
éWZ _ 5”)(2 —F |
08 5 0
e Principle of virtual work oW =oW1+5W? =0 Vvsa and the fundamental lemma of

variation calculus give

_Jouxy ! E|A 0 |fuxz| | —F {5Ux2}
W= {5@(2} ('—{O 4'WH6\(2} {PQALZMZ}) v 56

E|:A O}{UXZ}_ —F N {UXZ}_ —LF / EA e
L|0 41[16,] |poAl2r12| &) | pgAL> I (48Ely)|
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e Solution by the Mathematica code is obtained with the following problem description
tables

| model properties geometry
1 BEAM ({E, G}, {A, Iyy, Izz}, {0, 0, Agp}} Line[{1, 2}]
2 | FORCE {(-F, 0, 0} Point[{2}]
| {X:Y:Z} {UX:UY:UZ} {ex:ev:ez}
1 {0, 0, 0} {0, 0, 0} {0, 0, 0}
2 | {L, 9, 0} {ux[2], 9, 0} {0, 6Y[2], 0}

. AgL3p}

FL
{uxm So— =, Y
AE 48 E Tyy

N
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EXAMPLE 6.5. The Bernoulli beam of the figure is loaded by its own weight and a point
force acting on the right end. Determine the displacement and rotation of the right end
starting with the virtual density of the Bernoulli beam model. The x-axis of the material

coordinate system is placed at the geometric centroid of the rectangle cross-section. Beam

properties A, Iy, 1, and E are constants.

pgA

L F

Zy

1 pgALS
48 El,,

Answer: sz— A and &, =

Week 49-24



e Beam element definition of the Mathematica code requires the orientation of the y —axis
unless y— and Y —axes are aligned. Orientation is given by additional parameter

defining the components of | in the structural coordinate system:

| model properties geometry
1 BEAM ({E, G}, {A, Iyy, Izz, {0, 0, 1}}, {0, 0, Agp}} Line[{1, 2} ]
2 | FORCE {-F, 0, 0} Point[{2}]
| {X:Y:Z} {UX:UYJUZ} {QXJQY)QZ}
1 {0, 0, 0} {0, 0, 0} {0, 0, 0}
2 | {L, 9, 0} {uX[(2], o, 0} {0, 6Y[2], 0}

FL Ag L3
{UX[Z}%——,@Y[Z}% & p}
AE 48 I1zz E
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TIMOSHENKO BEAM VIRTUAL WORK DENSITY

Timoshenko beam model takes into account transverse displacements due to shear. As the

assumptions are less severe than those of the Bernoulli beam model, modelling error is
smaller.

(douldx )T | A =S, =Sy|{dusdx) (6w +dsvidx)"
Swol =— dsw /dx ¢ E|-S, dy /dx =4 60+dow/dx + x
—doo/dx| | _s —do/ dx| 5d¢ 1 dx

~ J

N
N
—
N
<
/.

r

\Tf A - \Tf A

A0 =Sy|(-y+dv/dx oul| | fy| [o@]| |my
<Gl 0 A S, [{@+dw/dx |, 5W5Xt:<§v> <fy>+<59> amy .
-Sy S, Iy || dpldx ow] | f,] O] |m,

If S, =S, =0and I, =0, bar, torsion, and bending modes contribute to the virtual work

expression as If they were separate bar, torsion and bending elements.
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Beam is a thin body in two dimensions

S 4

0Q)

_ .
y ‘ fdv

Z
The kinematic assumption of the Timoshenko beam model and definition of strain give
the displacement and the non-zero strain components (R, =-y +dv/dx,
Ry =0 +dw/ dx)

(U (%, y,2)] [u(x)+26(x) - yy (x)
uy (X,Y,2) V(X) - 24(X)
U (%, y,2)) L W)+ ye(x)

.
'
I
N\
V
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du_do_ dy {7xy}_{—w+dv/dx—zd¢/dx}

Eyy =—+I——y——
dx dx 7 dx Y 2x @+ dw/dx+ ydg/ dx

e The kinetic assumptions o, = oy, =0 and the generalized Hooke’s law give the non-

Zero stress components

o} —y+dv/dx—zd¢/d
GXX:ngsz(d_u+zd9_ydw) and | W l_g VT P10X .
dx  dx dx o 6+ dw/dx+ yde / dx

e With notation r? = y2 +22 the generic expressions for the virtual work densities per unit

volume simplify to (some manipulations are needed here)

(douldx )" [1 -y —z](du/dx) [-Sw+dsv/dx)
SWt=—Jdsw/dx t E|-y yy vyzl|{dy/dx S0+dsw/dx b x
—do6 [ dx| -z zy 2z ||-d@/dx] | odg/dx

V
.
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1 0 —z|(-w+dv/dx)
xG| 0 1 vy | @+dw/dx
-7y r2 \ d¢/dX )

'S

sul' [f,] [(og)' [-2fy+Vf,
oWy =4 OV p <fy>+<§9> ] zfy 5
oW f, Oy | —Yix

J " J

é,uxT ”tx“ r§¢\T "_Zty+ytz“
§W2Xt:<§v> sty p+q00 ¢ 5ty b
OWJ |t,| (o —yty

J " J

e Virtual work density of the internal forces is obtained as an integral over the small

dimensions which is the cross-section (the volume element dV = dAdQ).
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xG

The contributions coming from the external forces follow in the same manner. Assuming

that the volume force is constant (in an element) and that the surface forces are acting

(déu/dx )
dSy | dx

N\

—ds6/ dx

1 A =S, -S
CE[-S, Iy gy
__Sy IyZ IW
=Sy |~y +dv/dx
S, |{ @+dw/dx ;.
l, dg/dx |

(du/dx )
dy / dx
—d6/ dx|

N\
V

on the end surfaces only, the expressions become

) W&Xt =

(

"

sul'[f,
oV ¢ < fy>
OW | f,

( A

09

+1< 66

Loy |

T ( A -
m, ou
My and oWt = sv
m, \§WJ
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The last contribution is taken care of by a point force element in the Mathematica code.

IMPORTANT. The simplest possible linear approximation to the displacement and
rotation components does not give a good numerical method unless numerical tricks like
under-integration etc. are applied. To avoid numerical problems, approximations should be
chosen cubic even if the exact solution is a simple polynomial! The Mathematica code uses

a cubic approximation to all the unknowns and static condensation to end up with a two-

node element.
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EXAMPLE 6.6. A structure is modeled by using 16 beams and 4 rigid bodies. Assuming
that a point force with the magnitude F is acting as shown in the figure, determine the

displacement of the point of action in the direction of the force.
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e Rigid bodies can be modelled by using a one node force element and rigid links with the
other nodes. The problem description tables are given in the examples section of the
Mathematica solver. The displacement of node 20 in the direction of X —axis as given

by the solver is

16Fh® 64d2+4|2+ 32 )
37d*E - d2+41°2  2h%G/E +31% + 302

Ux 20 =

e If E=210-103N/mm?, G =80-103N/mm?, d =6.9mm, |=408mm, w=263mm,
h=170mm, F =69 N, the displacement

Uy 20 =1.56mm.
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6.3 PLATE MODEL

Reissner-Mindlin Kirchhoff

Straight line segments perpendicular to the reference-plane remain straight in deformation
(Reissner-Mindlin) and perpendicular to the reference-plane (Kirchhoff). In addition,

transverse normal stress component is negligible.
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Normal line segments to the reference-plane move as rigid bodies. In terms of the

displacement components u(x,y), v(X,y), w(x,y) and rotation components @#(Xx,Y),

6(x,y) of the translation point at the reference-plane, the displacement components are

given by G = (Ui +Vvj + WK) + (¢i +8])xzk). In component form

U, (X, y,z) =u(x,y)+6(x,y)z, _ _
Rotation component in the

Uy (X,y,2) =Vv(X,y) —é(X,y)z, z-direction is missing!
u,(x,y,z) =w(X,y).

In the Kirchhoff model u(x,y), v(x,y), w(X,y) and ¢ =ow /oy and & =—ow/ ox define

the displacement field.
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KIRCHHOFF PLATE VIRTUAL WORK DENSITY

Virtual work densities combine the plane-stress thin slab and the plate bending modes which

disconnect if the first moment of thickness vanishes. Virtual work densities of the bending
mode of the Kirchhoff plate are

[ 225w/ ok | [ 2wioxd

3
- t é) [ owloy
swiit =—1 o%swlaoy? + —[E].{ o°w/oy? |, -
< N1l Yo Qo™ owsax]
20%5W [ ox8y 20%W | 6X0y
SWET = Swf,,.

The planar solution domain (reference-plane) can be represented by triangular or rectangular

elements. Interpolation of displacement components w(x, y) should be continuous and have

also continuous derivatives at the element interfaces.
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The severe continuity requirement of the approximation at the element interfaces is
problematic in practice and cannot be satisfied with a simple interpolation of the nodal
values. The figure illustrates the shape functions corresponding to displacement and
rotation at a typical node in a patch of 4 square elements. The shape functions vanish
outside the patch. In the course, Kirchhoff model is used only in calculations with

domains of one element (no interfaces - no problems).

Week 49-37



EXAMPLE 6.7. Consider a plate strip loaded by its own weight. Determine the deflection
w according to the Kirchhoff model. Thickness, length of the plate are t, L, and h,

respectively. Density p, Young’s modulus E, and Poisson’s ratio v are constants. Use the

one parameter approximation w(x) =ag(1—x/ L)z(x/ L)2.

4
Answer: W:_ng (1—1/2)(1—5)2(5)2
DEt2 L™ L
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Approximation satisfies the boundary conditions “a priori’ and contains a free parameter

ay (not associated with a node) to be solved by using the principle of virtual work:

2 2 2
X 2 ,X\2 o0“W 2 X X2 oW 0w

w=ay(1l-——)°(— = —=ay—=[1-6—+6(—)°] and

ag( L) (L) ag L2[ 1 (L) ] 2 = oxdy

When the approximation is substituted there, virtual work densities simplify to

Et3
3(1-v )L4

Swgy' = —agday - 6— 6(—)]

X X
Wil =—5ag(1--5)" ()" pot.

Integrations over the domain Q =]0,L[x]0,h[ give the virtual works of internal and

external forces
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1 hEt
15 3(1-v?)

oW = [ owg'dQ = —agdag

1
W= [ swEldQ = —san— patLh.
jQ Q 039 rY

Principle of virtual work sW = oW '™ + sW® =0 v sa and the fundamental lemma of

variation calculus give finally Vda,

1 het® 1 1 pgtl* .
W =6 +—pgtLh)=0 < ag=-= 1-v%). €
% (2 Lg(l_vz)ao 20 P9 S — (1-v%)
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EXAMPLE 6.8. A rectangular plate is loaded by its own weight. Determine the deflection
of the plate at the free end by using the Kirchhoff plate model and one element. Thickness,

width, and length of the plate are t, h and L, respectively. Density o, Young’s modulus E

, and Poisson’s ratio v of the material are constants. Assume that deflection w depends only

on X.

gpL4)
2 Et?

4
S 9pL (1—1/2) (Bernoulli beam W(L)=§

Answer: w(L) =uz, =5 o2
Et

Week 49-41



e Asthe solution is assumed to depend on x only and the material and structural coordinate
systems coincide, one may use the cubic approximation of the Bernoulli beam model
(bending in xz —planeand & =x/L). Letus denote the displacementand rotation at the

free end by u,, =uz, and 6y, = 6, to get

T

(L-&2W+28)] [ o ) )
2 2
a9’ | | o _>:{(3—2x/L)(x/L) } {uzz} _

(3—2&)&2 Uz —L(x/L)*(x/L-1)| (&2
L2y | e

w1 {ca‘(L—zx)/L}T {Uzz} g oW {wZZ}T 1 {6(L—2x)/L}
o 2] -2L-39 ] |&; o2 |08,) 2] -2AL-3%) |

e When the approximation is substituted there, virtual work densities simplify to
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.
5W|nt _ Et3 {5UZZ}
12(1-v?)L* |08,

iz(esL—Jsz)2
L

%(2L—6x)(6L—12x)

st {5uZZ}Tpg{(3 2% L)(x/ L) }

L(x/L)2(x/L-12)

%(ZL —6x)(6L—-12 x)_

(2L - 6x)?

|

Uzo

& o

|

Integrations over the domain Q =]0,L[x]O0,h[ give the virtual works of internal and

external forces

é\Nlnt I 5 |ntdQ:_ Et3h

{5U22}T 12 6L
12(1-v2)L8 (66, ] | 6L 4L°
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o Principle of virtual work sW = sW '™ + sW®! =0 Vsa and the fundamental lemma of

variation calculus give finally
T
Su 3 12 6L |(u 6 Su
(o] el e o ol o
66| 121-vo)L°| 6L 4L7 | (G2 12 |L 56,
Etth |12 6L {Uzz}_pgthL{G}_o -
121-v2)3| 6L 4L% || & 12 |L

uzz|  pgt-v?)L* [ 3/2 «
& Et° —2/L)

A more detailed analysis may give dependence on y—coordinate which was excluded

by the displacement assumption of the simplified analysis.
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REISSNER-MINDLIN PLATE VIRTUAL WORK DENSITY

Virtual work densities combine the thin slab and plate bending modes which disconnect if
the first moment of thickness vanishes. Virtual work densities of the Reissner-Mindlin plate

bending mode are

T

—0060 | OX 3 [ —060/ox ] T
int t 0OoW [ oy — 6¢
owy =—y  asploy  p —IEl,4  dgley - tGx,
12 OOW [ OX + 60
|00¢ | 0x— 060 [ 0y |0p/0x—0010y|
ow /oy —
x y=¢ C WSt = sw,.
oW/ ox+6

The planar solution domain can be represented by triangular or rectangular elements.

Interpolation of displacement and rotation components w(x, y), ¢(X,y), and &(x, y) should

be continuous at the element interfaces.
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e Plate is a thin body in one-dimension

e Normals to the reference plane (not necessarily the symmetry or mid-plane) remain
straight in deformation. Kinematic assumption @ = (Ui +Vj + wk) + (i +0])x zk gives
the displacement components and strains

| [uxy)]  [e(xy)

s=1V(X,Y) p+23—0(X,Y)
u, |  wxy)) 0

U
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N

e | [ oulox ) [ 0816x owi oy
LEyy =1 ov /oy s+21  —0¢ploy >and{7yz}:{awlax 9}.
_|_
ouldy+oviox] 0010y —oplox 72X

Y xy

\ J

e The constitutive equations of a linearly elastic isotropic material and kinetic assumption

o,, =0 give the non-zero stress components

Oy 1 v 0 Exx
o
. b = E v 1 0 16w [ and{ yz}:G{7/yz}

O 7x Y zx
Oyy 0 0 (I-v)/2] Yy

J S

J

e The generic expression of 5\/\/\i,”t simplifies to a sum of thin slab, bending, transverse
shear and interaction parts of which the last vanishes if the material is homogeneous and

the reference plane coincides with the symmetry plane. With that assumption
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The generic expressions of &

0OoW /oy — o¢
OOW [ OX + 06
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thinslab part

>, bending part

0010y—o¢1 x|

ext

and owy simplify to
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su, ) (£, (su)T (o017 (4]
WGt =1suy ¢ {fyt=(Q v +z4-8pp )1 fy
ou, | | f] oW 100 [ f,,
su, ) [t,] (su)T (o0 [t
§W,%\Xt:<5uy> <ty>:(< OV +Z3-0@; )<ty>.
ou, |t oW 100 |t

The virtual work of internal forces is obtained as integral over the domain occupied by
the body (here the volume element dV =dzdQ). If ze[-t/2,t/2]

osulox " ou | x
Swit = — oSV | oy . t[E],{ oviey b
(0ou /oy +0ov/ox (ou /oy +ov/ox|
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056010y — 0541 ox 06010y—0¢1 x|
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The contributions coming from the external forces follow in the same manner. Assuming
that the volume force is constant (in an element), the surface forces do not act on the top

and bottom surfaces, the expression simplifies to

(su)' [f,] (su)' [t
éWeXt:j {Oov ey < f >dQ+j IOV <t,rdl. €=
Q y oQ y
OW f OW| |t
\ J L Z) \ J \Z)
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e As the virtual work expression contains only first derivatives, the approximation should

be continuous. Continuity requirement does not introduce any problems here and one

may choose e.qg.

IMPORTANT. Reissner-Mindlin plate model shares the numerical difficulties of the
Timoshenko beam model and, in practice, finite element methods using low order

approximations, e.g. linear or quadratic approximations on a triangle, suffer from severe

<

(1-&)A-7n)
S-mn)
1-S)n

S/

(1-&)A-7n)]
c(l—mn)
(1-S)n

<

. oen

>oand @ =+

(1-&)(A-7n)]
c(l—mn)
(1-S)n

<

shear locking that can be avoided only with carefully designed tricks.
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EXAMPLE 6.9 A rectangular plate is loaded by its own weight. Determine the deflection
of the plate at the free end by using the Reissner-Mindlin plate model with bi-linear, bi-
quadratic and bi-cubic approximations. Thickness, width, and length of the plate are t, b
and L, respectively. Density p, Young’s modulus E, and Poisson’s ratio v of the material

are constants. Consider finally the limit G — oo.

19

X, X
y’Y t, E, vV, p
3gpLl” ., - . 3 gpl”
Answer: W(L) =Uzo =Uzy =— 5 (1-v<) (Bernoulli beam w(L)=— > )
2 Et 2 Et
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e The solutions given by the Mathematica code of the course are

Bi-linear: w(L)=0 €
gpL’
Bi-quadratic: w(L) = 5 €
Et
Bi-cubic: w(L) = 39/
2 Et

Therefore, approximations to the unknown functions should be cubic for a precise

prediction.
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