MEC-E1050 Finite Element Method in Solid, week 49/2021

1. Consider a cantilever in xy-plane loaded by its own weight.
Determine the displacement and rotation of the free end.
Density p, Young’s modulus E, Poisson’s ratio v are
constants, and cross-section is rectangle of side length t. Use
one element and Bernoulli beam model with the bar and
bending modes.
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2. Determine rotation of the Bernoulli beam of the
figure at the support of the right end (use one
element). The neutral axis coincides with the x-
axis of the material coordinate system and the
support does not allow displacement at the x-axis.
Material property E is constant.
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3. Determine the rotation of the Bernoulli beam in
the figure at node 2. The x-axis of the material
coordinate system is placed as shown and the
support at node 2 does not allow displacement at 'z,Z
the x-axis. Young’s modulus of the material E is
constant. Use quadratic approximation (three
nodes) to the axial displacement u .
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4. A plate is loaded in its plane by shear force F distributed
evenly as shown in the figure. Determine the
displacement at the free end. Use thin-slab mode virtual
work density of the plate model and a four-node element.
Material properties E, v, p and thickness t are constants.
Assume that uy4 =Uy,.

LF

Answer Uy, = —2%(“ V)= TG



A plate is loaded in its plane by shear force F distributed
evenly as shown. Determine the displacement of the free -
end. Use the virtual work density expressions of the thin-
slab mode of the plate model and a four-node element.
Material properties E, v=0, p and thickness t are &
constants. Assume that uy4 =Uy, and Uy, =-Uy, and
consider the slender plate limit h/ L «<1.
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Consider the plate strip shown loaded by its own weight.

Thickness, length and width of the plate are t, L, and | z l 9
H, respectiVEly. DenSity o Young’S modulus E, and |-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-:-é;;)_X
Poisson’s ratio v are constants. Find an approximation s L AR

to the transverse displacement w of the plate using
series w=ag(1—x/L)(x/L) (ust one term of a series)
in which ag is an unknown parameter.
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A plate, loaded by point force F acting at the free
corner, is simply supported on two edges and free on
the other two edges as shown in the figure. Determine
the parameter ag of approximation
w(x,y)=ag(x/L)(y/L) and displacement at the
center point. Use the virtual work density of the plate
bending mode with constant E, v, p and t.

A

y,Y L

F L L. 3FL?
Answer =6——01+v), W(—,2)=—(01+
Ch) - 1+v) (2 2) 2Et3( V)

A simply supported plate is loaded by force F acting at
the center as shown in the figure. Determine the
displacement w(x,y) by using the principle of virtual
work. Consider the plate bending mode only and use
approximation w=agsin(zx/L)sin(zy/L) in which
ag Is a parameter. Material properties E, v, p and
thickness t are constants. The shape functions of the
approximation satisfy, e.g.,
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Answer (X, y) =%F—L§(1—v2)sin(7z5)sin(7z1)
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A simply supported plate is loaded by its own weight
as shown. Use the bending mode virtual work density
of the plate model to find the displacement. Use
approximation w=ay(1-£)E(1—n)n in which &g is
the parameter to be determined and the scaled
coordinates &=x/L and n=y/L. Material
properties E, v, p and thickness t are constants.
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At point x=L/4 and y=L/2 of a 4-noded plate
element there is a point moment with magnitude M .
Determine the virtual work expression W& of the
moment for a Reissner-Mindlin plate element. Assume
that nodes 1,2,4 are fixed and that the approximations to

all unknown functions are bi-linear.

Answer SW & = —g M58, 5.
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Consider a cantilever in xy-plane loaded by its own weight.
Determine the displacement and rotation of the free end. Density
£, Young’s modulus E, Poisson’s ratio v are constants, and
cross-section is rectangle of side length t. Use one element and
Bernoulli beam model with the bar and bending modes.

Solution
Assuming that the material coordinate system is chosen so that the bending and stretching modes
decouple, the two modes can be taken into account as if they were separate elements. Therefore, one
may use the virtual work expressions for the beam xy-plane bending and bar modes of the formulae
collection
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The nodal displacements and rotations of the material coordinate systems need to be expressed in
terms of those of the structural coordinate system. By using the figure

UX1=0, uy1=0, 92120,
Uyp =Uxp, Uyp=Uzp, Op=—C>.

The cross-section properties and the distributed force (per unit length) components in the material
coordinate system are

A=t?, IZZ:itA', fx=it2pg, f =—it2pg.
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When these relationships are used in the element contribution of the beam bending mode, the generic
expressions simplify to
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The bar mode expressions take the forms
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Virtual work expression is the sum of the mode expressions
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Principle of virtual work and the fundamental lemma of variational calculus imply the linear equation
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The first equation is not connected to the second and third. Therefore, the solution can be found
without inverting the 3-by-3 matrix (the bending mode equations are connected so a 2-by-2 matrix

needs to be inverted)

1 pgl? 3 pglt
Uyp=——= Uy, =——— and =225 €
2ol B T e T T R




Determine rotation of the Bernoulli beam of the
figure at the support of the right end (use one RAER ERATARRE B R AR
element). The neutral axis coincides with the x-axis
of the material coordinate system and the support
does not allow displacement at the x-axis. Material
property E is constant.

z
Solution
Virtual work densities of the Bernoulli beam model taking into account all the modes
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depend on the material properties E,G and on the moments of area A, Sy, S;, Iy, 15, Iy,, and
Iy = lyy +1,, . Expressions take the simplest form when x-axis is chosen to coincide with the neutral
axis and y and z are symmetry axes of the cross-section.

Approximations to the unknown functions is the first thing to be considered. The left end of the beam
is clamped and the right end simply supported. As the x-axis coincides with the neutral axis and the
beam is not loaded in the direction of its axis, only the transverse displacement needs to be considered.
Approximation to the transverse displacementw simplifies to
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Virtual work density depends on the moments of cross-section A=bt, S, =0, S,=0 and

ly =1= bt3/12. When the approximation is substituted there, virtual work densities simplify to
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Virtual work expressions are integrals of the densities over the element domain Q =]0, L[
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Principle of virtual work oW =oW'™ + sW®' =0 Vsa and the fundamental lemma of variation

calculus give
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Solution follows also from the virtual work expression of the formulae collection
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which is valid when the x-axis of the material coordinate system coincides with the neutral axis of

the beam (and y- and z- axes are symmetry axes of the cross-section):



Determine the rotation of the Bernoulli beam in the
figure at node 2. The x-axis of the material
coordinate system is placed as shown and the
support at node 2 does not allow displacement at the
x-axis. Young’s modulus of the material E is
constant. Use quadratic approximation (three nodes)
to the axial displacement u .

Solution Yy =5
Virtual work densities of the Bernoulli beam model
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depend on the material properties E,G and on the moments of the area A, Sy, S,, |
and Iy =1y +15.
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The left end of the beam is clamped and the right end simply supported. The additional node 3 for the
quadratic approximation is places at the mid-point of the beam. Approximations to u and w become
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Virtual work densities depend on the moments of cross-section

0
A=bt,S,=0,5=5,=[" zbdz=-bt?/2 and I =1,y = [° 2%bdz=bt®/3.

When the approximations are substituted there, virtual work densities simplify to
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Virtual work expressions are integrals of the densities over the mathematical solution domain.
Integrations over Q =]0, L[ give the virtual work expressions
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Principle of virtual work oW =oW'™ + sW®' =0 Vsa and the fundamental lemma of variation
calculus give
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A plate is loaded in its plane by shear force F distributed " y,Y
evenly as shown in the figure. Determine the displacement at .
the free end. Use thin-slab mode virtual work density of the
plate model and a four-node element. Material properties E, v
, p and thickness t are constants. Assume that Uy, =Uy>.
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Solution

Assuming that the material coordinate system is chosen so that the plate bending and thin slab modes
decouple, virtual work density of plate is the sum of the thin-slab and plate bending mode virtual
work densities. Here the bending part vanishes. The thin-slab expressions are
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Elasticity matrix of the plane stress case is given in the formulae collection

1 v 0
[E]O_:izv 1 0
Y lo 0 (1-v)/2

Let us choose the material and structural coordinate systems to coincide. Approximations to the in-
plane displacements are (the shape functions can be deduced from the figure)
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When the approximations are substituted there, virtual work densities of internal forces and external
surface forces simplify to
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Virtual work expressions are integrals of the densities over the corresponding domains



; h L ; h tE
Swnt = SWtdxdy = —Suy » — u
jo jo i dxay Y2 21+ v) Y2

=

h .
SWS = [ SwEQdy = ~SuyF . (notice that x = L on edge 2-4)

Therefore

oW = oW 4 oW = _suy (M E_u, 1 F).
L 2@+v)

Principle of virtual work SW =0 Véa and the fundamental lemma of variation calculus give
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A plate is loaded in its plane by shear force F distributed evenly .
as shown. Determine the displacement of the free end. Use the -
virtual work density expressions of the thin-slab mode of the
plate model and a four-node element. Material properties E,
v =0, p and thickness t are constants. Assume that Uy 4 = Uy
and uy 4 =—Uyx ,. Consider the slender plate limit h/L <« 1.

Solution

Assuming that the material coordinate system is chosen so that the plate bending and thin slab modes
decouple, virtual work density of plate is the sum of the thin-slab and plate bending modes. Here the
bending part vanishes and only the thin slab part
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is needed. Elasticity matrix of the plane stress case is given in the formulae collection

1 v 0
[E]O_:izv 1 0
Y lo 0 (1-w)/2

Let us choose the material and structural coordinate systems to coincide. Approximation to the in-
plane displacement was chosen to be bilinear so that the displacement components are (the shape
functions can be deduced from the figure)
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When the approximation is substituted there, virtual work densities of internal forces and external
surface forces simplify to (v =0)
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Virtual work expressions are integrals of the density over the corresponding domains
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Therefore with h < L (so that h? < L2 in the 1-1 term of the matrix)
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Principle of virtual work SW =0 Véa and the fundamental lemma of variation calculus give
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Consider the plate strip shown loaded by its own weight.

Thickness, length and width of the plate are t, L, and H, |Z l 9
respectively. Density p, Young’s modulus E, and —————D0D—D7ZD7——————— —
Poisson’s ratio v are constants. Find an approximation to the :
transverse displacement w of the plate using series
w=ay(l-x/L)(x/L) (just one term of a series) in which
ag Is an unknown parameter.

Solution
Assuming that the material coordinate system is chosen so that the plate bending and thin slab modes
decouple, virtual work densities of the Kirchhoff plate model are given by

.
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in which the elasticity matrix of plane stress

1 v 0
[El,=—|v 1 0
=710 0 1-v)/2

Approximation to the transverse displacement (notice that the polynomial shape is known and
variation of displacement is through the multiplier)
02w 2w RV
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When the approximation is substituted there, virtual work density simplifies to
int ext 2 X, X
SWe = SWS' + oW = _5a0__—aOF_5aO(1_I)(I)gpt'

Integration over the element gives
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Principle of virtual work SW =0 Vda, and the fundamental lemma of variation calculus give
solution to the parameter
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Therefore, approximation to the transverse displacement is given by
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A Kirchhoff plate, loaded by point force F acting at the free
corner, is simply supported on two edges and free on the other
two edges as shown in the figure. Determine the parameter ag
of approximation w(x, y) =ag(x/L)(y/L) and displacement
at the center point. Use the virtual work density of the
Kirchhoff plate model with constant E, v, p and t.

Solution
Assuming that the material coordinate system is chosen so that the plate bending and thin slab modes
decouple, it is enough to consider the virtual work densities of the bending mode only

.
25w 1 ox2 , 2w/ ox?
2025w 1 oxdy 20%w/ oxdy

in which the elasticity matrix of plane stress

1 v 0
[El,=—|v 1 0
=710 0 1-v)/2

In the present case, distributed force vanishesi.e. f, =0 and the point force is taken into account by
a point force element.

Approximation to the transverse displacement is chosen to be (&, is not associated with any point
but it just a parameter of the approximation)
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When the approximation is substituted there, virtual work density of internal forces simplifies to

.
025w/ ox? 1 v 0 0w/ ox?
- 3 3
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2025w/ oxdy 0 0 (A-v)/2]|26%w/oxoy

Virtual work expression of the plate bending element (element 1 here) is integral of the virtual work
density over the domain occupied by the element
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Virtual work expression of the point force (element 2 here) follows from the definition of work (notice
the use of virtual displacement of the point of action x=y=L)

SW2 =sw(L, L)F =5ayF .
Principle of virtual work and the fundamental lemma of variation calculus give
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Displacement at the center point
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A simply supported plate is loaded by force F acting at the
center as shown in the figure. Determine the displacement
w(X,y) by using the principle of virtual work. Consider the
plate bending mode only and use approximation
w = agsin(zx/ L)sin(zy /L) in which a, is a parameter. /L
Material properties E, v, p and thickness t are constants. y,Y ™ L -
The shape functions of the approximation satisfy, e.g.,

L . . X,\.,. X L
.[0 sm(wt)sm(wt)dx:zéij.

Solution
Virtual work density of the internal forces is given by
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025w/ ox? , 0°w/ ox? 1y 0
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Approximation to the transverse displacement and its derivatives
X
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When the approximation is substituted there, virtual work density of internal forces simplifies to
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Virtual work expression of the plate bending element (element 1 here) is integral of the virtual work
density over the domain occupied by the element

j j SW, '”tdxdy——5a04 (L)( )ao
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Virtual work expression of the point force (element 2 here) is given by the definition of work
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Principle of virtual work and the fundamental lemma of variation calculus give

1% 74 L 12 F2
W =W+ 5W? = —5ayC—— (5)*(D)%ay - F) Vg, < - == (1-v?).
a0(31—V2(L) ()% -F) ag %="73 Et3( )

Displacement
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A simply supported plate is loaded by its own weight as
shown. Use the bending mode virtual work density of the
plate model to find the displacement. Use approximation
w=ay(1-¢)E@—n)n inwhich ag is the parameter to be
determined and the scaled coordinates £=x/L and
n=y/L. Material properties E, v, p and thickness t are
constants.

Solution
Assuming that the material coordinate system is chosen so that the plate bending and thin slab modes
decouple, it is enough to consider the virtual work densities of the bending mode only

.
25w 1 ox2 , 2w/ ox?
Swint — _ 825W/8y2 ;_Z[E]o_ 82W/8y2 oWt = owf, .
2025w 1 oxdy 202w/ oxdy

in which the elasticity matrix of plane stress

1 v 0
[El,=—|v 1 0
=710 0 1-v)/2

The one parameter approximation to the transverse displacement gives
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When the approximation is substituted there, virtual work densities of internal and external forces
take the forms
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Virtual work expression of the plate bending element (element 1 here) is integral of the virtual work
density over the domain occupied by the element
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Principle of virtual work and the fundamental lemma of variation calculus give
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At point x=L/4 and y=L/2 of a 4-noded plate element

there is a point moment with magnitude M . Determine the L/2
virtual work expression SW®' of the moment for a
Reissner-Mindlin plate element. Assume that nodes 1,2,4
are fixed and that the approximations to all unknown
functions are bi-linear. e
Y.y
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| I |
1
L

Solution

In the present course, point forces and moment are taken into account by one node element. Virtual
work expression follows from the definition “force multiplied by virtual displacement in its direction”
and “point moment multiplied by the virtual rotation in its direction”.

Virtual rotation at the point of action depends on the bilinear rotation component approximation in
the y-direction for
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Virtual work expression from the definition “point moment multiplied by the virtual rotation in its
direction”



