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An example of Bayesian estimation

See Example 11.2 on p. 351 in Kay’s book [1] for an intuitive understanding of
the interplay between the prior, likelihood, and posterior. In the following, we
solve a similar problem, namely Exercise 11.4 in [1, p. 370].

11.4 The data z[n] = A + wln} for n = 0,1,..., N — 1 are observed. The unknown
parameter A is assumed to have the prior PDF
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where A > 0, and w(n] is W8N with variance % and is independent of A. Find
the MAP estimator of A.

Solution: Since the noise is Gaussian, its PDF is
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Consequently, the conditional probability of x[n] given A is also a Gaussian
process with mean A, i.e.,
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For simplicity, collect the observations into vector = [z[0], z[1], ..., z[n —1]]T.
The likelihood of the i.i.d. observations is therefore the conditional PDF
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The MAP estimator of A maximizes the posterior, that is,

Apap = arg max p(A|z) = arg max p(z|A)p(A) = arg max (log p(z|A) + log p(4)).



For the given p(A) and p(x|A), the MAP becomes (ignoring irrelevant constants)
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Apap = arg max (—M nzo(x[n] — A)* — AA).
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Setting the derivative of f(A) w.r.t. A equal to zero yields
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where 7 = + Zf::ol x[n] denotes the sample mean. Indeed, the above argument

maximizes f(A), since
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However, we also need to take into account! that A > 0, since it may occur that
7 < Ao?/N. Consequently, the MAP estimator is
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Fig. 1 illustrates the MAP estimate, together with the prior and posterior PDF's,
as well as the likelihood function, for the case N = 1 and x = 2.0558. We see
that the prior biases the MAP estimate towards smaller values of A compared
to the mode of the likelihood function, i.e., the maximum likelihood estimate
(MLE). The MLE equals the measurement z in this single observation case. In
contrast, the minimum mean squared error (MMSE) estimator (not depicted)
is, by definition, the mean of the posterior distribution.
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Figure 1: MAP estimate together with prior, likelihood, and posterior PDFs.
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1Since we previously solved an unconstrained optimization problem, for simplicity.



