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Entropy Regularization in RL

Data Sources in ML

(Un)supervised Learning Reinforcement Learning

● i.i.d. dataset: agent learns from and is used 

on data with the same distribution

● Constant change to data generating process 

(at least in online RL)

● Large emphasis on out of distribution 

generalization 
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Successes of Machine Learning

● (Un)supervised Learning

○ Machine translation, Speech recognition

○ AI image upscaling

○ Drug discovery

● Reinforcement Learning

○ Backgammon (Tesauro et al., 94), Chess (Hsu et al., 96), 

Atari (Mnih et al., 13), Go (Silver et al., 16)

○ Limited to game domains (closed world, unlimited data)
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RL in the Physical World

High Acceleration Reinforcement Learning for Real-World Juggling with Binary Rewards
K. Ploeger, M. Lutter, J. Peters
CoRL20

● Small number of parameters (<20)

● Initialize from expert demonstrations

● Black-box optimization
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https://docs.google.com/file/d/1D7YMeqkr34i7yYYcqa3xXas_0YSIeFDJ/preview
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Learning Goals

● Entropy Regularization in RL

○ Algorithms overview

■ From black-box optimization to deep reinforcement learning

○ Why is it important?
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Entropy Regularization in RL

(Maximize rewards)

 (Do not change policy too much)

● For Gaussian search distribution                                          , update following

Relative Entropy Policy Search (REPS)

7

De
is

en
ro

th
 e

t a
l. 



Entropy Regularization in RL

(Maximize rewards)

 (Do not change policy too much)

● For Gaussian search distribution                                          , update following

Relative Entropy Policy Search (REPS)
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● KL-divergence is always positive

● is equal to 0 if p is q

● For Gaussians, it grows if e.g. the

○ mean shifts

○ covariance matrix rotates 

○ covariance matrix shrinks
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Kullback-Leibler divergence
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(Maximize rewards)

 (Do not change policy too much)

● For Gaussian search distribution                                          , update following

Relative Entropy Policy Search (REPS)
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● Closed-form solution in probability space

                                                                                    

                                                                                     With    , the dual variable of the Lagrangian function

A Survey on Policy Search for Robotics (Chap. 2.4.3); M. Deisenroth, G. Neumann, J. Peters; Foundations and Trends in Robotics, 2013
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REPS - Algorithm
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● Sample {𝜃1, ... , 𝜃K} from (Gaussian) 𝜋k-1 

● Evaluate parameters and get {R(𝜃1), ... , R(𝜃K)}

● Optimize dual function and get 𝜂

●                                                :

○ Can evaluate distribution at sample points {𝜃1, ... , 𝜃K} up to normalization factor

○ Want 𝜋k to remain Gaussian for easy sampling

-> maximum likelihood fit of Gaussian 𝜋k to samples {𝜃1, ... , 𝜃K} with weights 

A Survey on Policy Search for Robotics (Chap. 2.4.3); M. Deisenroth, G. Neumann, J. Peters; Foundations and Trends in Robotics, 2013
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REPS - Limitations (1/2)
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● Bias in density estimation

○ If environment is stochastic R(𝜃1) is a random variable

■ Performance of 𝜃1 is given by expected return

■                 can be approximated by (unbiased) Monte Carlo estimate

○ Because of exp func., unbiased estimators of                  still yields biased estimate of density

■                                                                                                             (Jensen’s inequality + unbiasedness)

■ Equality if there is no variance otherwise overestimation 
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REPS - Limitations (2/2)
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● KL-divergence violation from maximum likelihood step

○ Although                         satisfies KL-divergence cst., its Gaussian approximation 𝜋k might not

○ Especially true if sample set {𝜃1, ... , 𝜃K} is small

■ Gaussian distribution can quickly converge to a point mass with little to no variance

● An alternative update:  𝜋k-1 is Gaussian and if R is quadratic and concave then                         Gaussian!
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Model-based REPS (MORE)

● For Gaussian policies 

● Closed-form solution in probability space

                                                            for dual variables     and      of the Lagrangian function

Model-Based Relative Entropy Stochastic Search; A. Abdolmaleki, R. Lioutikov, N. Lau, L. Reis, J. Peters, G. Neumann; NeurIPS15
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● Closed-form solution in parameter space (no maximum likelihood step) 

 (Do not change policy too much)

(Maximize rewards)

(Prevent premature convergence)
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Model-based REPS (MORE)

● For Gaussian policies 
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● Closed-form solution in parameter space (no maximum likelihood step) 

 (Do not change policy too much)

(Maximize rewards)

(Prevent premature convergence)
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 (Do not change policy too much)

(Maximize rewards)
KL-divergence
● For Gaussians, it grows if e.g. the

○ mean shifts

○ covariance matrix rotates 

○ covariance matrix shrinks

Entropy difference
● For Gaussians, it grows if the

○ covariance matrix shrinks

Having both decouples the control of matrix shrinkage from the rest. 

Typically in practice: move mean/rotate covariance at faster rate 

than shrink covariance 
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MORE - Algorithm
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● Sample {𝜃1, ... , 𝜃K} from (Gaussian) 𝜋k-1 

● Evaluate parameters and get {R(𝜃1), ... , R(𝜃K)}

● Fit quadratic model     to data (regression problem)

● Optimize dual function and get 𝜂 and 𝜔

● Compute 𝜋k from 𝜋k-1,     , 𝜂 and 𝜔  

● Limitation: regression problem manageable for cleverly parameterized (and closed-loop) policies

○ Impractical if e.g. 𝜃 parameters of neural network

Model-Based Relative Entropy Stochastic Search; A. Abdolmaleki, R. Lioutikov, N. Lau, L. Reis, J. Peters, G. Neumann; NeurIPS15
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Step-based MORE (MOTO)

● For linear-Gaussian policies

 

● Closed-form solution in probability space and parameter space

          for dual variables     and      of the Lagrangian function

Model-free Trajectory-based Policy Optimization with Monotonic Improvement; R. Akrour, A. Abdolmaleki, H. Abdulsamad, J. Peters, G. Neumann; JMLR18

(Prevent premature convergence)
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 (Promote monotonic improvements)

(Closed loop policy)

(Maximize returns)
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Open-Loop vs Closed Loop on Table Tennis 
No spin Spin (Noise at rebound)

● Comparable to black-box methods with open-loop policies despite much larger search space (x800)

● Closed-loop nature of the policy copes with noisy environments 

● Closed-form update outperforms control algorithms and TRPO (deep RL) on benchmark problems
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Model-free Trajectory-based Policy Optimization with Monotonic Improvement; R. Akrour, A. Abdolmaleki, H. Abdulsamad, J. Peters, G. Neumann; JMLR18

https://docs.google.com/file/d/0B2-wuqQdDHxmTWZuR0xrV1RVYjQ/preview
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MOTO - Limitation
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● Linear Gaussian policies ill-suited for

○ Infinite horizon problems and in general problems with long (>150) planning horizons

○ Complex inputs (images, graphs...)

● An alternative: MPO algorithm [1]

○ Mean of policy given by neural network (or any other differentiable model)

○ Maximum likelihood step as in REPS but with additional KL-divergence constraint during fit

[1] Maximum A Posteriori Policy Optimisation; A. Abdolmaleki, J. Springenberg, Y. Tassa, R. Munos, N. Heess, M. Riedmiller; ICLR18
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Natural Gradient and Deep RL - TRPO
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● Around parameters 𝜃 of data generating policy  𝜋k-1 

○ Compute gradient g of objective                                                  for a first order approximation

○ Compute Hessian F of KL-divergence constraint for a second order approximation

● Approximated constrained problem admits closed form solution 𝜃 + 𝛼F-1g (so called Natural Gradient)

● Additional computational tricks:

○ Find NG by minimizing                    using conjugate gradient algorithm

○ Compute Fp by computing gradient(<gradient(KL), p>)

○ Add linesearch to ensure KL-divergence constraint is satisfied 

● Works well on medium scale problems and more stable than other deep RL algorithms

Trust Region Policy Optimization; S. Schulman,  S. Levine, P. Moritz, M. Jordan, P. Abbeel; ICML15
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Gradient Clipping and Soft Constraints - PPO
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● Solves the same optimization problem as TRPO (maximize advantage under KL-divergence constraint)

● Optimization routine of TRPO can be a bit slow when dealing with very large networks

○ PPO introduces tricks to (heuristically) tackle the optim. problem with vanilla gradient descent 

● Main trick is clipped loss

○ Zero contribution (the gradient) of state-action pairs if                       deviates too much from 1

○ Implies a total variation ‘constraint’ between 𝜋kand 𝜋k-1

Proximal Policy Optimization Algorithms; S. Schulman,  F. Wolski, P. Dhariwal, A. Radford, O. Klimov; 2017
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Gradient Clipping and Soft Constraints - PPO
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● Solves the same optimization problem as TRPO (maximize advantage under KL-divergence constraint)

● Optimization routine of TRPO can be a bit slow when dealing with very large networks

○ PPO introduces tricks to (heuristically) tackle the optim. problem with vanilla gradient descent 

● Main trick is clipped loss

○ Zero contribution (the gradient) of state-action pairs if                       deviates too much from 1

○ Implies a total variation ‘constraint’ between 𝜋kand 𝜋k-1

○ TV and KL are related through inequality and serve similar purposes (see second part)

○ KL-divergence term sometimes added to loss too

Proximal Policy Optimization Algorithms; S. Schulman,  F. Wolski, P. Dhariwal, A. Radford, O. Klimov; 2017
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Entropy regularization in (deep) RL
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Hard vs Soft Constraints

● Formulation with soft-constraints/bonuses is more common in the theory of (convex) optimization

● In practical algorithms it is common

○ That the KL-divergence is hard constrained 

○ That entropy is added as a bonus 

■ Notable exception is latter version of SAC

● Still an open question how to best formulate and solve policy update in approximate policy iteration

24

Optimization Issues in KL-Constrained Approximate Policy Iteration; N. Lazic,  B. Hao,  Y. Abbasi-Yadkori, D. Schuurmans,  C. Szepesvari; 2021
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Summary of Algorithms Overview

● KL-divergence (a.k.a. relative entropy) and entropy are widespread regularizers in RL

○ From black-box formulations typical in robotics to deep RL

● Constrained entropy regularized policy update can be solved in closed form in some cases

○ But a lot of tricks are involved to tackle the problems in deep RL

○ Finding the best formulation is still an active research area

● Soft formulation with entropy terms added to policy update loss trivial to implement

○ But does not seem to be popular in practice, especially for KL-divergence constraint

○ ...why is it important to bound the KL-divergence anyway?
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Learning Goals

● Entropy Regularization in RL

○ Algorithms and applications in robotics

○ Why is it important?

■ Monotonic improvements in Approximate Policy Iteration (API)

■ Exploration in RL
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Why does Entropy Regularization Helps?

● Typical entropy regularized policy update in Approximate Policy Iteration (API)

● Strict compliance with KL-divergence constraint important in practice… why?

● Objective and constraints expressed in terms of          … is it reasonable?
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Policy Improvement

● In tabular RL, 

○ Take better action in all states

○ Immediately implies that                     , i.e. for any (s,a)  

● Relaxation when using function approximators

○

○ Take better actions in average of previous state distribution

○ What about average under the current state distribution                                                       ?
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●         matrix representation of policy     

Notation

●       matrix of size     
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●         matrix representation of policy     
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Notation

●       matrix of size    
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●         matrix representation of policy     

●         transition matrix

● Value function 

Notation

●       matrix of size    
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●         matrix representation of policy     

●         transition matrix

● Value function 

Notation

● Policy induced state distribution

● We define
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●         matrix representation of policy     

●         transition matrix

● Value function 

Notation
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●         matrix representation of policy     

●         transition matrix

● Value function 

● Policy return                                         for initial state distribution matrix  

Notation
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Performance Difference Lemma

●

35



Entropy Regularization in RL

Performance Difference Lemma

●

● Value difference
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Performance Difference Lemma

●
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Performance Difference Lemma

●

● State distribution difference
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Performance Difference Lemma

●●
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Performance Difference Lemma

●

●

● Expressed policy return as a function of old advantage under old state distribution 

○ + term small when new policy is close to old one
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● Previous expression contains         which is hard to quantify

○ Prior work will mainly differ in bounding 

Lower Bounding the Policy Return
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Entropy Regularization in RL

● Previous expression contains         which is hard to quantify

○ Prior work will mainly differ in bounding 

● CPI (Kakade et al. ICML02):                                                                                                        

○ Where                                            mixes previous policy with policy maximizing old advantage

○ Improvement of policy return can be guaranteed for small enough 

Lower Bounding the Policy Return
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● Previous expression contains         which is hard to quantify

○ Prior work will mainly differ in bounding 

● CPI (Kakade et al. ICML02):                                                                                  

● USPI (Pirotta et al. ICML13): 

○

Lower Bounding the Policy Return
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● Previous expression contains         which is hard to quantify

○ Prior work will mainly differ in bounding 

● CPI (Kakade et al. ICML02):                                                                                  

● USPI (Pirotta et al. ICML13): 

● TRPO (Schulman et al. ICML15): 

○ Pinsker’s inequality: 

Lower Bounding the Policy Return
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● Previous expression contains         which is hard to quantify

○ Prior work will mainly differ in bounding 

● CPI (Kakade et al. ICML02):                                                                                  

● USPI (Pirotta et al. ICML13): 

● TRPO (Schulman et al. ICML15): 

● CPO (Achiam et al. ICML17): 

Lower Bounding the Policy Return
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Pessimism of (TV) Constrained Policy Updates

● For never seen (s,a), fair to assume that it has the worst reward and leads to the worst states

○ Necessary if we want to provide guarantees that hold in the worst case

● Bounds previously discussed assume the worst when bounding                even for pairs explored by 

○ Only saving grace is to minimize divergence to 

○ In that sense similar to imitation learning [1]

○ Bounds too pessimistic to be useful in practice

● Open question: how to incorporate pessimism that takes into account visited (s,a) pairs in deep RL
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[1] The Importance of Pessimism in Fixed Dataset Policy Optimization; J. Buckman, C. Gelada, M. Bellemare; ICLR2021
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Optimism in RL

● For never seen (s,a), fair to assume that it has the best reward and leads to the best states

○ Necessary if we want to provide guarantees that we find the optimal policy

● For explored (s,a) pairs, high probability bounds of reward and future state distribution depend on

○ Number of times (s,a) has been visited and optionally its variance (concentration inequalities)

● Estimating these quantities is a similar open problem as in previous slide

○ Entropy bonus/constraint is the optimistic pendant of TV/KL-divergence constraint

○ Ensures that (s,a) pairs are explored sufficiently many times

○ Can be overly optimistic towards very bad pairs and is mostly used as an heuristic

47



Entropy Regularization in RL

Summary
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● For principled RL algorithm development, learner should memorize visitation counts for (s,a) pairs

○ Doable in tabular settings or with trees (MCTS)

○ Remains an open problem for large MDPs requiring function approximators

● Entropy regularization provides useful tools to cope with lack of visitation counts and incorporates

○ Optimistic view: to ensure sufficient exploration through entropy lower bound

○ Pessimistic view: to ensure policy improvement through TV/KL-divergence upper bound

● Future research needed to correct for excessive optimism/pessimism


