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Data Sources in ML
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e i.i.d. dataset: agent learns from and is used e Constant change to data generating process

on data with the same distribution (at least in online RL)

e Large emphasis on out of distribution

generalization
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Successes of Machine Learning

e (Un)supervised Learning

o Machine translation, Speech recognition

o Al image upscaling

o Drug discovery

e Reinforcement Learning

o Backgammon (Tesauro et al., 94), Chess (Hsu et al., 96),

Atari (Mnih et al., 13), Go (Silver et al., 16)

o Limited to game domains (closed world, unlimited data)

L
- -

-EEH
:SE D

Entropy Regularization in RL



RL in the Physical World

e Small number of parameters (<20)
e Initialize from expert demonstrations

e Black-box optimization

High Acceleration Reinforcement Learning for Real-World Juggling with Binary Rewards
K. Ploeger, M. Lutter, J. Peters
CoRL20
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https://docs.google.com/file/d/1D7YMeqkr34i7yYYcqa3xXas_0YSIeFDJ/preview

Learning Goals

e Entropy Regularization in RL
o  Algorithms overview
m From black-box optimization to deep reinforcement learning

o Why is it important?
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Relative Entropy Policy Search (REPS)

e For Gaussian search distribution 75 (6) = N (0| ux, X ) update following

(Maximize rewards)

(Do not change policy too much)

nroth et al.

lteration = 3 Iteration = 6
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Relative Entropy Policy Search (REPS)

e For Gaussian search distribution 74 (0) = N (0|,

Kullback-Leibler divergence

KL(pllq) = /p(w) log %dw

e KL-divergence is always positive

e isequaltoQifpisq
e e For Gaussians, it grows if e.g. the

o mean shifts

Deisenroth et al.

o covariance matrix rotates

o covariance matrix shrinks

lteration = 3 Iteration = 6
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Relative Entropy Policy Search (REPS)

e For Gaussian search distribution 75 (6) = N (0| ux, X ) update following

max EQka [R(H)] (Maximize rewards)
Tk
s.t. KL (7Tk ‘ |7Tk— 1 ) S € (Do not change policy too much)

e Closed-form solution in probability space

T X TT—1 €XP (%) With 7, the dual variable of the Lagrangian function

A Survey on Policy Search for Robotics (Chap. 2.4.3); M. Deisenroth, G. Neumann, J. Peters; Foundations and Trends in Robotics, 2013
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REPS - Algorithm

e Sample{o,,..., 6,} from (Gaussian) Ty
e Evaluate parameters and get {R(6.,), ..., R(6,)}
e Optimize dual function and get 5
R .
° 7TkO(7Tk_1€Xp<?>.
o  Can evaluate distribution at sample points {0, ..., 6,} up to normalization factor
o  Want z, to remain Gaussian for easy sampling

-> maximum likelihood fit of Gaussian =, to samples {91, s GK} with weights

w; = T_1(6;) exp (R(:i) )

A Survey on Policy Search for Robotics (Chap. 2.4.3); M. Deisenroth, G. Neumann, J. Peters; Foundations and Trends in Robotics, 2013
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REPS - Limitations (1/2)

e Bias in density estimation

o If environment is stochastic R(9,) is a random variable
m Performance of 0, is given by expected return E[R(6,)]
m E[R(6:)] can be approximated by (unbiased) Monte Carlo estimate R(6,) = Z R (6y)

o Because of exp func., unbiased estimators of E[R(#,)] still yields biased estimate of density

; E|R(6
C I ) [exp (R(gl) )] > exp M > exp (M) (Jensen'’s inequality + unbiasedness)
n n n

m Equality if there is no variance otherwise overestimation
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REPS - Limitations (2/2)

e Kl-divergence violation from maximum likelihood step

o Although ) exp (%) satisfies KL-divergence cst., its Gaussian approximation sz, might not
o Especially true if sample set {0, ..., 0, } is small

m Gaussian distribution can quickly converge to a point mass with little to no variance

e An alternative update: &, , is Gaussian and if R is quadratic and concave then m;._; exp <?) Gaussian!
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Model-based REPS (MORE)

e For Gaussian policies 7Tk(9) = N(9|/Lk, Ek)

rI71raX EQNM [R(@)] (Maximize rewards)
k

sit. KL (mg||me_1) <e€ (Do not change policy too much)

H(mg—1) — H(mx) < 6 (Prevent premature convergence)

e Closed-form solution in probability space

T X ﬂZé(f-Fw) exp ("74%) for dual variables 7 and w of the Lagrangian function

e Closed-form solution in parameter space (no maximum likelihood step)

Model-Based Relative Entropy Stochastic Search; A. Abdolmaleki, R. Lioutikov, N. Lau, L. Reis, J. Peters, G. Neumann; NeurlPS15
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Model-based REPS (MORE)

e For Gaussian policies m(@) = N((9|/Lk, Ek)

KL-divergence

II}%X Egror [R(@)] (Ma e For Gaussians, it grows if e.g. the
s.it. KL (mg||me—1) <€ (Do not o mean shifts
H(Wk—l) — H(Wk) <p (Preve o  covariance matrix rotates

o covariance matrix shrinks

e Closed-form solution in probability space
; Entropy difference

T X ﬂné(n—HU) exXp R for dual var” ~__ e For Gaussians, it grows if the
k—1 n+w
o covariance matrix shrinks

e Closed-form solution in parameter space (nom

Having both decouples the control of matrix shrinkage from the rest.

Typically in practice: move mean/rotate covariance at faster rate

Model-Based Relative Entropy Stochastic Search; A. Abdolmaleki, R. Lioutikov, Ny than shrink covariance

—
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MORE - Algorithm

e Sample{o,,..., 6,} from (Gaussian) Ty

e Evaluate parameters and get {R(6.,), ..., R(6,)}

e Fit quadratic model R to data (regression problem)
e Optimize dual function and get 5 and w

e Compute 7, from x R,pandw

k-1’

e Limitation: regression problem manageable for cleverly parameterized (and closed-loop) policies

o Impractical if e.g. 6 parameters of neural network

Model-Based Relative Entropy Stochastic Search; A. Abdolmaleki, R. Lioutikov, N. Lau, L. Reis, J. Peters, G. Neumann; NeurlPS15
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Step-based MORE (MOTO)

e For linear-Gaussian policies W]i(at|st) = N (a¢|Kys¢, 24) (Closed loop policy)
II}T%X Espt _a~nt(s) [@4 (s, a)] (Maximize returns)
st BEgopr | (KL (7, (.|9)| |71 (|s))] <€ (Promote monotonic improvements)
Egnpt | (H(mp_1(.]s)) — H(mp,(|s)] <8 (Prevent premature convergence)

e Closed-form solution in probability space and parameter space

7t ([s) o 7wt (]s)7 ) exp (@-_H)

n+w

for dual variables 77 and w of the Lagrangian function

Model-free Trajectory-based Policy Optimization with Monotonic Improvement; R. Akrour, A. Abdolmaleki, H. Abdulsamad, J. Peters, G. Neumann; JMLR18
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Open-Loop vs Closed Loop on Table Tennis
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Comparable to black-box methods with open-loop policies despite much larger search space (x800)
Closed-loop nature of the policy copes with noisy environments

Closed-form update outperforms control algorithms and TRPO (deep RL) on benchmark problems

Model-free Trajectory-based Policy Optimization with Monotonic Improvement; R. Akrour, A. Abdolmaleki, H. Abdulsamad, J. Peters, G. Neumann; JMLR18
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https://docs.google.com/file/d/0B2-wuqQdDHxmTWZuR0xrV1RVYjQ/preview

MOTO - Limitation

e Linear Gaussian policies ill-suited for
o Infinite horizon problems and in general problems with long (>150) planning horizons

o Complex inputs (images, graphs...)

e An alternative: MPO algorithm [1]

o  Mean of policy given by neural network (or any other differentiable model)

o Maximum likelihood step as in REPS but with additional KL-divergence constraint during fit

[1] Maximum A Posteriori Policy Optimisation; A. Abdolmaleki, J. Springenberg, Y. Tassa, R. Munos, N. Heess, M. Riedmiller; ICLR18
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Natural Gradient and Deep RL - TRPO

e Around parameters 6 of data generating policy =, .
o Compute gradient g of objective E;_,, | 4my(.|s) [Ak_l(s, a)] for a first order approximation

o Compute Hessian F of KL-divergence constraint for a second order approximation

e Approximated constrained problem admits closed form solution 0 + aF'g (so called Natural Gradient)
e Additional computational tricks:

o Find NG by minimizing ||[Fp — g||>using conjugate gradient algorithm

o Compute Fp by computing gradient(<gradient(KL), p>)

o Add linesearch to ensure KL-divergence constraint is satisfied

e Works well on medium scale problems and more stable than other deep RL algorithms

Trust Region Policy Optimization; S. Schulman, S. Levine, P. Moritz, M. Jordan, P. Abbeel; ICML15
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Gradient Clipping and Soft Constraints - PPO

e Solves the same optimization problem as TRPO (maximize advantage under KL-divergence constraint)
e Optimization routine of TRPO can be a bit slow when dealing with very large networks
o PPO introduces tricks to (heuristically) tackle the optim. problem with vanilla gradient descent

e Main trick is clipped loss

mr(al s)

deviatestoo much from 1
me—1(a|s)

o  Zero contribution (the gradient) of state-action pairs if

o Implies a total variation ‘constraint’ between z,and 7,

Proximal Policy Optimization Algorithms; S. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov; 2017
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Gradient Clipping and Soft Constraints - PPO

e Solves the same optimization problem as TRPO (maximize ad
e Optimization routine of TRPO can be a bit slow when deali

o PPO introduces tricks to (heuristically) tackle th
e Main trick is clipped loss

o  Zero contribution (the gradient) of state-ac

o Implies a total variation ‘constraint’ between o

Proximal Policy Optimization Algorithms; S. Schulman, F. Wolski, P. Dhariwal, A.
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Gradient Clipping and Soft Constraints - PPO

e Solves the same optimization problem as TRPO (maximize advantage under KL-divergence constraint)
e Optimization routine of TRPO can be a bit slow when dealing with very large networks
o PPO introduces tricks to (heuristically) tackle the optim. problem with vanilla gradient descent

e Main trick is clipped loss

mr(al s)

deviates too much from 1
me—1(a|s)

o  Zero contribution (the gradient) of state-action pairs if
o Implies a total variation ‘constraint’ between z,and 7,
o TV and KL are related through inequality and serve similar purposes (see second part)

o KL-divergence term sometimes added to loss too

Proximal Policy Optimization Algorithms; S. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov; 2017
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Entropy regularization in (deep) RL

SAC

Entropy PPO
bonus/constraint
KL/entropy
e
REPS A3C

ACER KL constraint Entropy bonus
KL constraint

TRPO
ACKTR

KL constraint
KL constraint
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Hard vs Soft Constraints

e Formulation with soft-constraints/bonuses is more common in the theory of (convex) optimization
e In practical algorithms it is common
o That the KL-divergence is hard constrained
o That entropy is added as a bonus
m Notable exception is latter version of SAC

e Still an open question how to best formulate and solve policy update in approximate policy iteration

Optimization Issues in KL-Constrained Approximate Policy Iteration; N. Lazic, B. Hao, Y. Abbasi-Yadkori, D. Schuurmans, C. Szepesvari; 2021
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Summary of Algorithms Overview

e KL-divergence (a.k.a. relative entropy) and entropy are widespread regularizers in RL
o  From black-box formulations typical in robotics to deep RL
e Constrained entropy regularized policy update can be solved in closed form in some cases
o But alot of tricks are involved to tackle the problems in deep RL
o  Finding the best formulation is still an active research area
e Soft formulation with entropy terms added to policy update loss trivial to implement
o But does not seem to be popular in practice, especially for KL-divergence constraint

o ..whyis it important to bound the KL-divergence anyway?
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Learning Goals

e Entropy Regularization in RL
o Algorithms and applications in robotics
o Why is it important?
m Monotonic improvements in Approximate Policy Iteration (API)

m Explorationin RL
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Why does Entropy Regularization Helps?

e Typical entropy regularized policy update in Approximate Policy Iteration (API)

N\t
II71T8{X ]Eswptk_l,aww}é(.b) [Qk—l(saa)]
k

sit. Eoopr | [KL (m,(fs)l[m,1(]5))] < e
Eopt | [H(mp_i(]s)) — H(mp(]s))] < 8

e Strict compliance with KL-divergence constraint important in practice... why?

e Objective and constraints expressed in terms of p | ... is it reasonable?
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Policy Improvement

e IntabularRL, 7x(s) = argmax Qr_1(s,.)

o Take better action in all states

o Immediately implies that Q; > Q;_1, i.e. forany (s,a) Qi(s,a) > Qi_1(s,a)
e Relaxation when using function approximators

o Tk =argmax Espi 1,amn(s) [Qr—1(5,a)]

o Take better actions in average of previous state distribution

o What about average under the current state distribution E,.,,, ,~r(.s) [@k—1(5,;a)]?

Entropy Regularization in RL 28



Notation

° H matrix representation of policy 7T

o 11 matrix of size S| x |S]|A]

s, (s,0)) = 7(als) if s = s',0 else

\
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Notation

° H matrix representation of policy 7T

° P transition matrix

o P matrix of size IS||A| x |S]

P((s,a),s) = p(8']s,a)

\
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Notation

° H matrix representation of policy 7T

° P transition matrix

e Valuefunction V™ = 1IR + ~IIPVT™
o R matrix of size IS||A| x 1

R((s,a),1) = 7(8,0)

\
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Notation

° H matrix representation of policy 7T
L P transition matrix

e Value function V™ = (I — ’yHP)_l IR

e Policy induced state distribution

(I = AIIP) Ly = Y 7' (TIP)

$,8")

M2 10

\

V' Pr(s; = §'|sg = s;7),

t

e Wedefine IT; = (I — fyHP)_1

I
=

Entropy Regularization in RL 32



Notation

° H matrix representation of policy 7T

° P transition matrix

e Value function V'™ = HSHR
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Notation

° H matrix representation of policy 7T

P transition matrix

([ ]
e Value function V'™ = HSHR
e Policy return J(ﬂ') = ,uTV” for initial state distribution matrix [{
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Performance Difference Lemma

. VT VT =ILIIA™

Entropy Regularization in RL 35



Performance Difference Lemma

. VT VT =ILIIA™

e Value difference
VT V™ =I(R+~PV") - V"™,
=T (R++P (VT 4V —v™)) =V,
S — ATIP (V” . V”’) I (R + 7PV“l> _yr
=P (V7 - V™) +mQ™ — v,
=P (VT - v™) 1A,
— (I —~TIP) ' IA™.
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Performance Difference Lemma

e VT V™ =IIIIA™
= ILIIA™ + (I, — IT.) IIA™

Entropy Regularization in RL 37



Performance Difference Lemma

e VT V™ =IIIIA™
— [I'TIA™ + (I, — IT")

e State distribution difference
II, — H’S = ~IIPII, — ~IT PH’S
= (I — I + H’) PII, — WH’PH;
N = ~II'P(IT, — I1.) + ~(IT — IT') P11,
= VH;(H — H’)PHS
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Performance Difference Lemma

e VT VT =1IIIA™
= I'IIA™ + (I, — IT,) [1A™
= II'IIA™ + ~IT. (II — IT') PII,ITA™

Entropy Regularization in RL 39



Performance Difference Lemma

e VT V™ =ILIIA™

= II'TTA™ + (11, — IT%) ITA™

— II'TIA™ + ~IT, (Il — IT') PII,IIA™
e JT—J" = TIIA™ + ~Ap I (I — IT) PILITIA™
e Expressed policy return as a function of old advantage under old state distribution

o +term small when new policy is close to old one
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Lower Bounding the Policy Return

e Previous expression contains II, which is hard to quantify

o Prior work will mainly differ in bounding ||,uT (Hs — H’S) ||oo
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Lower Bounding the Policy Return

e Previous expression contains II, which is hard to quantify
o Prior work will mainly differ in bounding ||z" (ITy — IT)) ||

2
® CPI (akadeetaliomor): || (II; — II.) ||0o < %
-7

o  Where IT = oIlY — (1 — «)II’ mixes previous policy with policy maximizing old advantage
o Improvement of policy return can be guaranteed for small enough &

N 2
(MTH’SHQA” )

J*— JT >
= 8
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Lower Bounding the Policy Return

e Previous expression contains II, which is hard to quantify

o Prior work will mainly differ in bounding ||,uT (Hs — H’S) ||oo

200y
e CPI akadeetaliomo): || (IIy — 1) oo < sy
H e < oL
o  USPI (pirotta et al. IcML13): ||/LT (g — T [|oo < a U 2 |[TT — IT'|| oo
-

o HH—H’

o0

_ o
= max 3" [r(als) — '(al3)
a€A

= 2maxTV(x(|s) | 7'(]s))

Entropy Regularization in RL
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Lower Bounding the Policy Return

e Previous expression contains II, which is hard to quantify

o Prior work will mainly differ in bounding ||,uT (Hs — H’S) ||oo

200y

® CPI (akadeetaliomor): || (II; — II.) ||0o < ﬁ
-7

USPI (pirotta et al. IcML13): H,LLT (ITs — H;) oo < max TV (xw(.|s) || W’(‘S))

(1 — ’y)2 sesS

1
) TRPO (Schulman et al. ICML15). HMT (Hs — H;) ||oo < max \/iKL(ﬂ-(‘S) H 7T/(|S))

(1 — ’y)2 sES
o  Pinsker's inequality: TV < |/1KL
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Lower Bounding the Policy Return

e Previous expression contains II, which is hard to quantify

o Prior work will mainly differ in bounding ||,uT (Hs — H’S) ||oo

200y
®  CPI (kakadeetal. icmion):  ||p? (T4 — ) oo < —
I (0 - 1) o < 20
o  USPI (pirotta et al. IcML13): H,LLT (ITs — H;) oo < 1—~)2 IsneagcTV(W(.‘S) | W’(‘S))
o TRPO (schuimanetal. icmL15): HMT (Hs — H;) ||oo < (1 — 7)2 rsneagg \/%KL(T&'(‘S) H 7T/(|S))
2y

® CPO (achiametal. icmu17): ||t (I — I1%) || oo < Esmrn [TV (7 (.|s) || 7' (.]5))]

-7
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Pessimism of (TV) Constrained Policy Updates

e For never seen (s,a), fair to assume that it has the worst reward and leads to the worst states
o Necessary if we want to provide guarantees that hold in the worst case
e Bounds previously discussed assume the worst when bounding II,ILA™ even for pairs explored by =’
o  Only saving grace is to minimize divergence to 7’
o Inthat sense similar to imitation learning [1]
o Bounds too pessimistic to be useful in practice

e Open question: how to incorporate pessimism that takes into account visited (s,a) pairs in deep RL

[1] The Importance of Pessimism in Fixed Dataset Policy Optimization; J. Buckman, C. Gelada, M. Bellemare; ICLR2021
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Optimism in RL

e For never seen (s,a), fair to assume that it has the best reward and leads to the best states

o Necessary if we want to provide guarantees that we find the optimal policy
e Forexplored (s,a) pairs, high probability bounds of reward and future state distribution depend on

o Number of times (s,a) has been visited and optionally its variance (concentration inequalities)
e Estimating these quantities is a similar open problem as in previous slide

o  Entropy bonus/constraint is the optimistic pendant of TV/KL-divergence constraint

o Ensures that (s,a) pairs are explored sufficiently many times

o Can be overly optimistic towards very bad pairs and is mostly used as an heuristic
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Summary

e For principled RL algorithm development, learner should memorize visitation counts for (s,a) pairs
o Doable in tabular settings or with trees (MCTS)
o Remains an open problem for large MDPs requiring function approximators

e Entropy regularization provides useful tools to cope with lack of visitation counts and incorporates
o  Optimistic view: to ensure sufficient exploration through entropy lower bound
o Pessimistic view: to ensure policy improvement through TV/KL-divergence upper bound

e Future research needed to correct for excessive optimism/pessimism
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