PHYS-C0252 - Quantum Mechanics Part 2 Section 6

Tapio.Ala-Nissila@aalto.fi

6. Perturbation Theory

6.1 Gram-Schmidt Orthogonalization

- Assume that we have a complete set of linearly independent eigenvectors that span a vector space (or Hilbert space), but they are not orthonormal.
- Assume for simplicity that the set is given by

$$
S=\left\{\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots,\left|v_{n}\right\rangle\right\}
$$

and we want to create a new orthogonal set

$$
S_{\perp}=\left\{\left|u_{1}\right\rangle,\left|u_{2}\right\rangle, \ldots,\left|u_{n}\right\rangle\right\}
$$

that spans the same space as S

This is called the Gram-Schmidt process

- Define a projection operator

$$
\hat{P}_{u}(v) \equiv \frac{\langle u \mid v\rangle}{\langle u \mid u\rangle}|u\rangle
$$

The GS process simply comprises repeated orthogonal projections, subtracting the nonorthogonal parts and finally normalizing:

$$
\begin{aligned}
& \left|u_{1}\right\rangle=\left|v_{1}\right\rangle,\left|e_{1}\right\rangle=\frac{\left|u_{1}\right\rangle}{\left\|u_{1}\right\|} \\
& \left|u_{2}\right\rangle=\left|v_{2}\right\rangle-\hat{P}_{u_{1}}\left(v_{2}\right),\left|e_{2}\right\rangle=\frac{\left|u_{2}\right\rangle}{\left\|u_{2}\right\|}
\end{aligned}
$$

$$
\begin{aligned}
& \left|u_{3}\right\rangle=\left|v_{3}\right\rangle-\hat{P}_{u_{1}}\left(v_{3}\right)-\hat{P}_{u_{2}}\left(v_{3}\right),\left|e_{3}\right\rangle=\frac{\left|u_{3}\right\rangle}{\left\|u_{3}\right\|} \\
& \left|u_{4}\right\rangle=\left|v_{4}\right\rangle-\hat{P}_{u_{1}}\left(v_{4}\right)-\hat{P}_{u_{2}}\left(v_{4}\right)-\hat{P}_{u_{3}}\left(v_{4}\right),\left|e_{4}\right\rangle=\frac{\left|u_{4}\right\rangle}{\left\|u_{4}\right\|}
\end{aligned}
$$

The first two steps of the Gram-Schmidt process
The final orthonormal basis set is thus

$$
S_{\perp}^{\mathrm{N}}=\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle, \ldots,\left|e_{n}\right\rangle\right\}
$$

6.2 Time-Independent Perturbation

Theory

- Assume that we have solved the SE for a given external potential such that

$$
\hat{H}^{0} \psi_{n}^{0}=E_{n}^{0} \psi_{n}^{0}
$$

and the energy eigenfunctions form an orthonormal set

$$
\left\langle\psi_{n}^{0} \mid \psi_{m}^{0}\right\rangle=\delta_{n m}
$$

"Small" perturbation on $V(x)$

- If we could solve this new problem exactly

$$
\hat{H} \psi_{0}=E_{n} \psi_{n}
$$

If however the perturbation is "small", we could try writing

$$
\hat{H}=\hat{H}^{0}+\lambda \hat{H}^{\prime}
$$

where now $\lambda \ll 1$ such that we can (formally) expand

$$
\begin{aligned}
& \psi_{n}=\psi_{n}^{0}+\lambda \psi_{n}^{1}+\lambda^{2} \psi_{n}^{2}+\ldots \\
& E_{n}=E_{n}^{0}+\lambda E_{n}^{1}+\lambda^{2} E_{n}^{2}+\ldots
\end{aligned}
$$

where the superscripts denote the nth order corrections to the unperturbed state denoted by 0

This expression is inserted into the modified SE to get

$$
\begin{gathered}
H^{0} \psi_{n}^{0}+\lambda\left(H^{0} \psi_{n}^{1}+H^{\prime} \psi_{n}^{0}\right)+\lambda^{2}\left(H^{0} \psi_{n}^{2}+H^{\prime} \psi_{n}^{1}\right)+\cdots \\
=E_{n}^{0} \psi_{n}^{0}+\lambda\left(E_{n}^{0} \psi_{n}^{1}+E_{n}^{1} \psi_{n}^{0}\right)+\lambda^{2}\left(E_{n}^{0} \psi_{n}^{2}+E_{n}^{1} \psi_{n}^{1}+E_{n}^{2} \psi_{n}^{0}\right)+\cdots
\end{gathered}
$$

To lower order this gives just the unmodified SE. To first order

$$
H^{0} \psi_{n}^{1}+H^{\prime} \psi_{n}^{0}=E_{n}^{0} \psi_{n}^{1}+E_{n}^{1} \psi_{n}^{0}
$$

and to second order

$$
H^{0} \psi_{n}^{2}+H^{\prime} \psi_{n}^{1}=E_{n}^{0} \psi_{n}^{2}+E_{n}^{1} \psi_{n}^{1}+E_{n}^{2} \psi_{n}^{0}
$$

Taking the inner product of the first equation with ψ_{n}^{0} gives the first-order correction as

$$
E_{n}^{1}=\left\langle\psi_{n}^{0}\right| H^{\prime}\left|\psi_{n}^{0}\right\rangle .
$$

Rewriting the lowest order correction as

$$
\left(H^{0}-E_{n}^{0}\right) \psi_{n}^{1}=-\left(H^{\prime}-E_{n}^{1}\right) \psi_{n}^{0}
$$

and expanding the first-order correction in the original SE basis gives

$$
\sum_{m \neq n}\left(E_{m}^{0}-E_{n}^{0}\right) c_{m}^{(n)} \psi_{m}^{0}=-\left(H^{\prime}-E_{n}^{1}\right) \psi_{n}^{0}
$$

Taking the inner product with ψ_{l}^{0}

$$
\sum_{m \neq n}\left(E_{m}^{0}-E_{n}^{0}\right) c_{m}^{(n)}\left\langle\psi_{l}^{0} \mid \psi_{m}^{0}\right\rangle=-\left\langle\psi_{l}^{0}\right| H^{\prime}\left|\psi_{n}^{0}\right\rangle+E_{n}^{1}\left\langle\psi_{l}^{0} \mid \psi_{n}^{0}\right\rangle
$$

and orthogonality gives

$$
c_{m}^{(n)}=\frac{\left\langle\psi_{m}^{0}\right| H^{\prime}\left|\psi_{n}^{0}\right\rangle}{E_{n}^{0}-E_{m}^{0}}
$$

which gives the first-order correction to the original SE basis as

$$
\psi_{n}^{1}=\sum_{m \neq n} \frac{\left\langle\psi_{m}^{0}\right| H^{\prime}\left|\psi_{n}^{0}\right\rangle}{\left(E_{n}^{0}-E_{m}^{0}\right)} \psi_{m}^{0} .
$$

To get the second-order corrections, we use the second-order equation and operate with ψ_{n}^{0}

$$
\left\langle\psi_{n}^{0} \mid H^{0} \psi_{n}^{2}\right\rangle+\left\langle\psi_{n}^{0} \mid H^{\prime} \psi_{n}^{1}\right\rangle=E_{n}^{0}\left\langle\psi_{n}^{0} \mid \psi_{n}^{2}\right\rangle+E_{n}^{1}\left\langle\psi_{n}^{0} \mid \psi_{n}^{1}\right\rangle+E_{n}^{2}\left\langle\psi_{n}^{0} \mid \psi_{n}^{0}\right\rangle
$$

where

$$
\left\langle\psi_{n}^{0} \mid \psi_{n}^{1}\right\rangle=\sum_{m \neq n} c_{m}^{(n)}\left\langle\psi_{n}^{0} \mid \psi_{m}^{0}\right\rangle=0
$$

and thus

$$
E_{n}^{2}=\sum_{m \neq n} \frac{\left.\left|\left\langle\psi_{m}^{0}\right| H^{\prime}\right| \psi_{n}^{0}\right\rangle\left.\right|^{2}}{E_{n}^{0}-E_{m}^{0}}
$$

In degenerate case a general expansion in terms of eigenvectors of the original SE should be used

