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PCA-transformation

Principal Component Analysis (PCA) looks for few linear
combinations of p variables, losing in the process as little
information as possible. More precisely, PCA transformation is
an orthogonal linear transformation that transforms a p-variate
random vector to a new coordinate system such that, the
obtained new variables are uncorrelated, and the greatest
possible variance lies on the first coordinate (called the first
principal component), the second greatest variance on the
second coordinate, and so on.
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PCA-transformation

Let x denote a p-variate random vector with finite mean
E [x ] = µ, and finite covariance matrix E [(x − µ)(x − µ)T ] = Σ.
The Principal Component Transformation is the transformation

x → y = ΓT (x − µ),

where Γ ∈ R
p×p is orthogonal, ΓTΣΓ = Λ = diag(λ1, · · · , λp) is

diagonal and λ1 ≥ · · · ≥ λp.

The ith component of y is called the ith principal component of
x .



Lecturer:
Pauliina Ilmonen
Slides: Ilmonen

PCA transformation

Theoretical Properties

Sample Version

Applications

Example

Real Data Example

Words of Warning

References

Theoretical Properties



Lecturer:
Pauliina Ilmonen
Slides: Ilmonen

PCA transformation

Theoretical Properties

Sample Version

Applications

Example

Real Data Example

Words of Warning

References

Principal Components

Theorem
Let x denote a p-variate random vector with finite mean vector
µ, and finite covariance matrix Σ. Let λ1 ≥ λ2 ≥ · · · ≥ λp

denote the eigenvalues of Σ, and let yi denote the ith principal
component of x . Then

1. E [yi ] = 0,

2. var(yi) = E [y2
i ] = λi ,

3. cov(yi , yj) = E [yiyj ] = 0, i 6= j,

4. var(y1) ≥ · · · ≥ var(yp) ≥ 0.



Lecturer:
Pauliina Ilmonen
Slides: Ilmonen

PCA transformation

Theoretical Properties

Sample Version

Applications

Example

Real Data Example

Words of Warning

References

Proof.
Let x denote a p-variate random vector with finite mean vector
µ, and finite covariance matrix Σ. Let y = ΓT (x − µ), where
Γ ∈ R

p×p is orthogonal, ΓTΣΓ = Λ = diag(λ1, · · · , λp) and
λ1 ≥ · · · ≥ λp. Let γi denote the ith column vector of Γ. Now

1.
E [yi ] = E [γT

i (x − µ)] = E [γT
i x ]− E [γT

i µ]

= γT
i E [x ]− γT

i µ = γT
i µ− γT

i µ = 0,

and
2., 3., 4.

E [(y − E [y ])(y − E [y ])T ] = E [yyT ] = E [ΓT (x − µ)(ΓT (x − µ))T ]

= ΓT E [(x − µ)((x − µ))T ]Γ = ΓTΣΓ = Λ.
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Maximizing Variance

Theorem
Let x denote a p-variate random vector with finite mean vector
µ, and finite covariance matrix Σ, and let y1 denote the first
principal component of x . Assume that a ∈ R

p, aT a = 1. Then
var(y1) ≥ var(aT x).
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Proof.
Let x denote a p-variate random vector with finite mean vector
µ, and finite covariance matrix Σ. Let y = ΓT (x − µ), where
Γ ∈ R

p×p is orthogonal, ΓTΣΓ = Λ = diag(λ1, · · · , λp) is
diagonal and λ1 ≥ · · · ≥ λp. Let γi denote the ith column of Γ.
Assume that a ∈ R

p, aT a = 1.

Since the set {γ1, . . . , γp} is an orthonormal basis of Rp, the
vector a can be given as a = c1γ1 + · · ·+ cpγp. Now, since
γT

i γi = 1, and γT
i γj = 0 if j 6= i, we have that

var(aT x) = aTΣa =

p
∑

j=1

cjγ
T
j

(

p
∑

i=1

λiγiγ
T
i

)

p
∑

k=1

ckγk =

p
∑

i=1

λic2
i ,

and since a satisfies aT a = 1, we have that
∑p

i=1 c2
i = 1. Thus,

since λ1 is the largest eigenvalue, the variance var(aT x) is
maximized when c1 = 1, and ci = 0, i 6= 1, and consequently
a = γ1. This completes the proof.
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Maximizing Variance

Theorem
Let x denote a p-variate random vector with finite mean vector
µ, and finite covariance matrix Σ, and let yk denote the kth
principal component of x . Let b ∈ R

p, bT b = 1. Assume that
bT x is uncorrelated with the first k − 1 principal components of
x . Then var(yk) ≥ var(bT x).
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Proof. This is homework! (The proof is very similar to the
previous proof. Note that if bT x is uncorrelated with the first
k − 1 principal components of x , then b can be given as linear
combination of the vectors γk , . . . , γp.)
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Total Variance

The sum of the first k eigenvalues divided by the sum of all
eigenvalues

λ1 + · · ·+ λk

λ1 + · · ·+ λp

represents the proportion of total variance explained by the first
k principal components. (Total variation is here understood as
the trace of Σ.)

Note that if y = ΓT (x − µ), then

x = µ+ Γy = µ+

p
∑

i=1

yiγi ≈ µ+

k
∑

i=1

yiγi .
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How many components to choose?

Some rules of thumb:

Choose as many components as is needed in order to explain
at least 90% (or 80% or 95 %) of the total variance.

Leave out the components that correspond to "small"
eigenvalues. (More about this in class.)
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Sample version of PCA is obtained by replacing the covariance
matrix and the mean vector by their sample estimates. Each
p-variate data point is transformed using the sample mean
vector and the eigenvector matrix of the sample covariance
matrix.
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Sample PCA

Let X denote a n × p data matrix of n independent and
identically distributed p-variate observations x1, x2, ..., xn from
some continuous distribution with finite mean vector µ, and
finite covariance matrix Σ. Let x̄ denote the sample mean
vector and let G denote the eigenvector matrix of the sample
covariance matrix Σ̂, where the column vectors of G are the
eigenvectors of Σ̂ such that the first vector corresponds to the
largest eigenvalue, the second column vector corresponds to
the second largest eigenvalue, and so on.

The sample PCA transformation is now given by

Y = (X − 1nx̄T )G.

(Note that now yr = GT (xr − x̄).)
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Sample PCA, Scores

Consider the transformation given in the previous slide. Now yri

represents the score of the ith principal component on the r th
individual.
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Sample PCA, Total Variance

Let λ̂1, λ̂2, ..., λ̂p denote the eigenvalues of the sample
covariance matrix Σ̂. Now

λ̂i =
1
n

n
∑

r=1

y2
ri .

Thus the contribution of the individual r on the variance λ̂i is
given by

1
n y2

ri

λ̂i
.
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Sample PCA, Quality of Representation

The quality of the representation of the individual r by the
principal axis i is measured by the squared cosines of the
angle between the (centered) vectors.

cos2
r (α) =

y2
ri

∑p
j=1((X − 1nx̄T )rj )2

.

If the value is close to 1, the quality of the representation is
good.
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Applications

• Dimension reduction

• Outlier detection

• Clustering

• Dimension reduction in regression analysis

• ...
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Simulated Example

In this example, we simulated a sample from bivariate normal
distribution with mean (3, 2)T , and covariance matrix

B =

[

1.50 0.70
0.70 7.00

]

.

PCA transformation was performed. After PCA, the greatest
variation is seen in the first axis.
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Example
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Figure: Bivariate normal distribution.
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Example
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Figure: Bivariate normal distribution after PCA.
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Data Example - Growth

To see how PCA works in practice, let’s take a look at a real
data example. The data set used in this example is part of a
larger sample of height measurements that were collected
retrospectively from health centers and schools for
construction of the Finnish growth charts. The used data set
comprised 525 boys and 571 girls, fullterm, healthy singletons,
followed until approximately age 19, with measurements from
three to 44 occasions.
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Data Example

The original observations were used to estimate each
individual growth curve from birth to age 19 by fitting splines.
The individuals that did not have enough measurements for
fitting the splines were excluded. After that, the remaining
observations consisted of 829 (481 boys and 348 girls)
estimated height curves. The measurements (based on
estimated curves) at ages 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
and 18 years were used in the analysis. Thus PCA was applied
to a 11-dimensional sample with 829 observations.
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Data Example

PCA was first used for dimension reduction. The first principal
component explained 77 %, the second 17 % and the third 4 %
of the variance of the data. Thus the first, second and third
principal component together already explained 98 % of the
variance, and dimension was reduced to three.
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Three Principal Components
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Figure: Mean curve of the estimated data points and the three first
principal component curves (the three first column vectors of Γ). The
first principal component curve puts emphasis on overall growth
(shape of the curve is similar to the mean curve), the second on late
growth, and the third on growth around age 14.
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To see how the method works on the individual level, the
estimated height growth curves of one randomly chosen boy
and one randomly chosen girl were presented as sums of their
principal component curves. The estimated growth curve of
one randomly chosen boy in terms of principal components is
presented in Figure 4 and the estimated growth curve of one
randomly chosen girl in terms of principal components is
presented in Figure 5. The method seems to work very well
also on individual level. In these examples only two principal
are needed for being very close to the curve based on splines.
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Figure: Estimated growth curve of one randomly chosen boy.
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Figure: Estimated growth curve of one randomly chosen girl.
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Scatter plot after PCA was considered to see if PCA works in
separating genders.
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Figure: Scatter plot after PCA. Dark grey squares are used for the
boys and light grey triangles for the girls. PCA does not work perfectly
in separating the two groups, but one can still see clear differences
between the groups. Boys grow later than girls! (Notice the outlying
points.)
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Words of Warning
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Some Words of Warning

• Principal Components are not in general independent

• PCA is a very nonrobust method.

• Traditional PCA is not suitable for qualitative variables.

• PCA transformation is invariant under orthogonal
transformations up to heterogeneous sign changes, but it
is not affine invariant. In fact, PCA transformation is highly
sensitive for scaling of the variables.

More about these issues next week...
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Next Week

Next week we will continue talking about principal component
analysis.



Lecturer:
Pauliina Ilmonen
Slides: Ilmonen

PCA transformation

Theoretical Properties

Sample Version

Applications

Example

Real Data Example

Words of Warning

References
References



Lecturer:
Pauliina Ilmonen
Slides: Ilmonen

PCA transformation

Theoretical Properties

Sample Version

Applications

Example

Real Data Example

Words of Warning

References

References I

K. V. Mardia, J. T. Kent, J. M. Bibby, Multivariate Analysis,
Academic Press, London, 2003 (reprint of 1979).



Lecturer:
Pauliina Ilmonen
Slides: Ilmonen

PCA transformation

Theoretical Properties

Sample Version

Applications

Example

Real Data Example

Words of Warning

References

References II

R. V. Hogg, J. W. McKean, A. T. Craig, Introduction to
Mathematical Statistics, Pearson Education, Upper Sadle
River, 2005.

R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge
University Press, New York, 1985.

R. A. Horn, C. R. Johnson, Topics in Matrix Analysis,
Cambridge University Press, New York, 1991.


	PCA transformation
	Theoretical Properties
	Sample Version
	Applications
	Example
	Real Data Example
	Words of Warning
	References

