
Foundations of Discrete Mathematics

Spring 2022

Tuomas Sahlsten

Based on Ragnar Freij-Hollanti’s materials

Version 1.0 (March 31, 2022)

Department of Mathematics and Systems Analysis, Aalto University

Contents

1 Sets and formal logic 3

1.1 Sets . 3

1.1.1 Definition . 3

1.1.2 Equality and subsets . 5

1.1.3 Set operations . 5

1.1.4 Cartesian product . 7

1.1.5 Enumeration . 8

1.1.6 Indexing a family of sets and set operations 9

1.1.7 Russel’s paradox . 10

1.2 Formal logic . 12

1.2.1 Statements, closed- and open sentences 12

1.2.2 Quantifiers . 13

1.2.3 Connectives and truth tables . 14

1.2.4 Tautologies . 15

1.2.5 Treasures example . 17

1.2.6 Negations of quantifiers . 18

1.2.7 Computing with logical symbols . 18

1.2.8 Sets and predicate logic . 18

1.3 Proof techniques . 19

1.3.1 Proof and overview of the proof techniques 19

1.3.2 Direct proof . 20

1.3.3 Contrapositive proof . 20

1.3.4 Proof by contradiction . 21

1.3.5 Proof by cases . 21

1.3.6 Constructive existence proof . 22

1.3.7 Nonconstructive existence proof . 22

1.3.8 Induction proofs . 23

1.4 Relations . 25

1.4.1 Definition and different types of relations 25

3

CONTENTS 4

1.4.2 Equivalence relations . 28

1.4.3 Partial orders . 30

1.4.4 Hasse diagram . 31

1.4.5 Linear extensions . 32

1.5 Functions . 34

1.5.1 Definition and graphs . 34

1.5.2 Composition of functions . 35

1.5.3 Injection, surjection, bijection . 36

1.5.4 Inverse functions . 37

1.6 Cardinalities . 37

1.6.1 Infinite cardinalities . 39

2 Combinatorics 43

2.1 Enumerative combinatorics . 43

2.1.1 Principles of counting . 43

2.1.2 Counting linear orders . 44

2.2 Binomial coefficients . 44

2.2.1 Counting combinations . 44

2.2.2 Counting combinations with repetition 47

2.2.3 Binomial theorem . 47

2.3 Inclusion exclusion principle . 49

2.4 Permutations and group theory . 54

2.4.1 Permutation group . 54

2.4.2 Cycle notation . 56

2.4.3 Conjugates . 57

2.4.4 Even and odd permutations . 59

2.4.5 Fixed points of permutations . 61

3 Graph theory 64

3.1 Basics on graphs . 64

3.1.1 Motivation . 64

3.1.2 Graph . 64

3.1.3 Complete graphs . 65

3.1.4 Paths and cycles . 65

3.1.5 Degree . 66

3.1.6 Isomorphism . 66

3.2 Adjacency matrix . 67

3.3 Spanning trees . 69

3.3.1 Trees . 69

3.3.2 Spanning trees . 69

3.3.3 Weighted graphs . 70

3.3.4 Minimal spanning tree . 70

3.4 Graph colouring . 72

3.4.1 Vertex colouring . 72

3.4.2 Conflict graphs . 73

3.4.3 Subgraphs . 73

3.4.4 Greedy algorithm . 74

4 Number theory 77

4.1 Divisibility . 77

4.1.1 Euclidean division . 78

4.2 Diophantine equations . 78

4.2.1 Euclidean algorithm . 78

4.2.2 Extended Euclidean algorithm . 79

4.2.3 Linear Diophantine equations in two variables 80

4.2.4 Dividing a product . 81

4.2.5 Unique factorization . 81

4.2.6 Linear Diophantine equations in two variables 82

4.3 Modular arithmetic . 84

4.3.1 Congruence classes . 84

4.3.2 Addition and multiplication of congruence classes 85

4.3.3 Differences between Z and Zn . 86

4.3.4 Congruence equations . 86

4.4 Computing exponents modulo n . 87

4.4.1 Euler’s ϕ function and Euler’s theorem 88

4.5 Application to RSA cryptography . 90

Welcome!

These are the lecture notes for the Foundations of Discrete Mathematics (MS-A0402) is given
in Period IV on Spring 2022 in Aalto University. Discrete Mathematics is the mathematics of
finite and countable structures, or loosely speaking the mathematics of sets where there is no
notion of ”convergence”. Methods from discrete mathematics play a large role in many other
subjects, in particular in computer engineering and data science. In this course we cover the
foundations of discrete mathematics (graphs, enumeration, modular arithmetic) as well as as
the foundations of all mathematics on university level (set logic and proof techniques). We
also study some modern applications of the theory, in cryptography and networks theory.

Course content is roughly outlined as:

• Set theory and formal logic

• Relations and equivalence

• Enumerative combinatorics

• Graph theory

• Modular arithmetics

But more importantly:

• The fundamental notions and methods of mathematics (definition, theorem, proof, ex-
ample...)

For learning, I recommend to look at the Explorative exercises (and additional exercises)
from the assignment sheets: Updated on course homepage every Friday.

Here is some extra supporting literature for the course (in addition to these lecture notes,
contain more details and proofs):

• Kenneth Rosen: Discrete Mathematics and its Applications, physical book

• Kenneth Bogart: Combinatorics Through Guided Discovery., Freely available, https://
math.dartmouth.edu/news-resources/electronic/kpbogart/ComboNoteswHints11-06-04.

pdf

• Richard Hammack: Book of Proof, Freely available, http://www.people.vcu.edu/

%7Erhammack/BookOfProof/BookOfProof.pdf

Good luck with the course!

- Tuomas

1

https://math.dartmouth.edu/news-resources/electronic/kpbogart/ComboNoteswHints11-06-04.pdf
https://math.dartmouth.edu/news-resources/electronic/kpbogart/ComboNoteswHints11-06-04.pdf
https://math.dartmouth.edu/news-resources/electronic/kpbogart/ComboNoteswHints11-06-04.pdf
http://www.people.vcu.edu/%7Erhammack/BookOfProof/BookOfProof.pdf
http://www.people.vcu.edu/%7Erhammack/BookOfProof/BookOfProof.pdf

Chapter 1

Sets and formal logic

Set theory and formal logic form the foundation of all modern mathematics and the universal
language used to describe and model phenomena. Here sets form some way to talk about
collections of objects, where as formal logic gives us way to talk about logical implications.
We learn formal logic:

• To define precise meanings of “and”, “not”, “or”,...

• To transform complicated statements to equivalent but easier statements.

• Because it is the glue that holds mathematical statements together.

We do not learn it in order to:

• Write all mathematics using the symbols ∨,∧,∀,∃, · · ·

Formal logic is in the background of all mathematics, not the forefront.

1.1 Sets

1.1.1 Definition

All mathematical structures are sets, and all statements about them can be described in terms
of sets.

3

• N = {0, 1, 2, 3, . . . } is the set of natural numbers.

• Z = {. . . ,−2,−1, 0, 1, 2, . . . } is the set of integers.

• Q = {p
q

: p, q ∈ Z, q 6= 0} is the set of rational numbers.

• R is the set of real numbers.

• {∆ABC : A,B,C ∈ R2} is the set of triangles in the plane.

• The members (elements) of a set can be whatever:

A = {skateboard, paperclip, 16, π, infinity}

is a set.

Example 1.1

The most important notion in set theory is the symbol ∈.

• x ∈ A if “the element x belongs to the set A”.

• x 6∈ A if “the element x does not belong to the set A”.

• my car ∈ {cars}.

• 5 ∈ Z.

• 5 ∈ R.

• 5 6∈ R2.

• π ∈ R.

• π 6∈ Z.

Example 1.2

We can define the set in the following ways:

• Listing elements: {2, 4, 5, 7} is a set whose elements are 2, 4, 5, 7.

• Writing
{expression : condition},

which is a set containing all elements described by the expression, if the condition is
satisfied.

– {x2 : x ∈ Z, 2 < x < 10} = {9, 16, 25, 36, 49, 64, 81}.
– {x ∈ R : −1 ≤ x ≤ 1} = [−1, 1].

• Futhermore, empty set ∅ = {} is a set that has no elements.

4

1.1.2 Equality and subsets

We say that two sets are the same = if they contain the same elements.

Definition 1.3 (Equality)

{2, 3, 4} = {4, 2, 4, 3}.

Example 1.4

Sets do not have “order”, nor “multiplicity”. Thus, there is only one “empty set” ∅.

We define A ⊆ B (“A is a subset of B”) if all elements of A are also in B.

Definition 1.5 (Subsets)

Subsets can be visualised with a Venn diagram:

•
∅ ⊆ {1, 2, 3} ⊆ Z ⊆ R.

• ∅ is a subset of every set.

• Every set is a subset of itself.

Example 1.6

Thus, A = B if
A ⊆ B and B ⊆ A.

If A ⊆ B and A 6= B, then A is a proper subset of B. Denoted A (B, or sometimes A ⊂ B.

1.1.3 Set operations

In set theory we will commonly use the following set operations, which we can visualise with
Venn diagrams.

• Union: x ∈ A ∪B if x ∈ A or x ∈ B.

5

• Intersection: x ∈ A ∩B if x ∈ A and x ∈ B.

• Set difference: x ∈ A \B if x ∈ A but x 6∈ B.

• Complement: x ∈ Ac = Ω \ A if x 6∈ A
(but x is in the “universe” Ω, which is understood from context).

Then the set operations satisfy the following laws

• Commutative laws:

– A ∩B = B ∩ A
– A ∪B = B ∪ A

• Associative laws:

– (A ∩B) ∩ C = A ∩ (B ∩ C)

– (A ∪B) ∪ C = A ∪ (B ∪ C)

• Distributive law:

– (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

– (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)

Theorem 1.7

Proof
These can be proven using Venn diagrams:

6

1.1.4 Cartesian product

Cartesian products are used to construct “higher dimensional” sets from lower dimensions.
For example, the Euclidean plane of vectors R2 = R× R:

The Cartesian product A×B is the set of ordered pairs

{(a, b) : a ∈ A, b ∈ B}.

Definition 1.8 (Cartesian product)

• {a, b, c} × {1, 2} = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}.

• R× R = R2 (“the xy-plane”)

The power set : P (A) is the set of all subsets of A.

Definition 1.9 (Power set)

• P ({1, 2}) = {∅, {1}, {2}, {1, 2}}.

• P ({a, b, c}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

• P (∅) = {∅} 6= ∅.

Example 1.10

• |A| denotes the number of elements in a finite set A.

• This is called the cardinality of A.

• If S ⊆ T , then |S| ≤ |T |.

Definition 1.11 (Cardinality)

• |∅| = 0

• |{∅}| = 1

• |{a, b, c}| = |{a, c, c, b, a, c, b, b, a}| = 3.

Example 1.12

7

• If |A| = 9 and |B| = 5, what can we say about |A ∪B|?

– 9 ≤ |A ∪B|.
– |A ∪B| ≤ 14.

– |A ∪B| ∈ N.

• In general, |A ∪B| = |A|+ |B| − |A ∩B|.

• If S ⊆ T , then |S| ≤ |T |.

Thus we have

max(|S|, |T |) ≤ |S ∪ T | ≤ |S|+ |T |.

Theorem 1.13

1.1.5 Enumeration

Next we will go to the idea of cardinality, and counting the number of elements in a set. We
will denote |A| or]A as the number of elements in A.

• Let |S| = n and |T | = m.

• An ordered pair (s, t), where s ∈ S and t ∈ T , can be chosen in nm ways.

• So |S × T | = nm = |S| · |T |.

Let A1, . . . , Ak be finite sets. Then

|A1 × · · · × Ak| = |A1| · · · · · |Ak|.

Theorem 1.14

• A subset A of {1, 2, · · · , n} is determined by, for each 1 ≤ i ≤ n, whether or not i ∈ A.

• So a subset of {1, 2, · · · , n} can be described by a string of n symbols 0 (“out”) and 1
(“in”).

• Example: The string 001101 corresponds to the set

{3, 4, 6} ⊆ {1, . . . , 6}.

8

• A subset of {1, 2, · · · , n} corresponds to a string of n symbols 0/1, which is the same as
an element of

{0, 1}n = {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
n factors

• It follows that
|P ({1, . . . , n})| = |{0, 1}n| = |{0, 1}|n = 2n.

Let A be a finite set. Then
|P (A)| = 2|A|.

Theorem 1.15

1.1.6 Indexing a family of sets and set operations

We can also have multiple sets, which we can index using some sets. Usually they are indexed
with natural numbers (finite or infinite subsets), but they can be indexed over any set, like
the reals.

Let A1, A2, A3, · · ·Ak ⊆ Ω be sets. We say that

{Ai : 1 ≤ i ≤ k}

is an indexed family of sets. Then

k⋃
i=1

Ai = {x ∈ Ω : x ∈ Ai for some 1 ≤ i ≤ k}.

k⋂
i=1

Ai = {x ∈ Ω : x ∈ Ai for every 1 ≤ i ≤ k}.

This is union and intersection of more than two sets.

Definition 1.16 (Indexed family of sets over finitely many indices)

Let A1 = {0, 2, 5}, A2 = {1, 2, 5}, A3 = {2, 5, 7}.

3⋃
k=1

Ak = {0, 1, 2, 5, 7}.

3⋂
k=1

Ak = {2, 5}.

Example 1.17

9

We can do the same for infinitely large families of sets. Let A1, A2, A3, · · · ⊆ Ω be
sets. We say that

{Ai : i ≥ 1}

is an indexed family of sets. Then we can define the unions and intersections as
follows:

∞⋃
i=1

Ai = {x ∈ Ω : x ∈ Ai for some i ∈ I}.

∞⋂
i=1

Ai = {x ∈ Ω : x ∈ Ai for every i ∈ I}.

Definition 1.18 (Indexed family over countable index set)

Let Ω = R, and let Ak be the closed interval Ak = [0, 1
k
] for k ≥ 1.

∞⋃
k=1

Ak = [0, 1].

∞⋂
k=1

Ak = {0}.

Example 1.19

We can do the same for other indexing sets as well. Let I be a set. Let Ai ⊆ Ω be a
set, for each i ∈ I. Then

{Ai : i ∈ I}

is an indexed family of sets. We can then define the unions and intersections over
this family as follows:⋃

i∈I

Ai = {x ∈ Ω : x ∈ Ai for some 1 ≤ i}.

⋂
i∈I

Ai = {x ∈ Ω : x ∈ Ai for every 1 ≤ i}.

Definition 1.20 (Indexed family over general index set)

1.1.7 Russel’s paradox

“A male barber in the village shaves the beards of precisely those men, who do not shave their
own beard.”

10

Does the barber shave his own beard? Whether he does or does not, we get a contradiction.
This is an instance of the problem of self-reference in set theory.

• For every man x in the village, there is a set Sx consisting of all the men whose beards
he shaves.

• For the barber B,
SB = {x : x 6∈ Sx}.

• In particular,
B ∈ SB ⇔ B 6∈ SB,

which is a contradiction! We are not allowed to use the set S in the formula that
defines S!

For every “universe” Ω and every statement P (without self-reference),

{x ∈ Ω : P (x)} ⊆ Ω

is a set. Let Ω be “the set of all sets”, and let

S = {A ∈ Ω : A 6∈ A}.

Is S an element of itself? Again we get a contradiction.

To avoid this kind of contradictions, we decide:

• The “set of all sets” does not exist.

• No set is allowed to be an element of itself.

• All sets must be constructed from “safe and well-understood sets” (like R) by taking

– Subsets.

– Cartesian products.

– Power sets.

– Unions.

11

1.2 Formal logic

1.2.1 Statements, closed- and open sentences

We will now move to the concept of formal logic to discuss about statements, their truth values
and truth tables, and we will relate these to set theor.

A statement is a sentence that is either true or false.

Definition 1.21 (Statement)

• Statements:

– 2 ∈ Z
– 2 = 5

– The millionth decimal of π is 7.

– All mathematicians are bald.

• Not statements:

– Is 2 + 2 = 4?

– This sentence is false.

– x is an integer.

• Also not a statement:

– This sentence is true.

Example 1.22

Statements are also called closed sentences. An open sentence is a sentence containing a
variable x, that would have a truth value of x had a given value. Open sentences are also
called predicates.

12

• Open sentences:

– NN is the president of Finland.

– −1 ≤ y ≤ 1.

– The millionth decimal of π is n.

– NN is bald.

– x is an integer.

• Also an open sentence:

– 1 ≤ y ≤ −1.

Example 1.23

• There are two ways to make a statement out of an open sentence (like “−1 ≤ y ≤ 1”):

• Assign a value to the variable.

– “−1 ≤ 0 ≤ 1” is a TRUE statement.

– “−1 ≤ 19 ≤ 1” is a FALSE statement.

• Quantify.

– “There exists a real number y, such that −1 ≤ y ≤ 1” is a TRUE statement.

– “For every real number y, −1 ≤ y ≤ 1” is a FALSE statement.

1.2.2 Quantifiers

Quantifiers are crucial way to discuss about existence and non-existence, and they relate
closely to set theory. They are defined as follows

• “For every x ∈ A, P (x) holds” is denoted formally

∀x ∈ A : P (x).

• “There is some x ∈ A, for which P (x) holds” is denoted formally

∃x ∈ A : P (x).

Definition 1.24 (∀ and ∃ quantifiers)

13

• Which of the following statements are true?

– ∀x ∈ R : x2 > 0.

– ∃a ∈ R : ∀x ∈ R : ax = x.

– ∀n ∈ Z : ∃m ∈ Z : m = n+ 5.

– ∃n ∈ Z : ∀m ∈ Z : m = n+ 5.

– On every party, there are two guests who know the same number of other
guests.

• 2 and 3 are true, 1 and 4 are false.

• We will revisit 5 later in the course.

Example 1.25

1.2.3 Connectives and truth tables

Statements can be connected by logical connectives:

negation ¬ “not”
conjunction ∧ “and”
disjunction ∨ “or”
implication → “implies”, “if ... then ...”
equivalence ↔ “if and only if”

• Statements can be quantified:

∀ “for all”
∃ “exists”

• Natural language has many more quantifiers: “many”, “five”, “infinitely many”, “a few”,
“more than I thought”...

The meaning of connectives are defined via truth tables. In the following A and B denote
statements, and T and F denote the truth values “True” and “False”:

A B A ∧B
T T T
T F F
F T F
F F F

A B A ∨B
T T T
T F T
F T T
F F F

A ¬A
T F
F T

A B A↔ B
T T T
T F F
F T F
F F T

14

The least intuitive connective is implication →. A → B should certainly be False if A is
True but B is False. What about the other rows?

A B A→ B
T T ?
T F F
F T ?
F F ?

A statement like
(a > 3)→ (a2 > 9)

“should be” True for any number a.If a = 4, this means that T → T should be True. If a = 0,
this means that F → F should be True. If a = −4, this means that F → T should be True.

A B A→ B
T T T
T F F
F T T
F F T

We define the connective → by the truth table

A B A→ B
T T T
T F F
F T T
F F T

A False statement implies everything! For example,

∀x ∈ R : (x2 < 0)→ (x = 23)

is a True statement. Silly, I know. But that’s how it has to be. Live with it.

1.2.4 Tautologies

A tautology is a (composed) statement that is True regardless of the truth values of
the elementary statements that it is composed of.

Definition 1.26

15

The following statements are tautologies:

• (¬¬P)→ P (double negation)

• P ∨ (¬P) (excluded middle)

• (P → Q)↔ (¬Q→ ¬P) (contrapositive)

• (P ↔ Q)↔ ((P → Q) ∧ (Q→ P)) (equivalence law)

• These can be proven via truth tables.

Example 1.27

If A→ B is a tautology (where A and B are composed statements), then we write

A⇒ B.

This gives us a way to “calculate” with statements. If A ⇐⇒ B (ie A↔ B is a tautology),
then we can replace A by B everywhere in our logical reasoning. Often useful in math to
replace an implication P → Q by its contrapositive (¬Q)→ (¬P).

• The contrapositive (for x ∈ R) of

if x > 0 then x3 6= 0

is
if x3 = 0 then x ≤ 0.

Example 1.28

16

1.2.5 Treasures example

• Before you are three chests. They all have an inscription.

– Chest 1: Here is no gold.

– Chest 2: Here is no gold.

– Chest 3: Chest 2 contains gold.

• We know that one of the inscriptions is true. The other two are false.

• If we can only open one chest, which one should we open?

Example 1.29

Solution.

• Axiom: One of the inscriptions is true. The other two are false.

• Let Pi be the statement “Chest i contains gold”.

– Chest 1: Here is no gold. Q1 := ¬P1

– Chest 2: Here is no gold. Q2 := ¬P2

– Chest 3: Chest 2 contains gold. Q3 := P2

• The axiom says

[Q1 ∧ (¬Q2) ∧ (¬Q3)] ∨ [(¬Q1) ∧Q2 ∧ (¬Q3)] ∨ [(¬Q1) ∧ (¬Q2) ∧Q3]

⇐⇒
[(¬P1) ∧ (¬¬P2) ∧ (¬P2)] ∨ [(¬¬P1) ∧ (¬P2) ∧ (¬P2)] ∨ [(¬¬P1) ∧ (¬¬P2) ∧ P2] .

⇐⇒
[¬P1 ∧ P2 ∧ ¬P2)] ∨ [P1 ∧ ¬P2 ∧ ¬P2] ∨ [P1 ∧ P2 ∧ P2] .

⇐⇒
[P1 ∧ ¬P2] ∨ [P1 ∧ P2] .

⇐⇒
P1

• The axiom “One of the inscriptions is true. The other two are false.” ⇐⇒ “Chest 1
contains gold”.

17

• Lesson 1: Open the first chest.

• Lesson 2: Manipulating propositional statements (by the tautology rule) is “mechani-
cal”. Mathematical reasoning without quantifiers can be automated.

1.2.6 Negations of quantifiers

What is the negation (opposite) of

∀x ∈ A : P (x)?

• A = {mathematicians}, P (x) =“x is bald”.

• ∀x ∈ A : P (x) means “all mathematicians are bald”.

• The opposite is “some mathematicians are not bald”.

Example 1.30

So
¬∀x ∈ A : P (x)

is equivalent to
∃x ∈ A : ¬P (x).

1.2.7 Computing with logical symbols

We can perform computations with logical symbols, which have consequences also for number
theory later on. For example, the first one here is a bit like −(−1) = 1:

(¬¬P) ⇐⇒ P

(P → Q) ⇐⇒ (¬Q→ ¬P)

∃x ∈ Ω : ¬P (x) ⇐⇒ ¬∀x ∈ Ω : P (x)

In constructive mathematics, one only has the right implication

∃x ∈ Ω : ¬P (x)⇒ ¬∀x ∈ Ω : P (x)

in the last line. This is philosophically interesting, and also interesting in some algorithmic
applications, but will not be relevant in this course.

1.2.8 Sets and predicate logic

Finally we relate sets A and predicates P (x) as follows:

• To any predicate P (x) corresponds a set {x ∈ Ω : P (x)}.

18

• To the set S ⊆ Ω corresponds the predicate x ∈ S.

• Sometimes mathematical statements are easier to think about in terms of sets, sometimes
in terms of logical symbols.

• To any predicate P (x) corresponds a set SP = {x ∈ Ω : P (x)}.

• To the predicate P (x) ∧Q(x) corresponds the set

SP∧Q = {x ∈ Ω : P (x) and Q(x)}
= {x ∈ Ω : P (x)} ∩ {x ∈ Ω : Q(x)} = SP ∩ SQ.

• To the predicate P (x) ∨Q(x) corresponds the set

SP∨Q = {x ∈ Ω : P (x) or Q(x)}
= {x ∈ Ω : P (x)} ∪ {x ∈ Ω : Q(x)} = SP ∪ SQ.

1.3 Proof techniques

In mathematics proofs are used to verify if a statement is true or not. In this section we will
learn about various techniques to prove a statement. If you have not encountered proofs before,
this can be quite challenging initially, and it is good to practise first with simple statements
with the techniques presented here.

1.3.1 Proof and overview of the proof techniques

In the most abstract version, a mathematical theorem has an axiom (or conjunction of axioms)
P , and a conclusion Q. A proof consists of a sequence of statements such that each row is
either

• An axiom or a definition.

• Tautologically implied by the previous rows.
if previous rows say p1, . . . , pk, and (p1 ∧ · · · ∧ pk)→ q
is a tautology, then the next row may say q.

• Obtained from previous lines by “quantor calculus”:

∀x : ¬P (x)⇔ ¬∃x : P (x)

∃x : ¬P (x)⇔ ¬∀x : P (x)

• A special case of a previous row.
if one row says ∀xP (x), then the next row may say P (c).

• An existential consequence of previous rows.
if one row says P (c), then the next row may say ∃x : P (x).

19

Most mathematical proofs uses one of the following tautologies:

• (P ∧ (P → Q))⇒ Q (Direct proof)

• (P ∧ (¬Q→ ¬P))⇒ Q (Contrapositive proof)

• (P ∧ ((P ∧ ¬Q)→ False)⇒ Q (Proof by contradiction)

• ((P1 ∨ P2) ∧ (P1 → Q) ∧ (P1 → Q))⇒ Q (Proof by cases)

...and / or the following ways to prove existence:

• P (c)⇒ ∃x : P (x) (Constructive proof)

• (¬P (c)→ ∃x : P (x))⇒ ∃x : P (x) (Nonconstructive proof)

Definition 1.31 (Proof techniques)

Next, we will see examples of all these proof techniques.

1.3.2 Direct proof

For all odd integers n, then n2 is also odd.

Example 1.32

Proof

• Let n be an arbitrary odd integer.

• That means n = 2k + 1 for some integer k.

• Then
n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1

• Since 2k2 + 2k is an integer, this means that n2 is odd.

1.3.3 Contrapositive proof

For all integers n, if n2 is odd, then n is also odd.

Example 1.33

20

Proof

• First attempt (direct proof):

• n2 = 2k + 1 for some integer k.

• So n = ±
√

2k + 1, and n is an integer.

• No obvious way to write n = 2`+ 1.

For all integers n, if n2 is odd, then n is also odd.

Example 1.34

Proof
New attempt (contrapositive proof): Need to prove that if n is not odd, then n2 is not odd.
So assume n = 2k even. Then n2 = 4k2 = 2(2k2) is even, so not odd. Thus, if n were odd,
then n2 must also be odd.

1.3.4 Proof by contradiction

√
2 6∈ Q.

Example 1.35

Proof
Assume the claim was not true, so

√
2 ∈ Q. Then we could write

√
2 = p

q
, where p and q are

integers with no common divisor. Then 2q2 = p2, so p2 is even. So p is even, and we can write
p = 2r, r ∈ Z So q2 = p2

2
= 2r2 is even. Now p and q are both even. But this contradicts our

assumption that they had no common divisor. Thus the assumption was false, so
√

2 6∈ Q.

1.3.5 Proof by cases

Recall:

|a| =
{
a if a ≥ 0
−a if a < 0

For all real numbers x, y, it holds that |xy| = |x||y|.

Example 1.36

21

Proof

• Three cases:

– Both numbers ≥ 0, so xy ≥ 0: |xy| = xy = |x||y|.
– Both numbers < 0, so xy > 0: |xy| = xy = (−x)(−y) = |x||y|.
– The numbers have different sign, so xy ≤ 0. Without loss of generality (WLOG)
x < 0 ≤ y:

|xy| = −xy = (−x)y = |x||y|.

• These cases cover all possibilities, so the claim is true for all x, y ∈ R.

1.3.6 Constructive existence proof

There exist integers that can be written as a sum of two cubes in more than one way.

Example 1.37

Proof

123 + 13 = 1728 + 1 = 1729 = 1000 + 729 = 103 + 93

1.3.7 Nonconstructive existence proof

There exist irrational numbers x, y 6∈ Q such that xy ∈ Q.

Example 1.38

Proof

• The number a =
√

2
√
2

is of the form xy, where x = y =
√

2 6∈ Q.

• If a is not rational, then a
√
2 is also of the form xy, where x = a 6∈ Q and y =

√
2 6∈ Q.

• But

a
√
2 = (

√
2
√
2
)
√
2 =
√

2
(
√
2·
√
2)

=
√

2
2

= 2 ∈ Q.

• So either x = y =
√

2 is an example of numbers with the desired property, or x = a,
y =
√

2 is.

• So some irrational numbers with this desired property exist.

22

1.3.8 Induction proofs

This proof technique is very useful for number sequences (but also in many other parts of
mathematics)

• Goal: Prove a statement P (n) for all natural numbers n ∈ N.

• Technique:

– First (base case) prove the first case P (0).

– Then (induction step) prove that, for an arbitrary m ∈ N,
IF P (m) holds, THEN P (m+ 1) also holds.

– These two steps together prove that the statement P (n) holds for any n ∈ N.

P (0)⇒ P (1)⇒ P (2)⇒ P (3)⇒ P (4)⇒ · · · .

Let an be recursively defined by a0 = 0 and an+1 = 2an + 1. Then an = 2n − 1 for
all n ∈ N.

Example 1.39

Proof

• Base case: a0 = 0 = 1− 1 = 20 − 1, so the statement is true for n = 0.

• Induction step: Assume (induction hypothesis) that am = 2m − 1. Then

am+1
def
= 2am + 1

IH
= 2 · (2m − 1) + 1 = 2m+1 − 2 + 1 = 2m+1 − 1,

so the statement is also true for n = m+ 1.

• It follows that the statement an = 2n − 1 is true for all n ∈ N.

Prove that, for every n ∈ N,
n∑

i=1

(2i− 1) = n2.

Example 1.40

Proof

23

• Base case (n = 0):
0∑

i=1

(2i− 1) =
∑
i∈∅

(2i− 1) = 0 = 02.

• Induction step: Assume (IH) that
∑m

i=1(2i− 1) = m2. Then

m+1∑
i=1

(2i− 1)
def
= (2(m+ 1)− 1) +

m∑
i=1

(2i− 1)

IH
= m2 + 2(m+ 1)− 1 = m2 + 2m+ 1 = (m+ 1)2,

so the statement is also true for n = m+ 1.

There is also a more general version of the induction proof, which can be useful for certain
situations that involve e.g. sequences. The goal is the same:

• Goal: Prove a statement P (n) for all natural numbers n ∈ N.

• More general technique:

– First (base case) prove the k first cases P (0), . . . , P (k).

– Then (induction step) prove that, for an arbitrary m ∈ N,
IF P (m− k), . . . , P (m) holds, THEN P (m+ 1) also holds.

– These two steps together prove that the statement P (n) holds for any n ∈ N.

(P (0) ∧ · · · ∧ P (k))⇒ (P (1) ∧ · · · ∧ P (k + 1))⇒ (P (2) ∧ · · · ∧ P (k + 2))⇒ · · · .

– How large k needs to be, may depend on the problem.

The Fibonacci numbers are defined by f0 = 0, f1 = 1 and fn = fn−1 + fn−2. For all
n ∈ N holds fn < 2n.

Example 1.41

Proof

• Base case: f0 = 0 < 1 = 20 and f1 = 1 < 2 = 21.

• Induction step: Assume (induction hypothesis) that fm < 2m and fm−1 < 2m−1 . Then

fm+1
def
= fm + fm−1

IH
< 2m + 2m−1 < 2 · 2m = 2m+1,

so the statement is also true for n = m+ 1.

• It follows that the statement fn < 2n is true for all n ∈ N.

24

1.4 Relations

Next, we will move to the topic of relations. Relations are used in all parts of mathematics,
and we can consider them as generalisations of functions f : A→ B you may have seen before
(we will talk about functions specifically a bit later!), but also have important applications
outside of mathematics: Relational databases, automated translation,. . .

• y = x2. x, y ∈ R.

• S ⊆ T . S, T ∈ P (Ω).

• 5|x− y, i.e. x ≡ y mod 5. x, y ∈ Z.

• x and y are siblings. x, y ∈ {humans}.

• x ≤ y. x, y ∈ R.

• x|y, i.e. y is divisible by x. x, y ∈ Z.

Example 1.42

1.4.1 Definition and different types of relations

A relation can be defined in any of two different ways (which we will use inter-
changably):

• A relation on a set A is a subset R ⊆ A× A.

• A relation is an open statementR(x, y) that has a truth value for every x, y ∈ A.

Recall: To the predicate R(x, y) corresponds the set

{(x, y) ∈ A2 : R(x, y)}.

This set is sometimes also denoted R.

Definition 1.43

25

• Let A = {1, 2, 3, 4}.

• The equality relation x = y on A is given by the set

{(1, 1), (2, 2), (3, 3), (4, 4)} ⊆ A2.

• The order relation x < y on A is given by the set

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} ⊆ A2.

• The divisibility relation x|y on A is given by the set

{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)} ⊆ A2.

Example 1.44

A relation R on A can also be represented by a directed graph.

• Nodes corresponding to the elements x ∈ A.

• Arcs x→ y if R(x, y) holds.

If
|A| = n,

how many relations are there on A? Recall a relation on a set A is a subset R ⊆
A2 = A× A.

Example 1.45

Answer: |P (A2)| = 2|A×A| = 2|A|·|A| = 2n2
different relations.

• We can also define a relation “from a set A to a set B”:

– As a subset R ⊆ A×B.

– As an open statement R(x, y) that has a truth value for every x ∈ A, y ∈ B.

26

• x ∈ S. x ∈ Ω, S ∈ P (Ω).

• x has shoes in size y. x ∈ {humans}, y ∈ R.

• x is born in year n. x ∈ {humans}, n ∈ N.

Example 1.46

A relation ∼ on A is called:

• reflexive if
∀x ∈ A : x ∼ x.

• symmetric if
∀x, y ∈ A : x ∼ y ↔ y ∼ x.

• antisymmeric if
∀x, y ∈ A : (x ∼ y ∧ y ∼ x)→ x = y.

• transitive if
∀x, y, z ∈ A : (x ∼ y ∧ y ∼ z)→ x ∼ z.

Definition 1.47

• reflexive: x ≤ y on R

• reflexive: x|y on Z

• reflexive: x = y on any set

• reflexive: x ≡ y mod n on Z

• NOT reflexive: x < y on R

• NOT reflexive: x is a father of y on {humans}

Example 1.48

• symmetric: x and y are siblings on {humans}

• symmetric: |x− y| ≤ 1 on R

• NOT symmetric: x− y ≤ 1 on R

Example 1.49

27

• antisymmeric: x ≤ y x, y ∈ R

• antisymmeric: S ⊆ T S, T ∈ P (Ω)

Example 1.50

• transitive: x− y ∈ Z x, y ∈ R

• transitive: x ≤ y x, y ∈ R

• NOT transitive: x and y have a parent in common.
x, y ∈ {Humans}.

Example 1.51

1.4.2 Equivalence relations

An equivalence relation usually describes “sameness” in some sense.

A relation ∼ is an equivalence relation if it is reflexive, symmetric, and transitive.

Definition 1.52

• x = y on any set.

• x ≡ y mod n x, y ∈ Z.

• x− y ∈ Z x, y ∈ R.

• |S| = |T | S, T ∈ P (Ω).

• x and y have the same biological mother x, y ∈ {Humans}.

• NOT an equivalence relation: x ≤ y x, y ∈ R.

• NOT an equivalence relation: |x− y| ≤ 1. x, y ∈ R.

Example 1.53

28

Every equivalence relation on A divides A into disjoint equivalence classes of elements that
are “same”.

• Let ∼ be an equivalence relation on A.

• The equivalence class of a ∈ A is

[a] = [a]∼ = {x ∈ A : x ∼ a}.

Definition 1.54 (Equivalence classes)

• Let ∼ be congruence modulo 2, on Z.

• x ≡ y if 2|x− y.

• Then

[0] = {. . . ,−4,−2, 0, 2, 4, . . . } and [1] = {. . . ,−3,−1, 1, 3, . . . }.

Example 1.55

29

• Let ∼ be an equivalence relation on A, and let x, y ∈ A.

• If x ∼ y, then [x] = [y].

• If x 6∼ y, then [x] ∩ [y] = ∅.

Theorem 1.56

This shows that the equivalence classes form a partition of A: Every element in A is in
exactly one equivalence class.

A partition of a set A is a collection of subsets Ai ⊆ A, i ∈ I such that:

• A =
⋃

i∈I Ai.

• Ai ∩ Aj = ∅ for all i 6= j.

Definition 1.57

How many equivalence relations are there on a set with n elements? This is the Bell
number Bn. (outside the scope of this course). The first few Bell numbers are

B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203, B7 = 877.

The numbers can be computed recursively in a Bell triangle. No “closed formula” known.

1.4.3 Partial orders

Remember that in real line, we can talk about some numbers being bigger than others, like
2 < 5, 2 ≤ 2 or 3 < π < 4. This idea can be introduced as a structure to sets as well, as a
relation:

A relation � on A is an order relation if it is reflexive, antisymmetric, and transitive.

Definition 1.58 (Partial order)

• x ≤ y on R

• x|y on N

• S ⊆ T on P (Ω).

Example 1.59

30

An order relation is sometimes called a partial order. If a � b and a 6= b, then we write a ≺ b.

• Let � be an order relation on A.

• Let a, b ∈ A be elements such that:

– a ≺ b

– ¬∃x ∈ A : a ≺ x ≺ b.

• Then we say that b covers a, written al b.

Definition 1.60 (Covering relation)

• 18 l 19 in the order (Z,≤).

• 3 l 6 in the order (Z, |).

• {a, b, c}l {a, b, c, d} in the order (P (Ω),⊆).

• In the order (R,≤), there are no covering pairs al b.

Example 1.61

• Let � be an order relation on a finite set A, a, b ∈ A.

• a ≺ b if and only if there exist a1, a2, . . . , an ∈ A such that

al a1 l a2 l · · ·l an l b.

Theorem 1.62

In other words, the order relation is uniquely defined if we know the corresponding covering
relation. Note: This is not true if A is infinite.

1.4.4 Hasse diagram

So we can represent a finite order relation (A,�) as a directed graph where we only draw the
arcs corresponding to covering pairs:

• Nodes are elements of A.

• Arc a→ b if al b.

Because of antisymmetry, this graph has no directed cycles:

31

When there are no directed cycles, we can draw the directed graph so that all arcs point
upwards. This representation of a finite order relation is called its Hasse diagram.

Example 1.63

The head of the arcs are usually not drawn in the Hasse diagram, as we already know that
the arcs point upwards.

The divisibility relation on {0, 1, 2, . . . , 12}.

Example 1.64

1.4.5 Linear extensions

An order relation is called linear, or total, if for every x, y holds that x ≤ y or y ≤ x.
A totally ordered set is also called a chain.

Definition 1.65 (Linear relations and chains)

32

• The ordinary order relation (N,≤) is linear, because for every two integers, if
they are not the same, then one is smaller than the other.

• The divisibility relation (N, |) is not linear, because (for example) 5 6 |7 and
7 6 |5.

Example 1.66

A linear relation ≤ on a set P is compatible with a partial order � on the same set,
if for every x, y ∈ P such that x � y, also holds that x ≤ y. We say that ≤ is a
linear extension of �

Definition 1.67 (Compatible linear relations)

• The ordinary order relation on {1, 2, 3, 4} is a linear extension of the partial
order

1 � 2, 1 � 3, 1 � 4, 2 � 4, 3 � 4.

• Another linear extension of the same partially ordered set would be

1 ≤ 3 ≤ 2 ≤ 4.

Example 1.68

• The ordinary order relation on N \ {0} = {1, 2, 3, 4, . . . } is a linear extension
of the divisibility relation.

– A positive integer can never be divisible by any larger integer

• The ordinary order relation on N = {0, 1, 2, 3, . . . } is not a linear extension of
the divisibility relation.

• Zero is divisible by any positive integer n (because 0 = 0 · n), although 0 ≤ n.

Example 1.69

A partial order � can describe the dependencies of tasks. (Task T � Task S if the outcome
of S is needed in order to begin T.) Then, a linear extension of � is an order in which the
tasks can be performed.

33

1.5 Functions

Functions are a special class of relations that describe a rule how an element is mapped into
another element.

1.5.1 Definition and graphs

A function f : A → B is a relation “f(x) = y”, such that for each element a ∈ A,
there is a unique element b ∈ B for which f(a) = b holds.

The set A is the domain of the function, and B is the codomain. The range of f is

the set f(A)
def
= {f(x) : x ∈ A} ⊆ B.

Definition 1.70 (Functions)

Functions can thus be seen as a special case of relations: Every element in the domain is
related with some element in the codomain. A function f from A to B is compactly denoted
f : A → B. Sometimes a function does not need a name; in such case we write a 7→ b (“a
maps to b”) rather than f(a) = b. When considering a relation as a subset of D × E, the set
corresponding to f is its graph

{(x, f(x)) : x ∈ D} ⊆ D × E.

A function is often represented geometrically by its graph, especially when the domain and
codomain are both (subsets of) R.

34

The function

f :Z→ Z
x 7→ 4x+ 5

(also written f(x) = 4x+ 5) has:

• Domain (määrittelyjoukko) Z.

• Codomain (maalijoukko) Z.

• Range (arvojoukko)

{4x+ 5 : x ∈ Z} = {. . . ,−7,−3, 1, 5, 9, . . . }.

• Graph (kuvaaja)
{(x, y) : y = 4x+ 5} ⊆ Z2.

Example 1.71

1.5.2 Composition of functions

Two functions f : A → B and g : B → C can be composed into a function g ◦ f : A → C,
g ◦ f(x) = g(f(x)).

The function h(x) = 2x2+1 can be written as g◦f , where g(y) = 2y and f(x) = x2+1.

Example 1.72

35

• The function h(x) = 2x2+1 can be written as g ◦ f , where g(y) = 2y and
f(x) = x2 + 1.

•
x

f7−→ x2 + 1
g7−→ 2x2+1.

• This is not the same as the composition f ◦ g:

x
g7−→ 2x g7−→ (2x)2 + 1 = 4x + 1.

Example 1.73

1.5.3 Injection, surjection, bijection

Next we will discuss three important notions of functions, which we will use later for example
in checking whether two sets have same number of elements or not.

A function f : A→ B is called

• Injective (or one-to-one) if

∀x, y ∈ A : f(x) = f(y)⇒ x = y.

• Surjective (or onto) if

∀b ∈ B : ∃a ∈ A : f(a) = b.

• Bijective (or invertible) if it is injective and surjective.

Definition 1.74

injektio = injection, surjektio = surjection, bijektio = bijection

36

1.5.4 Inverse functions

The inverse of the bijective function f : A → B is the function g = f−1 : B → A
such that

f(a) = b⇐⇒ g(b) = a.

Definition 1.75

This defines the inverse function f−1 uniquely. If f : A → B is not bijective, then it
can not have an inverse B → A. Warning: Do not mistake the function f−1 for the number
f(x)−1 = 1

f(x)
.

1.6 Cardinalities

Next, we will apply the idea of injections, surjections and bijections to talk about cardinalities
again and we can use them to formally define the cardinality of any set by using functions:

Let A and B be finite sets. Then A→ B injective ⇒ n = |A| ≤ |B|.

Theorem 1.76

Proof

If there is an injection A = {a1, . . . , an} → B, then f(a1), . . . , f(an) are all different
elements of B.

Let A and B be finite sets. Then A→ B surjective |A| ≥ |B| = m.

Theorem 1.77

Proof

If there is a surjection A→ B = {b1, . . . , bm}, then there are different elements a1, . . . am ∈
A such that f(ai) = bi for i = 1, . . . ,m.

37

For finite sets, there is an injective map A→ B precisely if B has at least as many elements
as A. For general sets, we take this as the definition of cardinality (i.e. “number of elements”)

Let A and B be sets. We say that:

• |A| = |B| if there exists a bijection A→ B.

• |A| ≤ |B| if there exists an injection A→ B.

Definition 1.78

Fact (from exploratory exercises): There is a surjection B → A if and only if there is an
injection A→ B. Assuming a technical axiom about sets, called the axiom of choice. Do not worry about this.

Note that |A| = n if there is a bijection A → {1, 2, . . . , n}. The set A is finite if
|A| = n for some n ∈ N. Otherwise it is infinite. For any infinite set A, there is an
injection N → A. So |N| = ℵ0 is “the smallest infinite cardinality”. The set A is
countable if |A| = |N|. If |A| > |N|, then we say that A is uncountable.

Definition 1.79 (Finite, countable and uncountable sets)

|N| = |{0, 2, 4, 6, 8, . . . }|

Theorem 1.80

Proof

• Define f : N→ {0, 2, 4, 6, 8, . . . } by f(n) = 2n for all n ∈ N.

• Then f is a bijection.

• Inverse function m 7→ m
2
∈ N for m ∈ {0, 2, 4, 6, 8, . . . }.

Note: for infinite sets A,B, it is very possible that |A| = |B| even when A (B.

38

1.6.1 Infinite cardinalities

• David Hilbert is checking in to a hotel with infinitely many rooms (numbered
0, 1, 2, . . .)

• Unfortunately, every room is already occupied.

• Solution: All guests move rooms: The guest who used to stay in room k moves
to room k + 1 for all i ∈ N.

• Now, Hilbert can move into room 0.

Example 1.81 (Hilbert’s hotel)

• The next day a bus arrives to the hotel, bringing infinitely (but countably)
many new guests.

• Unfortunately, every room is already occupied.

• Solution: All guests move rooms: The guest who used to stay in room k moves
to room 2k for all i ∈ N.

• Now, the bus tourists can move into all odd numbered rooms.

Example 1.82 (Hilbert’s hotel, infinitely many new guests)

39

• The next day, infinitely many buses (numbered 1, 2, 3, . . .) arrive to the hotel,
all bringing infinitely (but countably) many new guests.

• Solution: All previous guests move to odd numbered rooms.

• Now, the passengers on bus number k can move into rooms numbered 2k, 2k ·
3, 2k · 5, 2k · 7,

Example 1.83 (Hilbert’s hotel, infinite number of new buses!)

The relation |A| = |B| (between pairs of sets) is an equivalence relation (on P (Ω)).

Theorem 1.84

Proof

• Reflexivity: The identity map ι : A→ A is a bijection.

• Symmetry: If f : A→ B is a bijection, then f−1 : B → A is a bijection.

• Transitivity: If f : A → B and g : B → C are bijections, then g ◦ f : A → C is a
bijection.

40

• |N| = |Z|

Theorem 1.85

Proof

• Define f : N→ Z by

f(0) = 0, f(2k) = k and f(2k − 1) = −k for k ≥ 1.

• Then f is a bijection.

• |N| = |Q|

Theorem 1.86

Proof

• Order the numbers p
q
, p, q ∈ Z, q > 0, as in the figure:

• Let f(n) be the nth “new” number in the sequence, for n ∈ N.

• Then f : N→ Q is a bijection.

• |N| 6= |R|

Theorem 1.87

Proof

41

• Assume for a contradiction that we can “list” the real numbers as in the figure

• Change the ith decimal digit of the ith number, in any way you want.

• The “diagonal number” (in the example 7.56254 . . .) was not in the original list.

• Contradiction, so |N| 6= |R|.

Recall: |A| ≤ |B| if there exists an injection A→ B.

• |A| ≤ |B| ≤ |C| =⇒ |A| ≤ |C|.

Theorem 1.88

Proof

• If f : A→ B and g : B → C are injections, then g ◦ f : A→ C is an injection.

• If |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

– This is a nice and challenging problem - Try it at home!

• For any sets A and B holds that |A| ≤ |B| or |B| ≤ |A|.

– This is a deep fact, and not true in constructive mathematics - Do not try
it at home!

Theorem 1.89 (Not proved in this course)

42

Chapter 2

Combinatorics

2.1 Enumerative combinatorics

2.1.1 Principles of counting

We have already encountered some basic techniques to count the elements of a set. The
addition principle says that, if A1, . . . , Ak are pairwise disjoint, then

|A1 ∪ · · · ∪ Ak| = |A1|+ · · ·+ |Ak|.

The multiplication principle says that

|A1 × · · · × Ak| = |A1| · · · |Ak|.

Recall that |A| = m means (by definition) that there is a bijection A→ {1, 2, . . . ,m}. In this
light, the addition and multiplication principles are (easy, but not trivial) theorems.

• A bookshelf contains five physics books, seven chemistry books, and ten math-
ematics books. In how many ways can you choose two books about different
subjects from the shelf?

Example 2.1

43

• Let P,C,M be the sets of physics, chemistry, and math books respectively.
|P | = 5, |C| = 7, |M | = 10.

• A pair of two books about different subjects is an element of

(P × C) ∪ (P ×M) ∪ (C ×M).

• The number of choices is

|(P × C) ∪ (P ×M) ∪ (C ×M)|
= |P ||C|+ |P ||M |+ |C||M |
= 5 · 7 + 5 · 10 + 7 · 10

= 155.

Example 2.2

2.1.2 Counting linear orders

In how many ways can we order the letters a,b,c in a linear order?

• abc, acb, bac, bca, cab, cba.

• The first letter could be chosen in 3 ways.

• Regardless of the first letter, the second letter can be chosen in 2 ways, and after this, the
third letter can be chosen in only one way. So the number of linear orders is 3 · 2 · 1 = 6

In how many ways can we order n objects a1, a2, · · · , an in a linear order?

• The first object could be chosen in n ways.

• Regardless of the first i objects, the (i + 1)th object can be chosen in (n − i) ways,
0 ≤ i ≤ n− 1.

• So the number of linear orders is n! = n · (n− 1) · (n− 2) · · · 2 · 1.

This number is denoted n!, read “n factorial”. By convention, 0! = 1 (“the empty product”)

2.2 Binomial coefficients

2.2.1 Counting combinations

In how many ways can we select a committee of 5 members from a party of 11? Call this
number (

11

5

)
44

(read: “11 choose 5”). If we also order the committee members, and order the non-members,
we would get 11! possible orders total.

• First committee member can be chosen in 11 ways, second committee member i 10 ways, ... , last committee member in 7 ways, first
non-member in 6 ways, second non-member in 5 ways and so on.

Every committee can be ordered in 5! ways, and the non-members can be ordered in 6! ways.
We get

(
11
5

)
· 5! · 6! = 11!, so (

11

5

)
=

11!

6! · 5!
= 462.

We can generalize this: How many “combinations” (subsets) of k elements are there in a
set B of n elements? This number is denoted

(
n
k

)
. (read: “n choose k”). The number of ways

to select a set A with k elements and then order both A and B \ A is(
n

k

)
· k! · (n− k)!,

but it is also n! by the same argument as on the last slide. We get(
n

k

)
=

n!

k! · (n− k)!
.

How many sequences of five cards (drawn from an ordinary 52 card deck) are there,
if we know that it contains exactly two kings?

• The word “sequence” impies that the order matters, so ♣3,♥5,♦K,♣K,♥Q is
a different sequence than ♥Q,♥5,♦K,♣3,♣K

♣3,♥5,♦K,♣K,♥Q

The positions of the kings can be chosen in
(
5
2

)
ways. The first king can be chosen in

4 ways, the second king in 3 ways. The first non-king can be chosen in 48 ways, the
next in 47 ways, and the last in 46 ways. By the multiplication principle there are(

5

2

)
· 4 · 3 · 48 · 47 · 46 = 12453120

possible sequences.

Example 2.3

There are
(
n
k

)
ways to choose k balls from a box containing n balls.

45

Refining according to whether or not our favourite (red) ball is chosen:(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

We can also prove the same identity “algebraically”:(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(n− k)!(k − 1)!
+

(n− 1)!

(n− 1− k)!k!

=
(n− 1)!

(n− 1− k)!(k − 1)!
·
[

1

n− k
+

1

k

]
=

(n− 1)!

(n− 1− k)!(k − 1)!
· n

(n− k)k

=
n!

(n− k)!k!

=

(
n

k

)
.

Clearly,
(
n
0

)
=
(
n
n

)
= 1. So the binomial coefficients

(
n
k

)
are the entries in the recursively

defined Pascal’s triangle:

Recall that, if |A| = n, then |P (A)| = 2n. Order A = {a1, a2, . . . , an}. {0, 1}n = {0, 1}× · · · ×
{0, 1} is the set of length n bitstrings. Define f : P (A) → {0, 1}n by f(S) = (f1, . . . , fn),
where

fi =

{
1 if ai ∈ S
0 if ai 6∈ S

f is a bijection, so
|P (A)| = |{0, 1}n| = |{0, 1}|n = 2n.

On the other hand, if |A| = n, then P (A) = P0 ∪ P1 ∪ · · · ∪ Pn, where

Pk = {S ⊆ A : |S| = k}.

|Pk| =
(
n
k

)
, so

2n = |P (A)| =
n∑

k=0

|Pk| =
n∑

k=0

(
n

k

)
.

46

2.2.2 Counting combinations with repetition

A box contains (many) blue, red and green balls. In how many ways can I select 5
balls from this box, if the order does not matter? So ••••• is the same selection as
•••••.
Solution: Represent any selection by always lining up the balls blue first, then red,
then green.

••••• ••••• •••••

If we separate the different colours by bars, then we can reconstruct the colours from
the position of the bars. The three selections above are now represented as

• • •| • | • • • || • • • | • • • • • |

A selection is given by placing bars in two out of 7 positions in a sequence, and
placing balls in the other 5 positions. So there are

(
7
2

)
different selections.

Example 2.4

More generally, assume we have n different kinds of balls, and want to select k from these.
Like in the previous example, this can be represented by a configuration of k balls and n− 1
bars ordered in a sequence. So there are(

n+ k − 1

k

)
=

(
n+ k − 1

n− 1

)
different ways to select.

Note: This is also the number of non-negative integer solutions to the equation

x1 + · · ·+ xn = k,

where xi represents the number of balls of the ith kind.

2.2.3 Binomial theorem

For all n ∈ N and all x, y ∈ R holds

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k.

Theorem 2.5 (Binomial theorem)

Proof
[Combinatorial proof] Expand the product (x + y)n into a sum of 2n monomial terms. Each

47

term corresponds to a way to select either x or y from each of the n parentheses. The monomial
term xkyn−k corresponds to selecting x from k of the parentheses, and y from n − k of the
parentheses. This can be done in

(
n
k

)
=
(

n
n−k

)
ways.

Proof
[Induction proof]

• Base case n = 0:

(x+ y)0 = 1 =

(
0

0

)
x0y0−0.

• Base case n = 1:

(x+ y)1 = x+ y =
1∑

k=0

(
1

k

)
xky1−k.

• Induction step: Assume true for n = M . Then

(x+ y)M+1 = (x+ y)(x+ y)M

IH
= (x+ y)

M∑
k=0

(
M

k

)
xkyM−k

=
M∑
j=0

(
M

j

)
xj+1yM−j +

M∑
k=0

(
M

k

)
xkyM−k+1

=
M+1∑
k=1

(
M

k − 1

)
xkyM−(k−1) +

M∑
k=0

(
M

k

)
xkyM−(k−1)

= xM+1 +
M∑
k=1

((
M

k − 1

)
+

(
M

k

))
xkyM+1−k + yM+1

= xM+1 +
M∑
k=1

(
M + 1

k

)
xkyM+1−k + yM+1

=
M+1∑
k=0

(
M + 1

k

)
xkyM+1−k.

By the induction principle,

(x+ y)n =
n∑

k=0

(
n

k

)
xkyn−k for all n ∈ N.

48

• This shows in a new way that

2n = (1 + 1)n =
∑
k

(
n

k

)
1k1n−k =

∑
k

(
n

k

)
.

• Similarily,

3n = (2 + 1)n =
∑
k

(
n

k

)
2k1n−k =

∑
k

2k

(
n

k

)
.

Example 2.6

2.3 Inclusion exclusion principle

The inclusion exclusion principle for two sets says the following:

|A ∪B| = |A|+ |B| − |A ∩B|.

How many 8 bit strings start or end with two zeroes?

Answer: 26 + 26 − 24 = 112.

Example 2.7

The inclusion exclusion principle for three sets:

|A ∪B ∪ C| = |A|+ |B|+ |C|
− |A ∩B| − |A ∩ C| − |B ∩ C|
+ |A ∩B ∩ C|.

49

A martial arts club has courses in aikido, boxing and capoeira. There are 30 aikido
students, 25 boxers and 35 capoeira dancers. 5 people do both aikido and boxing,
19 do both aikido and capoeira, and 7 boxers also do capoeira. One student (Chuck
Norris) studies all martial arts at once. How many martial artists does the club
have?
Solution. Let A, B and C be the sets of students of the respective martial arts.

• |A| = 30, B = 25, |C| = 35.

• |A ∩B| = 5, |A ∩ C| = 19, |B ∩ C| = 7

• |A ∩B ∩ C| = |{Chuck Norris}| = 1

The total number of martial artists is

|A ∪B ∪ C| = |A|+ |B|+ |C|
− |A ∩B| − |A ∩ C| − |B ∩ C|
+ |A ∩B ∩ C|

= 30 + 25 + 35− 5− 19− 7 + 1

= 60.

Example 2.8

How many permutations a1a2, a3, a4 of the set {1, 2, 3, 4} are such that ai+1 6= ai + 1
for all i ∈ {1, 2, 3}?
In other words, the string a1a2, a3, a4 must not contain “12”, “23”, or “34”. For
example, the permutation 1432 satisfies the property, but the permutation 1423 does
not. A permutation containing “12” can be thought of as a permutation of {‘12′, 3, 4}.
There are 3! = 6 such permutations. Similarily, there are 3! = 6 permutations that
contain “23”, and 3! = 6 permutations that contain “34”. Permutations that contain
both “12” and “23” correspond to permutations of {‘123′, 4}. There are 2! = 2,
such permuations, namely 1234 and 4123. Similarily, there are 2 permutations that
contain both “23” and “34”, and 2 permutations that contain both “12” and “34”.
The only permutations that contains all the “forbidden pairs” is 1234. So there are

4!− 3 ∗ 3! + 3 ∗ 2!− 1 = 24− 18 + 6− 1 = 7

permutations with the desired property.

Example 2.9

In the three set case, denote

• s1 = |A1|+ |A2|+ |A3|
“count elements that are in one of the sets, one set at a time”.

50

• s2 = |A1 ∩ A2|+ |A1 ∩ A3|+ |A2 ∩ A3|
“count elements that are in two sets, one pair of sets at a time”.

• s3 = |A1 ∩ A2 ∩ A3|
“count elements that are in three sets, (one triple of sets at a time)”.

Then the inclusion exclusion principle says

|A1 ∪ A2 ∪ A3| = s1 − s2 + s3 =
3∑

k=1

(−1)k−1sk.

For a collection of finite sets A1, . . . , An, let

sk =
∑
|B|=k

∣∣∣∣∣⋂
i∈B

Ai

∣∣∣∣∣ ,
where the sums are taken over subsets of {1, . . . , n}.

If A1, . . . , An are finite sets, and s1, . . . , sk are as above, then

|A1 ∪ · · · ∪ An| =
n∑

k=1

(−1)k−1sk.

Theorem 2.10

Proof
Let x ∈ A1 ∪ · · · ∪ An, and let

Ix = {i : x ∈ Ai} ⊆ {1, . . . , n}

be the indices of the sets containing x. Let m = |Ix|. Then x belongs to the set
⋂

i∈B Ai if
and only if B ⊆ Ix. So on the right hand side, x is counted

m∑
k=1

(
m

k

)
(−1)k−1 = −

m∑
k=1

(
m

k

)
(−1)k

= 1−
m∑
k=0

(
m

k

)
(−1)k−1

= 1− (1− 1)m = 1 times.

Hence each element x ∈ A1 ∪ · · · ∪ An is counted exactly once on each side of the equation

|A1 ∪ · · · ∪ An| =
n∑

k=1

(−1)k−1sk.

51

In how many ways can n balls be placed in m bins, so that no bin is left empty? In
other words, how many maps

X → {1, . . . ,m}

are surjective, if |X| = n?
Solution: For i = 1, . . . ,m, let Ai be the set of maps

ϕ : X → {1, . . . ,m}

that “miss i”, i.e. ϕ(x) 6= i for all x ∈ X. Then Ai1 ∩ · · · ∩ Aik is the set of maps

X → {1, . . . ,m} \ {i1, . . . , ik}.

We have
|Ai1 ∩ · · · ∩ Aik | = (m− k)n.

and

sk =
∑
|B|=k

∣∣∣∣∣⋂
i∈B

Ai

∣∣∣∣∣ =

(
m

k

)
(m− k)n.

The number of maps X → {1, . . . ,m} is mn. The number of non-surjections is

|A1 ∪ · · · ∪ Am| =
m∑
k=1

(−1)k−1sk

=
m∑
k=1

(−1)k−1
(
m

k

)
(m− k)n.

So the number of surjections is

S(n,m) = mn −
m∑
k=1

(−1)k−1
(
m

k

)
(m− k)n

=
m∑
k=0

(−1)k
(
m

k

)
(m− k)n.

Example 2.11 (Counting surjections)

52

A secret Santa has brought 6 gifts to a christmas party with 4 guests. In how many
ways can the gifts be distributed, so that all guests get at least one gift?
Solution: This is the number of surjections from the set of gifts to to the set of
guests. The number of such maps is the Stirling number

S(6, 4) =
4∑

k=0

(−1)k
(

4

k

)
(4− k)6

= 46 − 4 · 36 + 6 · 26 − 4 · 16

= 1560.

Example 2.12

The number of surjective maps {1, 2, 3, 4, 5, 6} → {1, 2, 3, 4} is the Stirling number

S(6, 4) = 1560 = 24 · 65.

Is it a coincidence that S(6, 4) is divisible by 4! = 24? To put 6 balls in 4 bins so that no bin
is left empty, we can first divide them into 4 non-empty piles (in P (6, 4) = 65 of ways). Then
we can pair up the 4 piles with the 4 bins in 24 = 4! ways. In general,

S(n,m) = m!P (n,m),

where P (n,m) is the number of partitions of an n-element set into m parts.

No “good” closed formula is known for

S(n,m) =
m∑
k=0

(−1)k
(
m

k

)
(m− k)n.

But S(n,m) can also be computed recursively in a “triangle”, like the binomial coefficients.

In how many ways can n balls be placed in m bins, so that no bin is left empty? Our
favourite ball ? can be placed in any of m different bins. The n other balls are either placed
surjectively into all m bins, or surjectively into the m − 1 bins not containing ?. So S(n,m)
can be computed recursively by.

S(n,m) = 0 n < m.

S(n, 1) = 1 n ≥ 1.

S(n+ 1,m) = m (S(n,m) + S(n,m− 1)) n ≥ m ≥ 2.

53

2.4 Permutations and group theory

2.4.1 Permutation group

A bijection π : A→ A from a set to itself is called a permutation.

Definition 2.13

• Let π : {1, 2, 3, 4} → {1, 2, 3, 4} be defined by:

π1 = 3, π2 = 2, π3 = 4, π4 = 1.

• In two line notation this is denoted:

π =

(
1 2 3 4
3 2 4 1

)
=

(
4 1 3 2
1 3 4 2

)
= · · · .

Example 2.14

As a permutation is a bijection, it also has an inverse. In the two line notation, the inverse
of a permutation is obtained by changing the place of the first and second row (and reordering
the columns according to the first row).

π =

(
1 2 3 4
3 2 4 1

)
.

π−1 =

(
3 2 4 1
1 2 3 4

)
=

(
1 2 3 4
4 2 1 3

)
.

Permutations can be composed as functions. Let

π =

(
1 2 3 4
3 2 4 1

)
,

54

σ =

(
1 2 3 4
3 2 1 4

)
.

The two line notation of the permutation σ ◦ π is computed as follows:

σ ◦ π =

 1 2 3 4
3 2 4 1
1 2 4 3

 =

(
1 2 3 4
1 2 4 3

)
.

The first two rows are aligned according to π; The last two rows according to σ.

π =

(
1 2 3 4
3 2 4 1

)
, σ =

(
1 2 3 4
3 2 1 4

)
.

σ ◦ π =

 1 2 3 4
3 2 4 1
1 2 4 3

 =

(
1 2 3 4
1 2 4 3

)
.

π ◦ σ =

 1 2 3 4
3 2 1 4
4 2 3 1

 =

(
1 2 3 4
4 2 3 1

)
.

Thus “Multiplication” πσ = π ◦ σ of permutations is not commutative (πσ 6= σπ).

Permutations form also an algebraic structure called a group as we will see now. The set
of permutations of {1, 2, . . . n} is denoted Sn. Note: |Sn| = n!.

• The identity permutation

ι =

(
1 2 · · · n
1 2 · · · n

)
is such that ιπ = πι = π holds for all π ∈ Sn.

• associativity:
π−1π = ππ−1 = ι.

(πσ)τ = π(στ)

holds for all π, σ, τ ∈ Sn

We often write π ∈ Sn using one line notation (without parentheses):

π =

(
1 2 · · · n
π1 π2 · · · πn

)
= π1π2 · · · πn

55

Let G be a set, and · : G×G→ G. The pair (G, ·) is called a group, if the following
holds:

• Associativity:
(a · b) · c = a · (b · c) for all a, b, c ∈ G.

• Neutral element: There exists e ∈ G such that e · a = a · e = a for all a ∈ G.

• Inverse: For every a ∈ G, there exists a−1 ∈ G such that

a · a−1 = a−1 · a = e.

Definition 2.15 (Group)

The permutation group (or symmetric group) (Sn, ◦) is a group, whose neutral element is the
identity permutation ι.

2.4.2 Cycle notation

Permutations can be represented by cycle notation. Consider

α =

(
1 2 3 4 5 6 7
2 4 1 3 5 7 6

)
.

Here, 1 7→ 2 7→ 4 7→ 3 7→ 1. This is a cycle, which is denoted (1243). Because α5 = 5, there is
also a cycle (5). Finally, 6 7→ 7 7→ 6, so there is a cycle (67) .On cycle notation we get

α = (1243)(67) = (4312)(76) = (5)(1243)(67) = · · ·

The inverse of a cyclic permutation is easy to compute:

(a1 · · · ak)−1 = (ak · · · a1).

In any group it holds that
(π · σ)−1 = σ−1π−1.

So for example, when
π = (145)(27)(3698),

we can compute
π−1 = (8963)(72)(541) = (154)(27)(3896).

56

All permutations in S3 can be represented by a single cycle (together with some
trivial cycles):

123 = (1)(2)(3) = ι

132 = (1)(23) = (23)

213 = (12)(3) = (12)

231 = (123)

312 = (132)

321 = (13)(2) = (13)

Example 2.16

All permutations in Sn can be written as a product of disjoint cycles. If (a1, . . . , ak) and
(b1, . . . , b`) are disjoint, then

(a1, . . . , ak)(b1, . . . , b`) = (b1, . . . , b`)(a1, . . . , ak)

The permutations in S4 are:

ι
(12) (13) (14) (23) (24) (34)
(123) (132) (124) (142) (134) (143) (234) (243)
(12)(34) (13)(24) (14)(23)
(1234) (1243) (1324) (1342) (1423) (1432)

Example 2.17

2.4.3 Conjugates

In any group G, two elements π, σ ∈ G are conjugates if π = τστ−1 for some τ ∈ G. The
conjugate relation is an equivalence relation

(1234) and (1243) are conjugates in S4, because

(1234) = (123)(1243)(132) = (123)(1243)(123)−1.

Example 2.18

If τ ∈ Sn is a permutation and (a1, . . . , ak) is a cycle, then

τ(a1 . . . ak)τ−1 = (τ(a1) · · · τ(ak)).

57

If π and σ are conjugates, then they have the same number of cycles of length k. In the
symmetric group Sn, the conjugate relation can thus be equivalently defined as follows: π, σ ∈
Sn are conjugates, if and only if they have equally many k-cycles for each k = 1, . . . , n.

The conjugates σ and τστ−1 in Sn have “the same structure”, but the elements of the
ground set {1, . . . n} are in different places in the cycles.

The elements of S4 are:

ι
(12) (13) (14) (23) (24) (34)
(123) (132) (124) (142) (134) (143) (234) (243)
(12)(34) (13)(24) (14)(23)
(1234) (1243) (1324) (1342) (1423) (1432)

The conjugate classes are the rows of this table. The group S4 has five conjugate
classes. How many conjugate classes does Sn have? There is no known closed formula
(in terms of n).

Example 2.19

A cycle (ab) of length 2 is called a transposition.

Every permutation π ∈ Sn can be written as the product of transpositions.

Theorem 2.20

Proof
It is enough to show that every cycle (a1 . . . ak) is the product of transpositions.

(a1a2 . . . , ak−1ak) = (a1ak)(a1ak−1) · · · (a1a3)(a1a2).

The same permutation can be written as a product of transpositions in many different
ways.

(1234) = (12)(23)(34) = (14)(13)(12) = (12)(24)(23) =

Example 2.21

58

1. Every permutation π ∈ Sn can be written as a product using the transpositions
(1 2), (1 3), . . . , (1 n).

2. Every permutation π ∈ Sn can be written as a product using the transpositions
(1 2), (2 3), . . . , (n− 1 n).

Theorem 2.22

Proof
It is enough to write every transposition as such a product. (k `) = (1 k)(1 `)(1 k). This
proves 1.

(1 k) = (k − 1 k)(k − 2 k − 1) · · · (2 3)(1 2)(2 3) · · · (k − 2 k − 1)(k − 1 k).

This proves 2.

2.4.4 Even and odd permutations

For a permutation π ∈ Sn, its representations as a product of transpositions either all
use an even number of transpositions, or they all use an odd number of transpositions.

Theorem 2.23

If π ∈ Sn is the product of an even number transpositions, then we say that π is an even
permutation, and that it has sign ε(π) = +1. If π ∈ Sn is the product of an odd number of
transpositions, then we say that π is an odd permutation, and that it has sign ε(π) = −1.

A transposition

(j k) = (1 j)(1 k)(1 j) = (1 3)(3 j)(1 3)(1 2)(2 k)(1 2)(1 j) = · · ·

is odd. The identity permutation ι = (j k)(j k) is even. The set of even permutations
is denoted An.

Example 2.24

59

• A cycle
(a1, a2, . . . , ak−1ak) = (a1ak)(a1ak−1) · · · (a1a3)(a1a2)

is even if its length k is odd, and it is odd if its length is even. (ANNOYING!)

• ε(σπ) = ε(σ)ε(π)

– even · even = odd · odd = even.

– even · odd = odd · even = odd.

• So compositions of permutations is a map

An × An → An,

and so the even permutations form a subgroup An ⊆ Sn. (the alternating
group).

Example 2.25

For a permutation π ∈ Sn, its representations as a product of transpositions either all
use an even number of transpositions, or they all use an odd number of transpositions.

Theorem 2.26

For the proof, we need the following definition:

• An inversion in π ∈ Sn is a pair i < j such that πi > πj.

• inv π is the number of inversions in π ∈ Sn.

Definition 2.27

The inversions in 13542 ∈ S5 are (2, 5), (3, 4), (3, 5), (4, 5).

13542 13542 13542 13542

Example 2.28

Let ω = (a b) ∈ Sn be a transposition, with a < b. Then inv π ◦ ω − inv π is odd.

Lemma 2.29

Proof

60

If i, j 6∈ {a, b}, then (i j) is an inversion in π if and only if it is an inversion in πω. If a < i < b
and either πi ≤ min(πa, πb) or πi ≥ max(πa, πb), then exactly one of the pairs (a, i) and (i, b)
is an inversion, both in π and in πω. Let a < i < b and

min(πa, πb) ≤ πi ≤ max(πa, πb).

Then the pairs (a, i) and (i, b) are both inversions in one of the permutations (either in π or
in πω), and in the other one neither of them is an inversion. So the difference between the
numbers of inversions

|{(i, j) : (i, j) inversion in π but not in ωπ, (i, j) 6= (a, b)}|
− |{(i, j) : (i, j) inversion in ωπ but not in π, (i, j) 6= (a, b)}|

is even. (a, b) is an inversion in either π or πω, and not in the other.

inv π ◦ ω − inv π is an odd number if ω is a transposition

Lemma 2.30

For a permutation π ∈ Sn, its representations as a product of transpositions either all
use an even number of transpositions, or they all use an odd number of transpositions.

Theorem 2.31

By the lemma, if π is the product of an odd (even)number of transpositions, then inv π is odd
(even). But the number of inversions is well defined. So the parity of the permutation is also
well defined.

2.4.5 Fixed points of permutations

Each of n guests have brought gifts to a party, and these guests should be redis-
tributed among the guests. Let r(x) be the guest that gets the gift brought by x.
We want

r : {Guests} → {Guests}

to be surjectve (everyone should get a gift). We want r(x) 6= x for all x (nobody
should get back the same gift that they brought to the party). In how many ways
can we redistribute the gifts with these rules?

Example 2.32

61

Recall that a permutation is a bijection X → X. The set of permutations of X = {1, . . . , n}
is the symmetric group Sn. A fixed point of π ∈ Sn is an element x ∈ X such that π(x) = x.
A permutation that has no fixed points is called a derangement. How many derangements are
there in Sn?

Use the inclusion exclusion principle. For i ∈ X, let Ai = {π ∈ Sn : π(i) = i}. The number
of permutations with k prescribed fixed points is

|Ai1 ∩ · · · ∩ Aik | = (n− k)!,

because the n− k other elements must be permuted internally. For k = 1, . . . , n,

sk =
∑
|B|=k

∣∣∣∣∣⋂
i∈B

Ai

∣∣∣∣∣ =

(
n

k

)
(n− k)! =

n!

k!
.

The number of non-derangements is

|Ai ∪ · · · ∪ An| =
n∑

k=1

(−1)k−1sk

=
n∑

k=1

(−1)k−1
n!

k!

So the number of derangements is

n!− |Ai ∪ · · · ∪ An| =
n∑

k=0

(−1)k
n!

k!

= n!
n∑

k=0

(−1)k
1

k!

Fact from Calculus 1:
∞∑
k=0

tk
1

k!
= et.

So the number of derangements of n elements is

Dn = n!
n∑

k=0

(−1)k
1

k!
= n!e−1 −

∞∑
k=n+1

(−1)k
n!

k!
.

∣∣∣∣Dn −
n!

e

∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

(−1)k
n!

k!

∣∣∣∣∣ ≤ n!

(n+ 1)!
=

1

n+ 1
<

1

2

So Dn is the closest integer to n!/e.

62

Each of n guests have brought gifts to a party, and put them in a pile on a table.
Secret Santa comes and gives a (uniformly) random gift from the table to each guest.
The probability that no guest gets her own gift back is (very very close to)

1/e ≈ 0.368

regardless of the number of guests!

Example 2.33

63

Chapter 3

Graph theory

3.1 Basics on graphs

3.1.1 Motivation

“...networks may be used to model a huge array of phenomena across all scientific and social
disciplines. Examples include the World Wide Web, citation networks, social networks (e.g.,

Facebook), recommendation networks (e.g., Netflix), gene regulatory networks, neural
connectivity networks, oscillator networks, sports playoff networks, road and traffic networks,

chemical networks, economic networks, epidemiological networks, game theory, geospatial
networks, metabolic networks, protein networks and food webs, to name a few.”

(Grady & Polimeni, Discrete Calculus, Springer 2010.)

3.1.2 Graph

• A graph is a pair (V,E)

– V is a set of nodes (or vertices, or points)

– E ⊆ {{u, v} : u, v ∈ V } is the set of edges (or links, or arcs).

– Each edge is a “connection” between two nodes.

• A graph defined like this is undirected. One can also define directed graphs,
whose edges are ordered pairs (u, v) ∈ V 2.

• If u 6= v for each edge {u, v} ∈ E, then the graph is simple.

Definition 3.1

64

If V = {1, 2, 3, 4, 5} and E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}, then

Example 3.2

3.1.3 Complete graphs

A simple undirected graph with an edge {uv} for every u, v ∈ V , u 6= v called complete, or a
clique. If it has |V | = n nodes, it is denoted Kn. An edge in Kn is the same as a two element
subset of V . So Kn has (

n

2

)
=
n(n− 1)

2

edges.

3.1.4 Paths and cycles

A path of length n in G = (V,E) is a sequence (v0, v1, . . . , vn) of nodes vi ∈ V where {vi−1, vi}
is an edge for every i = 1, . . . , n. A cycle of length n in G is a path (v0, v1, . . . , vn) where
v0 = vn. The cycle is simple if n ≥ 3 and vj 6= vk for 1 ≤ j < j ≤ n.

Note: This terminology is not entirely standard. Always check the definitions in the source
before you cite any theorem about paths and cycles.

• (3, 5, 9, 11, 12, 9) is a (green) path.

• (1, 4, 7, 10, 8, 6, 2, 1) is a (red) simple cycle.

Example 3.3

65

3.1.5 Degree

The degree d(v) of a node v is the number of edges that have v as one of their endpoints.

• In the graph below,

d(1) = d(2) = d(4) = d(5) = 2,

d(3) = 4.

Example 3.4

3.1.6 Isomorphism

When are two graphs “the same”?

The four graphs above look different, still they are all “complete on 4 vertices”, and share the
“same structure”. The following definition describes “sameness” of graphs.

An isomorphism is a bijection between two sets, that preserve some “structure” on the set.
For example graph structure, or group structure.

The graphs G = (V,E) and G′ = (V ′, E ′) are isomorphic, if there is a bijection
(isomorphism) f : V → V ′ such that

{u, v} ∈ E ⇐⇒ {f(u), f(v)} ∈ E ′.

Definition 3.5

66

Isomorphic graphs are “the same, except for their representation”.

• The number of nodes is the same.

• The number of edges is the same.

• The degrees of the nodes are the same.

• The lengths of the cycles are the same.

• The sizes of the complete subgraphs are the same.

• ...

• All complete graphs on n nodes are isomorphic.

• The graphs below are isomorphic. An isomorphism is for example ϕ.

Example 3.6

3.2 Adjacency matrix

Let G = (V,E) be a graph, and V = {v1, . . . , vn}. The adjacency matrix of G is the n × n
matrix A with

A(j, k) =

{
1 if {vj, vk} ∈ E
0 otherwise

So the adjacency matrix has an entry 1 in the ith row and jth column if the vi and vj are
neighbours.

67

The adjacency matrix of the graph

is

A =

0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 1
0 0 1 1 0

Example 3.7

As in Matrix Algebra, the product of two n×n matrices A and B is the n×n matrix AB
with

AB(i, j) =
n∑

k=1

A(i, k)B(k, j).

In other words, AB(i, j) is the scalar product of the ith row of A and the jth column of B. The
product of adjacency matrices can be interpreted combinatorially.

Let A be the adjacency matrix of the graph G, with nodes v1, . . . , vn. Then Ak(i, j)
is the number of paths of length k from vi to vj in G, for k ∈ N.

Theorem 3.8

A =

0 1 1 0 0
1 0 1 0 0
1 1 0 1 1
0 0 1 0 1
0 0 1 1 0

 A
2

=

2 1 1 1 1
1 2 1 1 1
1 1 4 1 1
1 1 1 2 1
1 1 1 1 2

 A
3

=

2 3 5 2 2
3 2 5 2 2
5 5 4 5 5
2 2 5 2 3
2 2 5 3 2

The entry A3(2, 3) = 5 tells us that there are five paths of length 3 from node 2 to
node 3.

Example 3.9

Let A be the adjacency matrix of the graph G, with nodes v1, . . . , vn. Then Ak(i, j)
is the number of paths of length k from vi to vj in G, for k ∈ N.

Theorem 3.10

68

Proof
By induction:

Base case n = 0: A0 is the identity matrix A0 = In, with

In(i, j) =

{
1 if i = j
0 otherwise.

The only paths of length 0 in G go from a node vi to itself, so the number of such paths is
In(i, j).

Induction step: Assume Am(i, j) is the number of paths of length m from vi to vj in G. A
path of length m+1 in G from vi to vj is a path of length m from vi to some node v`, together
with an edge from v` to vj. So the number of such paths is

∑
`∈{1,...n}
{v`,vj}∈E

Am(i, `) =
∑

`∈{1,...n}
A(`,j)=1

Am(i, `) =
n∑

`=1

Am(i, `)A(`, j) = Am+1(i, j).

By the induction principle, Ak(i, j) is the number of paths of length k from vi to vj in G, for
all k ∈ N.

3.3 Spanning trees

3.3.1 Trees

A graph is connected if there is a path between any pair of nodes. A connected graph without
cycles is a tree. A node is a leaf if it only has one neighbour. A rooted tree is a tree with a
distinguished node v0 that is called the root.

If v0 is the root, then the level of the node v is the length of the path (v0, . . . , v). The root
is not called a leaf, even if it would only have one neighbour.

Family trees, database trees, decision trees. . .

Example 3.11

3.3.2 Spanning trees

A connected graph without cycles is a tree. In other words, a tree is a graph in which there
is a unique path between any two nodes. A spanning tree in the graph (V,E) is a tree (V,E ′)
that contains all the nodes and some of the edges E ′ ⊆ E of the graph.

Notice: the spanning tree is not unique.

A spanning tree exists in any connected graph: Delete one edge from some cycle at a time.
A spanning tree can also be constructed as follows: Start from one node, and add an edge at
a time between a node contained in the tree and the node not contained in the tree.

69

A tree with n nodes has exactly n− 1 edges.

Lemma 3.12

A tree with n nodes has at least two leaves.

Lemma 3.13

Proof
By induction.

3.3.3 Weighted graphs

A weighted graph is a graph G = (V,E) together with a weight function w : E → R.
To total weight of the graph is

w(G) =
∑
e∈E

w(E).

Definition 3.14

• Cities connected by data cables; w(e) is the price of the cable e.

• Cities connected with highways; w(e) is the length of the road e.

• Electricity networks; w(e) is the resistance of the conductor e.

Example 3.15

3.3.4 Minimal spanning tree

Many important optimization problems are of the form: find a subgraph with property X, of
as small total weight as possible.

Examples: minimal spanning tree, shortest path, Travelling Salesman (shortest cycle
through all nodes), etc.

A minimal spanning tree in the weighted graph (G,w) is a spanning tree T of G such
that w(T) ≤ w(U) for any spanning tree U of G.

Definition 3.16

70

A minimal spanning tree can be found using Prim’s algorithm (greedy algorithm).

Prim’s algorithm

• Choose an edge e1 of minimal weight.

• Choose a edge e2 that is incident to (shares an endpoint with) e1 , whose weight is
minimal among all edges incident to e1.

• Continue: in each step we choose an edge of minimal weight that is incident to some
previously chosen edge, such that the tree structure (no cycles) remains.

• The resulting spanning tree T , with edges {e1, . . . , en}, is minimal.

Prim’s algorithm on the graph below adds the red edges in the order

AB,BE,BC,CD,EF.

Example 3.17

The tree T obtained by Prim’s algorithm is minimal.

Theorem 3.18

Proof
Let the edge set of T be {e1, . . . , en}, where ei = {ui, vi}. Let U 6= T be another spanning tree.
We want to show that w(T) ≤ w(U). If e1 is an edge in U , let U1 = U . Otherwise, let e be
the first edge in the (unique) path from u1 to v1 in U . By the greedy algorithm, w(e1) ≤ w(e).
Replace e by the link e1 in U . We get another spanning tree U1 with

w(U1) = w(U)− w(e) + w(e1) ≤ w(U).

Follow the unique path from u2 to v2 in the tree U1. If this path only uses edges in T ,
then let U2 = U1. Otherwise, ley e be the first edge in the path. By the greedy algorithm,
w(e2) ≤ w(e). Replace e by the edge e2 in U1. We get a new spanning tree U2 , with

w(U2) = w(U1)− w(e) + w(e2) ≤ w(U).

Continuing the same way, we get a sequence U,U1, . . . , Un−1 = T of spanning trees such that

w(T) = w(Un) ≤ w(Un−1) ≤ · · · ≤ w(U1) ≤ w(U).

71

3.4 Graph colouring

3.4.1 Vertex colouring

• A (vertex) k-colouring of the graph G = (V,E) is a function

γ : V → {1, 2, . . . , k}

such that
if {u, v} ∈ E then γ(u) 6= γ(v).

• The chromatic number χ(G) of G is the smallest number k such that there is
a k-colouring of G.

Definition 3.19

We often think about, and refer to, {1, 2, . . . k} as “colours”.

• The complete graph Kn has χ(Kn) = n.

• χ(G) = 1⇔ E = ∅

• χ(G) = 2⇔ G is bipartite.

Example 3.20

If χ(G) > 2, there is no efficient algorithm known to compute χ(G) exactly. One can define
edge colourings analogously, but the results discussed here hold only for vertex colourings.

72

3.4.2 Conflict graphs

Six students Alice, Bob, Camilla, David, Erika, Fred are doing six different projects
in the following groups:

1. A,B,C,F

2. B,D,E

3. C,F

4. B,E

5. A,C,F

6. D,E,F

Each project requires one day to complete, which the participants have to spend
together. In how many days can all the projects be completed?
Solution: Construct the conflict graph, G = (V,E) whose nodes are the tasks, and
whose edges represent pairs of tasks that can not be completed on the same day.

If γ : V → {1, . . . , k} is a graph colouring, then we can complete each task v on day
number γ(v). So the smallest number of days needed is χ(G). We can colour the
graph with 4 colours as below, so χ(G) ≤ 4.

On the other hand, the nodes {1, 2, 3, 6} are pairwise connected, so need four different
colours. Thus, χ(G) = 4.

Example 3.21

3.4.3 Subgraphs

The graph G′ = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E.

73

The largest n for which Kn is (isomorphic to) a subgraph of G is called the clique number
ω(G).

If G′ is a subgraph of G, then χ(G′) ≤ χ(G).

Theorem 3.22

In particular, if G contains Kn as a subgraph, then χ(G) ≥ n. We have shown ω(G) ≤ χ(G)
for any graph G. Are there graphs for which ω(G) < χ(G)?

There are many graphs for which ω(G) < χ(G).

Let n > 3, and let Cn be the cycle of length n

ω(Cn) = 2 and χ(Cn) =

{
2 if n is even
3 if n is odd.

Example 3.23

3.4.4 Greedy algorithm

Finding the chromatic number of a graph is a difficult problem. There is no known algorithm
whose complexity grows polynomially with the number of vertices. Any colouring gives an
upper bound of χ(G). The following greedy algorithm often gives useful upper bounds. Re-
quires an ordering {v1, . . . , vn} of the vertices of V . The number of colours needed depends
on the ordering.

74

Let G = (V,E) be a graph and write V = {v1, . . . , vn}.

1. Initiation: Fix an order for the vertices: (v1, . . . , vn) and let γ(v1) = 1

2. Iterate until halts: If v1, . . . , vk−1 have already been coloured, let

γ(vk) = min{i ≥ 1 : γ(vj) 6= i for all j < k for which {vj, vk} ∈ E}.

Definition 3.24 (Greedy algorithm for graph colouring)

Let us colour the previous conflict graph with the greedy algorithm. The vertices are
already labelled 1, . . . 6. Visualize the “colours” 1, 2, 3, 4 as red, blue, green, yellow,
in that order.

Example 3.25

Colour the following graph with the greedy algorithm.

Depending on how you order the nodes, you need either two or three colours.

1 2 3 4

5 6

1 5 6 4

3 2

Example 3.26

Let G = (V,E) be a graph with χ(G) = k. Then there exists an ordering v1, v2, . . . , vn
of the vertices such that the greedy algorithm colours the graph with k colours, if
colouring the vertices in this order.

Theorem 3.27

75

So if we can perform the greedy algorithm for all possible orderings of V , we can compute the
chromatic number exactly. But there are n! possible ways to order V , so this is not an efficient
algorithm.

Proof
[Sketch of proof] Let γ : V → {1, 2, . . . , k} be some colouring of G with χ(G) = k colours.
Let Vi ⊆ V be the set of vertices with γ(v) = i. So there are no edges between two nodes
in Vi. Order the vertices such that all nodes in V1 come first, then all nodes in V2, and so
on. Let δ : V → {1, 2, . . . , k} be a greedy graph colouring with respect to this ordering. By
induction: δ(v) ≤ i for all v ∈ Vi. So the greedy algorithm colours V = V1 ∪ V2 ∪ · · · ∪ Vk with
k colours.

Let G be a graph, where all nodes have degree ≤ d. Then χ(G) ≤ d+ 1.

Theorem 3.28

Proof
Order the vertices arbitrarily, and colour the graph using the greedy algorithm. For each
vertex vk, the set {vj : j < k, {j, k} ∈ E} has size ≤ d, so at most d colours are used for those
vertices. So vk can be coloured with at least one of the colours 1, 2, . . . , d + 1. So the greedy
algorithm requires at most d+ 1 colours, so χ(G) ≤ d+ 1.

Finally, there is a rigidity theorem by Brooks on the structure of graphs which achieve the
value χ(G) = d+ 1:

Let G be a graph, where all nodes have degree ≤ d. If χ(G) = d+ 1, then G is either
a complete graph Kn or an odd cycle.

Theorem 3.29 (Brooks’ Theorem, 1941)

76

Chapter 4

Number theory

4.1 Divisibility

A number n ∈ Z is divisible by m ∈ Z if there exists k ∈ Z such that

mk = n.

Then we also say that m divides n, or in formulas m|n.

• 2|4.

• 6|12

• 6 6 |9

• 0 6 |n, n 6= 0.

• 1|n, n ∈ Z.

• n|0, n ∈ Z.

• n 6 |1, n 6= 1.

Example 4.1

If m|n1 and m|n2, then m|(a1n1 + a2n2) for all integers a1, a2.

Since 3|9 and 3|15, it follows that 3|4 · 15− 2 · 9 = 42.

Example 4.2

So the set of common divisors of n1 and n2 is the same as the set of common divisors of
n2 and n1 − an2. In particular, the greatest common divisor satisfies

gcd(n1, n2) = gcd(n1 − an2, n2) for all a.

77

gcd(162, 114) = gcd(48, 114) = gcd(48, 18)

= gcd(12, 18) = gcd(12, 6)

= gcd(6, 6) = 6.

Example 4.3

This illustrates the Euclidean algorithm for computing the greatest common divisor of two
numbers.

4.1.1 Euclidean division

Let a, b ∈ Z, with b > 0. Then there exist unique numbers q, r ∈ Z with 0 ≤ r < b
and

a = qb+ r.

Theorem 4.4 (Euclidean division)

Here

• q is called the quotient of a when divided by b.

• r is called the remainder of a when divided by b (or modulo b).

So a
b

= q + r
b
.

• When dividing a = 19 by b = 7, the quotient is q = 2 and the remainder is
r = 5.

• When dividing a = −19 by b = 7, the quotient is q = −3 and the remainder is
r = 2.

Example 4.5

The proof of Euclidean division is simple but tedious. Idea: r is the smallest non-negative
number in S{a− kb : k ∈ Z}. Show that this r is the only element in S with 0 ≤ r < b.

4.2 Diophantine equations

4.2.1 Euclidean algorithm

Euclidean algorithm is a method to compute the greatest common divisor :

78

Let a, b ∈ Z.

• Let r = a− qb be the remainder of a modulo b.

• Then gcd(a, b) = gcd(r, b) = gcd(b, r).

• gcd(b, 0) = b for all integers b 6= 0.

This gives an algorithm for computing the greatest common divisor

gcd(a, b)

of two numbers a ≥ b in O(log a) steps.

Definition 4.6 (Euclidean algorithm)

Compute gcd(162, 114).
Solution:

162 = 1 · 114 + 48

114 = 2 · 48 + 18

48 = 2 · 18 + 12

18 = 1 · 12 + 6

12 = 2 · 6 + 0

The greatest common divisor is the last non-zero remainder:

gcd(162, 114) = 6.

Example 4.7

4.2.2 Extended Euclidean algorithm

In each iteration of the Euclidean algorithm, the remainder is written as an integer combination
of previous remianders:

48 = 162− 1 · 114

18 = 114− 2 · 48

12 = 48− 2 · 18

6 = 18− 1 · 12

Example 4.8

79

This can be used to write the final remainder gcd(a, b) as an integer combination xa + yb,
where x, y ∈ Z.

48 = 162− 1 · 114

18 = 114− 2 · 48

12 = 48− 2 · 18

6 = 18− 1 · 12

• We use this to write 6 = gcd(114, 162) as an integer combination

114x+ 162y, where x, y ∈ Z.

6 = 18− 12
= 18− (48− 2 · 18) = 3 · 18− 48
= 3(114− 2 · 48)− 48 = 3 · 114− 7 · 48
= 3 · 114− 7(162− 114) = 10 · 114− 7 · 162.

Example 4.9

4.2.3 Linear Diophantine equations in two variables

An equation where the variables are integer valued is called a Diophantine equation. The
extended Euclidean algorithm gives a solution (xB, yB) to the Diophantine equation

gcd(a, b) = ax+ by.

The integers (xB, yB) are the Bézout coefficients of a and b:

gcd(a, b) = axB + byB.

If gcd(a, b)|c, then the pair

(x0, y0) =
c

gcd(a, b)
(xB, yB)

is an integer solution to the equation c = ax + by. If gcd(a, b) 6 |c, can there still be integer
solutions to the equation

c = ax+ by?

No! Because gcd(a, b)|ax+ by for all integers x, y.

80

The Diophantine equation
c = ax+ by

has integer solutions if and only if gcd(a, b)|c.
If gcd(a, b)|c, then one particular solution (x0, y0) is given by Euclid’s extended al-
gorithm. Let a′ = a

gcd(a,b)
and b′ = b

gcd(a,b)
. Then all integer solutions to the equation

are
(x0 + nb′, y0 − na′) , n ∈ Z.

Theorem 4.10

To prove this, we first must address the issue of unique factorization.

4.2.4 Dividing a product

if gcd(a, b) = 1 and a|bc, then a|c.

Lemma 4.11

If gcd(a, b) = 1, then 1 = xa+ yb holds for some x, y ∈ Z, so

c = xca+ ybc.

Since a divides
xca+ ybc

, it also divides c.

4.2.5 Unique factorization

So if p is a prime (only divisible by 1 and itself) such that p|bc, then either p|b or p|c. It follows
that every number can be written as a product of primes in a unique way.

210 = 7 · 30 = 10 · 21 = 6 · 35 = · · · = 2 · 3 · 5 · 7

can not be written as a product of primes in any other way.

We want to divide a large number N into prime factors First, we find a prime p that divides
N . Then we factorize the smaller number N/p.

81

10452 = 2 · 5226

= 22 · 2613

= 22 · 3 · 871

= 22 · 3 · 13 · 67.

We see that 67 is a prime, because it is not divisible by any prime ≤
√

67 < 9.

Example 4.12

4.2.6 Linear Diophantine equations in two variables

We are now ready to prove the following theorem.

The Diophantine equation
c = ax+ by

has integer solutions if and only if gcd(a, b)|c.
If gcd(a, b)|c, then one particular solution (x0, y0) is given by Euclid’s extended al-
gorithm. Let a′ = a

gcd(a,b)
and b′ = b

gcd(a,b)
. Then all integer solutions to the equation

are
(x0 + nb′, y0 − na′) , n ∈ Z.

Theorem 4.13

Proof

a′ =
a

gcd(a, b)
and b′ =

b

gcd(a, b)
.

a(x0 + nb′) + b(y0 − na′) = ax0 + by0 + (nab′ − nba′)
= c+ 0,

so (x0 + nb′, y0 − na′) is a solution. If (x, y) is an arbitrary solution, then

a(x− x0) + b(y − y0) = c− c = 0.

gcd(a′, b) = gcd(a, b′) = 1, so
a′|y − y0 and b′|x− x0.

So x = x0 +mb′ ja y = y0 − na′ holds for some n,m ∈ Z.

ax0 + by0 = c = ax+ by =⇒ m = n.

82

Solve the Diophantine equation

514x+ 387y = 2.

Solution: First find gcd(514, 387) by the Euclidean algorithm:

514 = 387 + 127

387 = 3 · 127 + 6

127 = 21 · 6 + 1

6 = 6 · 1 + 0.

This shows gcd(514, 387) = 1|2, so the equation has solutions.
Now solve

514x+ 387y = gcd(514, 387) = 1

by the extended Euclidean algorithm:

1 = 127− 21 · 6
= 127− 21 · (387− 3 · 127) = 64 · 127− 21 · 387
= 64 · (514− 387)− 21 · 387 = 64 · 514− 85 · 387.

So
2 = 2(64 · 514− 85 · 387) = 128 · 514− 170 · 387.

Answer: The Diophantine equation

514x+ 387y = 2

has infinitely many solutions,

(x, y) = (128,−170) + n(387,−514).

Example 4.14

Solve the Diophantine equation

112x+ 49y = 2.

Solution: First find gcd(112, 49) by the Euclidean algorithm:

112 = 2 · 49 + 14

49 = 3 · 14 + 7

14 = 2 · 7 + 0.

This shows gcd(112, 49) = 7 6 |2, so the equation has no integer solutions.

Example 4.15

83

4.3 Modular arithmetic

4.3.1 Congruence classes

Let n be a positive integer. If n|(a− b), then we say a ≡ b mod n.
In words: a and b are congruent modulo n.

Definition 4.16

Congruence modulo n is an equivalence relation on Z:

• Reflexive: ∀a ∈ Z : n|0 = a− a.

• Symmetric: ∀a, b ∈ Z : If n|a− b then n| − (a− b) = b− a.

• Transitive:

∀a, b, c ∈ Z : If n|a− b and n|b− c, then n|(a− b) + (b− c) = a− c.

Notice that a ≡ b mod n if and only if a and b have the same remainder when divided by
n.

Example: 4 ≡ 16 mod 12; The clock hands are in the same position at 4:00 and 16:00.

The congruence class of a ∈ Z modulo n is

[a]n = {b ∈ Z : a ≡ b mod n} ⊆ Z.

Definition 4.17

[4]12 = {. . . ,−20,−8, 4, 16, 28, . . . }

Example 4.18

The elements of a congruence class are representatives of that class. Each congruence class
has precisely one representative in{0, 1, . . . , n− 1}. Note: [n]n = [0]n.

The smallest non-negative representative of [27]11 is 5 = 27− 2 · 11.

Example 4.19

84

The set of congruence classes modulo n ∈ Z modulo n is denoted Zn (or Z/nZ).

Zn = {[0]n, [1]n, · · · , [n− 1]n}.

Definition 4.20

4.3.2 Addition and multiplication of congruence classes

For n ∈ N \ {0} and a, b ∈ Z, define:

[a]n + [b]n = [a+ b]n

[a]n[b]n = [ab]n

Note: If a = pn+ r, b = qn+ s, then

[a+ b]n = [(p+ q)n+ r + s]n = [r + s]n

[ab]n = [pnqn+ pns+ qnr + rs]n = [rs]n,

so the sum and product really only depend on the congruence classes of a and b modulo n.
Example: [4]3 + [5]3 = [9]3 = [3]3 = [1]3 + [2]3.

We get addition and multiplication tables as follows in

Z3 = {[0]3, [1]3, [2]3} :

Example 4.21

The following laws hold for a, b, c ∈ Zn:

• a+ b = b+ a and ab = ba (commutativity)

• a+ (b+ c) = (a+ b) + c and a(bc) = (ab)c (associativity)

• a+ 0 = a and a · 1 = a (neutral elements)

• For each a there exists −a s.t. a+ (−a) = 0. (additive inverse)

• a(b+ c) = ab+ ac (distributivity)

Theorem 4.22

85

Note: a, b, 0, 1 are congruence classes; not integers. These are the axioms of a commutative
ring with a unit. In some sources, this is called a commutative ring, or even just a ring. The
set Zn is called the ring of integers modulo n.

4.3.3 Differences between Z and Zn

The table did not talk about multiplicative inverses. b is a multiplicative inverse of a if
ab = ba = 1. In Z, only ±1 have multiplicative inverses. In Zn, other elements can have
inverses too.

Example: [2]5 · [3]5 = [1]5, so [2]5 and [3]5 are inverses in Z5.

A commutative ring with a unit, where all non-zero elements have an inverse, is called a
field.

Example: R and Q are fields.

Let p be a prime. Then Zp is a field.

Theorem 4.23

Proof
Let 0 < a < p, so [a]p 6= [0]p. Then gcd(p, a) = 1. By Bezout’s identity, xp + ya = 1 has an
integer solution. Then ya ≡ 1 mod p, so [y]p is an inverse of [a]p.

In Zn it is not true that ab = ac⇒ b = c. In fact, this is true if and only if a is invertible.
[x] is invertible in Zn if and only if gcd(x, n) = 1.

In Z6, [2] · [4] = [2] · [1], but [4] 6= [1].

Example 4.24

4.3.4 Congruence equations

When does b ≡ ax mod n have a solution? If gcd(a, n) 6= 1, then we must have gcd(a, n)|b.
In such case, divide the equation by gcd(a, n).

Assume gcd(a, n) = 1. Then ax ≡ b mod n has a unique (modulo n solution).

Theorem 4.25

Proof
[a] has an inverse [a]−1 in Zn. Thus [a][x] = [b]⇒ [x] = [a]−1[a][x] = [a]−1[b].

86

The invertible elements in Z10 are [1], [3], [7], [9]. Their inverses are

[1]−1 = [1], [3]−1 = [7], [7]−1 = [3], [9]−1 = [9]

respectively. Notice: [9] = −[1].

Example 4.26

The invertible elements in Z12 are [1], [5], [7], [11]. They are all their own inverses.
We can solve the congruence

7x ≡ 9 mod 12

by multiplying with the inverse of 7 modulo 12.

x ≡ 7 · 7x ≡ 7 · 9 ≡ 63 ≡ 3 mod 12.

Example 4.27

4.4 Computing exponents modulo n

What is the remainder of 313 when divided by 100? Using division algorithm: 313 = 100q+ r,
so [r]100 = [313]100. However, we save time by not computing 13 multiplications, but doing
repeated squaring in Z100:

[3]2 = [9]

[3]4 = [9]2 = [81]

[3]8 = [81]2 = [6561] = [61]

[3]13 = [3]8 · [3]4 · [3]1 = [61][81][3] = [14823] = [23].

Thus the remainder is 23. However, if the exponent is very large, then even repeated squaring
is inconvenient.

• Can we compute [3]10013 ?

• Yes, because we are lucky! [3]3 = [27] = [1].

[3]100 = ([3]3)33 · [3] = [1]33 · [3] = [3]

• So the remainder is 3.

Example 4.28

It would help if we had a systematic way to find a number k such that

ak ≡ 1 mod n.

87

(if gcd(a, n) = 1). For thus purpose we have the useful Fermat’s little theorem:

Let p be a prime and a 6≡ 0 mod p. Then ap−1 ≡ 1 mod p.

Theorem 4.29 (Fermat’s little theorem)

Proof
Each [a][x] = [b] has a unique solution if [b] 6= [0]. So

{[1], [2], . . . [p− 1]} = {[a][1], [a][2], . . . [a][p− 1]} .

Thus

[(p− 1)!] =

p−1∏
i=1

[i] =

p−1∏
i=1

[a][i] = [a]p−1[(p− 1)!].

But p 6 |(p− 1)!, so (p− 1)! is invertible modulo p. It follows that [1]p = [a]p−1p .

We check Fermat’s little theorem in Z7:

• 16 = 1

• 26 = (23)2 = 12 = 1

• 36 = (33)2 = (−1)2 = 1

• 46 = (−3)6 = 36 = 1

• 56 = (−2)6 = 26 = 1

• 66 = (−1)6 = 16 = 1

Example 4.30

4.4.1 Euler’s ϕ function and Euler’s theorem

How do we compute powers modulo a non-prime n? The proof of Fermat’s little theorem
suggests a generalization. Let us first define:

We say that two integers a, b are called relatively prime if gcd(a, b) = 1. Let n ∈ N.
The Euler’s ϕ function ϕ(n) is the number of elements

0 ≤ i < n such that gcd(n, i) = 1.

I.e. it counts the number of relatively prime non-negative integers less than n.

Definition 4.31 (Euler’s ϕ function)

88

Note: ϕ(n) = n − 1 if and only if n is prime. Equivalently, ϕ(n) is the number of invertible
elements in Zn.

If n = pk is a power of a prime, then

ϕ(n) = |{0 ≤ i < n : gcd(n, i) = 1}|
= pk − {pj : 0 ≤ j < pk−1}|
= (p− 1)pk−1.

If gcd(a, b) = 1, then ϕ(ab) = ϕ(a)ϕ(b). (Proof omitted.) Thus,

ϕ(pk1
1 · · · pkrr) = (p1 − 1) · · · (pr − r) · pk1−1

1 · · · pkr−1r

How many integers in [0, 10200] are relatively prime to 10200?
Solution: First factorize

10200 = 2 · 5100 = 22 · 2550 = 23 · 1275
= 23 · 3 · 425 = 23 · 3 · 5 · 85 = 23 · 3 · 52 · 17.

Thus we get

ϕ(10200) = (2− 1)22 · (3− 1) · (5− 1)5 · (17− 1)

= 22+1+2+4 · 5
= 528 · 5 = 2640.

Thus the answer is 2640.

Example 4.32

Now, Euler’s ϕ function provides a powerful tool to compute powers modulo n due to
Euler’s theorem:

Let n ∈ N, and gcd(a, n) = 1. Then aϕ(n) ≡ 1 mod n.

Theorem 4.33 (Euler’s theorem)

The proof closely follows that of Fermat’s little theorem. It follows that, if b = qϕ(n) + r,
then ab ≡ ar mod n. Note that in the above example, by Euler’s theorem,

a2640 ≡ 1 mod 10200

for all a with gcd(10200, a) = 1. In general, if m ≡ 1 mod ϕ(n) and gcd(a, n) = 1, then
am ≡ a mod n. Thus, if we can factorise n, this provides a more efficient tool to compute
powers modulo n than before.

89

4.5 Application to RSA cryptography

In 1978, Ron Rivest, Adi Shamir and Leonard Adleman demonstrated the RSA cryptography
scheme. It allows anybody with a public key to send messages to Alice. Alice has a private
key, with which she can read the secret message. RSA cryptograpy is considered secure in
practice. Breaking the crypto (i.e. reading the message without the private key) is equally
difficult as computing ϕ(n) for a large number n.

Anybody with a public key (k, n), can transmit a message s ∈ Zn to Alice, by sending the
message sk ∈ Zn. This is easy to compute. Alice can compute

s = sk` = (sk)`,

if k` ≡ 1 mod ϕ(n). Here ` is the inverse of k modulo ϕ(n), and Alice knows ϕ(n). Alice
generates two large primes p and q secretly. She computes n = pq (public knowledge) and
ϕ(n) = (p− 1)(q− 1). Alice chooses a number k (public) with gcd(k, ϕ(n)) = 1, and in secret
computes its inverse d in Zϕ(n). Public key: (k, n). Alice trusts that the number d remains
secret. Computing d from the public key would require first computing ϕ(n), i.e. factorizing
the large number n.

Mathematical essence:
(sk)d = skd = srϕ(n)+1 = s.

This is a consequence of Euler’s theorem.

• Computational essence 1: It is easy to compute sk from s.

• Computational essence 2: It is easy to compute s = (sk)d from sk if you know d.

• Computational essence 3: It is difficult to compute s from sk if you do not know d.

A user Bob who wants to send a message to Alice, first writes that message using the
“alphabet” [0], [1], [2], . . . , [n−1]. In our example, Bob uses the translation A = 1, B = 2, C =
3, If n is really large, he can translate more efficiently by encoding more than one letter per
symbol, like AA = 1, AB = 2, To avoid “frequency attacks”, Bob might encode common
strings into a single symbol. Encoding: If Bob wants to communicate the symbol s ∈ Zn to
Alice, he instead sends the symbol sk ∈ Zn. Encoding: If Bob wants to communicate the
symbol s ∈ Zn to Alice, he instead sends the symbol sk ∈ Zn. Decoding: If Alice receives the
symbol t ∈ Zn, she knows that the sent symbol was

td = (sk)d = skd = srϕ(n)+1 = s.

Cracking the crypto: If we can factorize n, then we can compute ϕ(n), and then compute d
from k by solving the diophantine equation

1 = kd+ ϕ(n)y.

90

.

Public key: (5, 2021). (We pretend that it were difficult to factor 2021 = 43 · 47).
Secret message: "The cats’ names are

1698 1500 1954 1450 1104 1671 0757 0001 1954 0440

and

0432 1104 1450 1681 0249 0440."

Example 4.34 (Spying example)

So we have seen that computing ϕ(n) for a large number n is equivalent to prime factorizing
n. However, no efficient algorithm is known for this on a classical computer. Peter
Shor showed in 1993, that primes can in principle be efficiently factorized on a quantum
computer. If quantum computers actually start working on a big scale, RSA will be outdated.
To date, Shor’s algorithm has managed to factorize 21 = 7× 3.

91

	Sets and formal logic
	Sets
	Definition
	Equality and subsets
	Set operations
	Cartesian product
	Enumeration
	Indexing a family of sets and set operations
	Russel's paradox

	Formal logic
	Statements, closed- and open sentences
	Quantifiers
	Connectives and truth tables
	Tautologies
	Treasures example
	Negations of quantifiers
	Computing with logical symbols
	Sets and predicate logic

	Proof techniques
	Proof and overview of the proof techniques
	Direct proof
	Contrapositive proof
	Proof by contradiction
	Proof by cases
	Constructive existence proof
	Nonconstructive existence proof
	Induction proofs

	Relations
	Definition and different types of relations
	Equivalence relations
	Partial orders
	Hasse diagram
	Linear extensions

	Functions
	Definition and graphs
	Composition of functions
	Injection, surjection, bijection
	Inverse functions

	Cardinalities
	Infinite cardinalities

	Combinatorics
	Enumerative combinatorics
	Principles of counting
	Counting linear orders

	Binomial coefficients
	Counting combinations
	Counting combinations with repetition
	Binomial theorem

	Inclusion exclusion principle
	Permutations and group theory
	Permutation group
	Cycle notation
	Conjugates
	Even and odd permutations
	Fixed points of permutations

	Graph theory
	Basics on graphs
	Motivation
	Graph
	Complete graphs
	Paths and cycles
	Degree
	Isomorphism

	Adjacency matrix
	Spanning trees
	Trees
	Spanning trees
	Weighted graphs
	Minimal spanning tree

	Graph colouring
	Vertex colouring
	Conflict graphs
	Subgraphs
	Greedy algorithm

	Number theory
	Divisibility
	Euclidean division

	Diophantine equations
	Euclidean algorithm
	Extended Euclidean algorithm
	Linear Diophantine equations in two variables
	Dividing a product
	Unique factorization
	Linear Diophantine equations in two variables

	Modular arithmetic
	Congruence classes
	Addition and multiplication of congruence classes
	Differences between Z and Zn
	Congruence equations

	Computing exponents modulo n
	Euler's function and Euler's theorem

	Application to RSA cryptography

