Microeconomics 3: Game Theory Spring 2021

Problem Set 4

- Two players compete for a good in a first price auction (ties are broken uniformly). Players have common value ν for the good, Pr(ν = 0) = Pr(ν = 1) = 1/2. Suppose player 1 knows the value of the good and player 2 does not. In this question we'll construct an equilibrium of this game.
 - (a) Any equilibrium of this game will be in mixed strategies. Describe each player's payoffs, fixing the other player's bid distribution.
 - (b) Show that if v = 0, then player 1 bids 0.
 - (c) Let \mathcal{B}_2 be the support of player 2's equilibrium bidding strategy. Show that $\inf \mathcal{B}_2 = 0$ (i.e. the lowest bid 2 makes is 0).
 - (d) Observe that if $b \in \mathcal{B}_2$, player 2 must be indifferent between bidding b and 0. Using this, solve for player 1's equilibrium bid distribution when v = 1.
 - (e) Finally, player 1 must be indifferent between all bids in the support of the distribution you found in (d). Solve for player 2's bid distribution.
- 2. There are two firms, each with marginal cost 0, that compete by choosing quantities ala cournot. Inverse Demand is given by $P = \max(0, \theta q_1 q_2)$ where θ is uncertain. With probability α , $\theta = 3$ and with complementary probability $\theta = 4$. Suppose firm 1 knows the value of θ and firm 2 does not.
 - (a) Suppose firms choose quantities simultaneously. Characterize the Bayes Nash equilibrium of this game.
 - (b) Now suppose firm 1 moves first and player 2 observes firm 1's choice of quantity. Does there exist a PBE where firm 1's chooses

a different quantity if $\theta = 3$ and if $\theta = 4$? Does there exist a PBE where firm 1 chooses the same quantity in both states?

- 3. In the game of Figure 1, Nature chooses L with probability $\frac{3}{4}$.
 - (a) What are the PBE of this game?
 - (b) Show that in any sequential equilibrium, player 2's beliefs at their information set must put probability 3/4 on the left node.
 - (c) What are the Sequential Equilibria?

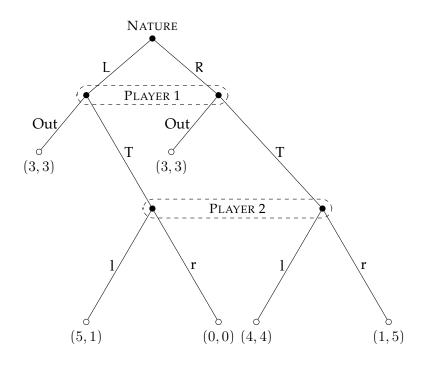


Figure 1: Problem 4

4. Fix a social welfare function $f : \mathbb{R}^n \to \mathbb{R}$ that satisfies the following property: For any $x, y \in X$ and vectors of preferences R, R', such that $xR_iy \Rightarrow xR'_iy$ then

$$xf(R)y \Rightarrow xf(R')y$$

 $xf_p(R)y \Rightarrow xf_p(R')y$

where f_p denotes the strict part of the relation.

Consider the induced social choice function $\xi(R) = \{x : xf(R)y \forall y \in X\}$, and assume $\xi(R)$ is a singleton for all $R \in \mathbb{R}^n$. Show that $\xi(R)$ is strategyproof.