Game Theory Final Exam

March 8th, 2021
Daniel Hauser
The exam is 4 hours and has a total of 120 points. Please answer as many questions as you can. Answer shortly but justify your answers and explain accurately what you are doing. If you are confused about a question or statement, please explain clearly what you assume when answering. Point totals reflect the difficulty of the problem and give a rough estimate for how long the question should take.

1. This question concerns a modification of the bargaining model we saw in class. Suppose two players are bargaining over a dollar. Let the ordered pair (x_{1}, x_{2}) denote a possible split of the dollar, where player 1 receives x_{1} and player 2 receives x_{2}. Player 1's utility from a division $\left(x_{1}, x_{2}\right)$ is x_{1}. But now, when considering whether to accept or reject an offer, player 2 also cares about how much better they are doing than player 1. Specifically, player 2's utility from accepting an offer is now $(1-K) x_{2}+K\left(x_{2}-x_{1}\right), K \in(0,1)$. When they are proposing, their utility is x_{2}. These preferences are common knowledge, and players have common discount factor $\delta \in(0,1)$.

The bargaining procedure proceeds as in the alternating offer bargaining model from class. In each period $t \in\{1,2, \ldots T\}$ a player makes an offer $(x, 1-x)$, where $x \in[0,1]$, the other player chooses to accept or reject. Player 1 makes offers in odd periods, player 2 makes offers in even periods. The game ends either after period T or whenever an offer is accepted. If no one accepts an offer, both players get 0 . Figure 1 illustrates this game in the $T=2$ case.

Figure 1: Game for 1b. Payoffs are defined analogously in (a) and (c)
(a) (5 Points) Suppose $T=1$. As a function of K, what is the unique subgame perfect nash equilibrium.
(b) (10 Points) Suppose $T=2$. What is the unique subgame perfect nash equilibrium of this game, as a function of K and δ ?
(c) (20 Points) Now suppose $T=\infty$, the game is repeated until a player accepts. Describe a stationary, subgame perfect equilibrium of this game.
(d) (5 Points) Let $V_{1}(K, \delta)$ be player 1's payoff in the equilibrium you found in (c) for a given K, δ. How do $\lim _{K \rightarrow 0} \lim _{\delta \rightarrow 1} V_{1}(K, \delta)$ and $\lim _{\delta \rightarrow 1} \lim _{K \rightarrow 0} V_{1}(K, \delta)$ compare? What does this tell you about the role of K in the bargaining process.
2. The following question concern the two extensive forms at the end of the exam.
(a) (5 Points) How many strategies does player1 have in each of the extensive forms? How many subgames are there?
(b) (10 Points) What is the reduced normal form for extensive form 1? (In terms of showing work, a clear reduced normal form is sufficient for full credit on this question.)
(Note that this is also the reduced normal form for extensive form 2.)
(c) (15 Points) What are the pure strategy Nash equilibria in the normal form you found in (b)? Do any seem more plausible than the others?
(d) (15 Points) Are there any subgame perfect equilibrium in extensive form 1 where player 2 plays B_{R} as part of their equilibrium strategy and player 1 gets a payoff of 10 ? If yes, provide an example, if no, prove it. What about in extensive form 2 ?
(e) (15 Points) How would your answer to (d) change if we replaced subgame perfection with almost Perfect Bayesian equilibrium?
(f) (20 Points) Construct a sequential equilibrium in each extensive form where C is played.
(If you have extra time, does anything seem odd about the equilibrium you've constructed in the first extensive form? The second?)

Figure 2: Extensive Form 1

Figure 3: Extensive Form 2

