CS-E5745
 Mathematical Methods for Network Science

Mikko Kivelä
Department of Computer Science
Aalto University, School of Science
mikko.kivela@aalto.fi
December 22, 2021

Generating functions and their use in networks

- Learning goals this week:
- Learn the concept of probability generating functions (PGF's) and their basic properties
- Recognise what kind of problems can be solved with PGF's and be able to solve them
- Learn how to solve a Galton-Watson process using PGF's and how to apply that to networks
- We will be following the Section 13 in Newman: Networks, An Introduction

Components and excess degree

- Problem: Find the component size distribution of a (sparse) network produced by a configuration model
- Assumptions: network is infinitely large, there are almost no loops
- Equivalent problem: start a BFS process from random node in a tree
- Branching factor is given by the excess degree distribution $q(k)$
- Reminder: We already did this in the basic course (8 next slides)

Percolation theory

- Change something in the network (add/remove links, increase transmission probability, etc) and the component structure changes

Disconnected phase

- Largest component relatively small
- Other components small

Phase transition

- The largest component becomes the "giant component"
- Other components from very large to small

$\mathrm{f}=0.5$

Connected phase

- The giant component size same scale as network size
- Other components small

$$
f=0.55
$$

Component size distributions

(square grid with $N=10^{4 *} 10^{4}$ nodes)

Disconnected

Phase transition

Connected

- The size distribution of other components at the phase transition point follows a power law!
- "Critical point" in the theory of critical phenomena

How to estimate the transition point?

- Idea: start from a random node, find how many nodes you can reach
- Before transition: you can always reach only a small number of nodes
- After transition: possibility of reaching very large number of nodes

Branching processes

- Sparse large random networks have (almost) no loops
- Breadth first search is a "branching process":
- A node has q"children"
- At step t, n_{t} nodes
- $n_{t+1}=\langle q\rangle n_{t}$
- Exponential growth

$$
(\langle q\rangle>1) \text { or decay }(\langle q\rangle<1)
$$

Excess degree

- The excess degree q: follow a link to a node, how many links does it have, not including the link that was followed?
- Remember the friendship paradox: following a link leads to high degree nodes: $\left\langle k_{n n}\right\rangle=\left\langle k^{2}\right\rangle /\langle k\rangle$
- Expected excess degree: $\langle q\rangle=\left\langle k^{2}\right\rangle /\langle k\rangle-1$

Components and excess degree

- Problem: start a BFS process from random node in a tree
- Branching factor is given by the excess degree distribution
- There are k_{1} neighbors where k_{1} is drawn from $p(k)$. If $k_{1}>0$:
- There are $k_{2}=\sum_{i=1}^{k_{1}} k_{1, i}$ second neighbors where each $k_{1, i}$ (number of second neighbors the first neighbor i has) is drawn from $q(k)$. If $k_{2}>0$:
- There are $k_{3}=\sum_{i=1}^{k_{2}} k_{2, i}$ third neighbors where each $k_{2, i}$ is drawn from $q(k)$. If $k_{3}>0$:
- What is the distribution of k_{2}, k_{3}, \ldots ?
- This is a variation of the Galton-Watson process
- We can write the above equations using random variables K_{d}, and solve them using probability generating functions

Probability generating functions

- Let X be a random variable with non-negative integers as outcomes, and probability distribution $P(X=k)=p(k)$:

$$
\begin{equation*}
g(z)=p(0)+p(1) z+p(2) z^{2} \cdots=\sum_{k=0}^{\infty} p(k) z^{k} \tag{1}
\end{equation*}
$$

- Example: $p(1)=0.5$ and $p(2)=0.5$, then PGF is $g(z)=0.5 z+0.5 z^{2}$
- Example: Poisson distribution $p(k)=e^{-c \frac{c^{k}}{k!}}$ gives

$$
g(z)=\sum_{k=0}^{\infty} e^{c} \frac{c^{k}}{k!} z^{k}=e^{c(z-1)}
$$

Probability generating function properties (1/4)

- $p(k)$ can be extracted through derivation

$$
\begin{equation*}
p(k)=\left[\frac{1}{k!} \frac{d^{k}}{d z^{k}} g(z)\right]_{z=0} \tag{2}
\end{equation*}
$$

- Example: for $g(z)=0.5 z+0.5 z^{2}$, we get

$$
p(2)=\left[\frac{1}{2!} \frac{d^{2}}{d z^{2}} g(z)\right]_{z=0}=\left[\frac{1}{2!} 1\right]_{z=0}=0.5
$$

- Example: for $g(z)=e^{c(z-1)}$, we get

$$
p(2)=\left[\frac{1}{2!} \frac{d^{2}}{d z^{2}} g(z)\right]_{z=0}=\left[\frac{1}{2} c^{2} e^{c(z-1)}\right]_{z=0}=\frac{1}{2} c^{2} e^{-c}
$$

Probability generating function properties (2/4)

- Moments can also be calculated through derivation

$$
\begin{equation*}
\left\langle X^{m}\right\rangle=[\overbrace{z \frac{d}{d z} \cdots z \frac{d}{d z}}^{m} g(z)]_{z=1}=\left[\left(z \frac{d}{d z}\right)^{m} g(z)\right]_{z=1} \tag{3}
\end{equation*}
$$

- Works also for the "zeroth" moment: $g(1)=1$

Probability generating function properties (3/4)

- Sums of independent random variables X_{1} and X_{2} become products of GFs

$$
\begin{equation*}
g_{X_{1}+X_{2}}(z)=g_{X_{1}}(z) * g_{X_{2}}(z) \tag{4}
\end{equation*}
$$

- If the X_{i} i.i.d. then the sum $S=\sum_{i=1}^{N} X_{i}$ becomes a power of the GF

$$
\begin{equation*}
g_{S}(z)=\left[g_{X_{i}}(z)\right]^{N} \tag{5}
\end{equation*}
$$

- Constant c is just a random variable that always has the same result

$$
\begin{equation*}
g_{X_{1}+c}(z)=g_{X_{1}}(z) * z^{c} \tag{6}
\end{equation*}
$$

Probability generating function properties (4/4)

- If N is also a random variable in $S=\sum_{i=1}^{N} X_{i}$, then the sum becomes a combination

$$
\begin{equation*}
g_{s}(z)=g_{N}\left(g_{X_{i}}(z)\right) \tag{7}
\end{equation*}
$$

- This is the case in the Galton-Watson process!

Generating functions for degrees

- We use the notation from Newman:
- For the degree distribution $p(k)$:

$$
g_{0}(z)=\sum_{k=0}^{\infty} p(k) z^{k}
$$

- For the excess degree distribution $q(k)$:

$$
g_{1}(z)=\sum_{k=0}^{\infty} q(k) z^{k}
$$

- These two are related: (Exercise 4a)

$$
\begin{equation*}
g_{1}(z)=\frac{1}{\langle k\rangle} \frac{d}{d z} g_{0}(z) \tag{8}
\end{equation*}
$$

Solving the Galton-Watson process for networks

- The number of first neighbors of a random node k_{1} is drawn from the degree distribution $p(k)$

$$
g_{K_{1}}(z)=g_{0}(z)
$$

- Each second neighbor i adds $k_{1, i}$ new nodes, and these numbers come from the excess degree distribution $q(k)$

$$
g_{K_{1, i}}(z)=g_{1}(z)
$$

Solving the Galton-Watson process for networks

- The number of second neighbors K_{2} is the sum of excess degrees $K_{1, i}$

$$
K_{2}=\sum_{i=1}^{K_{1}} K_{1, i}
$$

- Using the combination property (7)

$$
g_{K_{2}}(z)=g_{0}\left(g_{1}(z)\right)
$$

Solving the Galton-Watson process for networks

- The number of third neighbors K_{3} is the sum of excess degrees $K_{2, i}$

$$
K_{3}=\sum_{i=1}^{K_{2}} K_{2, i}
$$

- Using the combination property and $g_{K_{2}}(z)=g_{0}\left(g_{1}(z)\right)$

$$
g_{K_{3}}(z)=g_{K_{2}}\left(g_{1}(z)\right)=g_{0}\left(g_{1}\left(g_{1}(z)\right)\right)
$$

Solving the Galton-Watson process for networks

- We get a recursive equations

$$
\begin{aligned}
g_{K_{1}}(z) & =g_{0}(z) \\
g_{K_{d}}(z) & =g_{K_{d-1}}\left(g_{1}(z)\right)
\end{aligned}
$$

- Writing closed form solutions for $p\left(k_{d}\right)$ often not possible
- The expected value can be solved in closed form for any d :

$$
\begin{equation*}
\left\langle K_{d}\right\rangle=\langle q\rangle^{d-1}\langle k\rangle=\left(\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}\right)^{d-1}\langle k\rangle \tag{9}
\end{equation*}
$$

- Diverges if $\langle q\rangle>1$

Solving the Galton-Watson process for networks

- If for some d we get $K_{d}=0$ we say that there is an extinction
- $\langle q\rangle>1$: Probability of extinction smaller than 1 (supercritical)
- $\langle q\rangle<1$: Probability of extinction is 1 (subcritical)
- When $\langle q\rangle=1$ the system is at critical state
- The extinction d time, total number of reachable nodes $\sum_{d} K_{d}$ etc. are distributed as power-laws $p(d) \propto d^{\alpha}$
- The exponents of these power-laws are the critical exponents

Example: Erdős-Rényi networks

- The "percolation threshold" for $G(N, p)$ was solved numerically in the Exercise 2.1d in CS-E5740:

Number of nodes $=10000$

Example: Erdős-Rényi networks

- $G(N, p)$ has Poisson degree distribution when $N \rightarrow \infty$ while $\langle k\rangle$ is constant
- $p(k)=\frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle}$.
- Second moment $\left\langle k^{2}\right\rangle=\langle k\rangle^{2}+\langle k\rangle$
- Average excess degree

$$
\langle q\rangle=\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}=\langle k\rangle
$$

- $\left\langle K_{d}\right\rangle=\langle k\rangle^{d}$
- The giant component exists iff $\langle k\rangle>1$

Example: Erdős-Rényi networks

- Result can be compared to simulations (ER network with $N=10^{8}$ and $\langle k\rangle=2$)

Example: Erdős-Rényi networks

- We can also try to solve the distributions of each K_{d} for ER networks:
- $g_{0}(z)=e^{\langle k\rangle(z-1)}$ (Poisson degree distribution)
- $g_{1}(z)=\frac{1}{\langle k\rangle} \frac{d}{d z} g_{0}(z)=e^{\langle k\rangle(z-1)}$ (Also Poisson!)
- $g_{K_{2}}=g_{0}\left(g_{1}(z)\right)=e^{\langle k\rangle\left(e^{\langle K\rangle(z-1)}-1\right)}$
- $g_{K_{3}}=g_{0}\left(g_{1}(z)\right)=e^{\left.\langle k\rangle\left(e^{(k\rangle\left(e^{(k)}(z-1)\right.}-1\right)-1\right)}$
- We cannot write a closed form solution to the distribution of K_{d} for general d
- Even K_{2} difficult
- For given d and k_{d} we can write $P\left(K_{d}=k_{d}\right)$
- Results are not pretty

Example: Erdős-Rényi networks

- Examples for probabilities of K_{d} :

$$
\begin{aligned}
& P\left(K_{3}=0\right)= e^{-2+\frac{2}{e^{-\frac{2}{e^{2}}+2}}} \\
& P\left(K_{3}=1\right)= 8 \\
& e^{2} e^{-\frac{2}{e^{2}}+2} e^{-\frac{2}{e^{-\frac{2}{e^{2}}+2}+2}} \\
& P\left(K_{3}=2\right)= \frac{1}{e^{-\frac{2}{e^{-\frac{2}{e^{2}+2}}+2}}\left(\frac{32}{e^{4} e^{-\frac{4}{e^{2}+4}}}+\frac{16}{e^{4} e^{-\frac{2}{e^{2}+2}}}+\frac{8}{e^{2} e^{-\frac{2}{e^{2}}+2}}\right)} \\
& P\left(K_{4}=0\right)=e^{-2+\frac{2}{-\frac{2}{e^{-\frac{2}{e^{2}}+2}+2}}}
\end{aligned}
$$

Example: Erdős-Rényi networks

- Result can be compared to simulations (ER network with $N=10^{6}$ and $\langle k\rangle=2$)

Solving for component size distributions

- Solving the Galton-Watson process gives us a criterion for the percolation threshold
- The expected number of nodes $\left\langle K_{d}\right\rangle$ in a BFS can be solved for configuration model
- Accuracy of the approximation goes down when $\left\langle K_{d}\right\rangle$ approaches the network size
- The full distribution of the number of nodes $P\left(K_{d}=k\right)$ in a BFS can be difficult to solve
- Next week: solution for the component size distribution using GFs

