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Generating functions and their use in networks

» Learning goals this week:
» Learn the concept of probability generating functions
(PGF’s) and their basic properties
» Recognise what kind of problems can be solved with PGF’s
and be able to solve them
» Learn how to solve a Galton-Watson process using PGF’s
and how to apply that to networks
» We will be following the Section 13 in Newman: Networks,
An Introduction
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Components and excess degree

» Problem: Find the component size distribution of a
(sparse) network produced by a configuration model
» Assumptions: network is infinitely large, there are almost no
loops
» Equivalent problem: start a BFS process from random
node in a tree
» Branching factor is given by the excess degree distribution
q(k)
» Reminder: We already did this in the basic course (8 next
slides)
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Percolation theory

® Change something in the network (add/remove links,
increase transmission probability, etc) and the component
structure changes

“Order parameter” P:
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the largest connected
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Disconnected phase

® Largest component

relatively small

® Other components small
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Phase transition

® The largest component

becomes the “giant

component”

® Other components from

very large to small

1.0
0.8
0.6
A
0.4
0.2
0.0 - - - -
00 02 04 06 08 1.0 I
f f
_ =05
A Aalto University Mathematical Methods for Networks
School of Science December 22, 2021
and Technology 6/30




Connected phase

® The giant component size

same scale as network size

® Other components small
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Component size distributions
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® The size distribution of other components at the phase
transition point follows a power law!

® “Critical point” in the theory of critical phenomena
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How to estimate the
transition point?

® |dea:start from a random
node, find how many nodes
you can reach

® Before transition: you can
always reach only a small
number of nodes

® After transition: possibility
of reaching very large
number of nodes
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Branching processes

® Sparse large random
networks have (almost) no
loops

® Breadth first search is a
“branching process’:

® A node has q“children”

® At step t, 1y nodes

o Ny = (@)

® Exponential growth 3 steps
((g) > 1) or decay ((q) < 1)

— S
A Aalto University Mathematical Methods for Networks

School of Science December 22, 2021
and Technology 10/30



Excess degree —»C<

® The excess degree q: follow a link to a node,
how many links does it have, not including the
link that was followed?

® Remember the friendship paradox:
following a link leads to high degree
nodes: (k,,) = (k*)/(k)

® Expected excess degree: (q) = (k*)/(k) — 1

/

expected number not including the
of neighbours link that was followed
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Components and excess degree

» Problem: start a BFS process from random node in a tree
» Branching factor is given by the excess degree distribution
» There are ky neighbors where ky is drawn from p(k). If
ki > 0:
> There are ko = Zf‘; k1,; second neighbors where each k; ;
(number of second neighbors the first neighbor i has) is
drawn from q(k). If k, > 0:
» There are k3 = Zf‘; ko j third neighbors where each ko ; is
drawn from q(k). If ks > O:
> ...
» What is the distribution of ko, k3, ... ?
» This is a variation of the Galton-Watson process

» We can write the above equations using random variables
Ky, and solve them using probability generating functions
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Probability generating functions

» Let X be a random variable with non-negative integers as
outcomes, and probability distribution P(X = k) = p(k):

9(2) = p(0) + p(1)z + p(2 Zp(k (1)

» Example: p(1) = 0.5 and p(2) = 0.5, then PGF is
9(z) =0.5z + 0.52?

» Example: Poisson distribution p(k) = e—c%’; gives
9az) =%, ec%‘;zk — gc(z—1)
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Probability generating function properties (1/4)

> p(k) can be extracted through derivation
1 ak
p(k) = [k!dzkg(z)] o (2)

» Example: for g(z) = 0.5z + 0.522, we get
2
P@) = |48z0(2)] = [31],0=05

7=
» Example: for g(z) = e°(?~1), we get

p@) = |§ &) = [P, = bete

— —————
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Probability generating function properties (2/4)

» Moments can also be calculated through derivation

m

) A\
xm = |z zgpa@)| = |egme@] @

z=1

» Works also for the “zeroth” moment: g(1) = 1
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Probability generating function properties (3/4)

» Sums of independent random variables X; and X, become
products of GFs

Ix+%(2) = 9x,(2) * 9x,(2) (4)

> Ifthe X; i.i.d. then the sum S = 3N, X; becomes a power
of the GF
9s(2) = [gx(2)]" (5)
» Constant cis just a random variable that always has the
same result
9% +c(2) = gx,(2) » 2° (6)
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Probability generating function properties (4/4)

» If N is also a random variable in S = Z,’-\; X;, then the sum
becomes a combination

9s(2) = gn(9x,(2)) (7)

» This is the case in the Galton-Watson process!
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Generating functions for degrees

» We use the notation from Newman:
> For the degree distribution p(k):

=~
I
o

» These two are related: (Exercise 4a)

1

91(2) = ) (8)

HES
S
O
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Solving the Galton-Watson process for networks

» The number of first neighbors of a random node kj is
drawn from the degree distribution p(k)

9k, (2) = 90(2)

» Each second neighbor / adds ki ; new nodes, and these
numbers come from the excess degree distribution q(k)

gK1,i(Z) = 01(2)

— —————

Aalto University Mathematical Methods for Networks
School of Science December 22, 2021
and Technology 19/30



Solving the Galton-Watson process for networks

» The number of second neighbors K, is the sum of excess
degrees Kj ;

Ki
Ke=> K
i=1
» Using the combination property (7)

9Ik,(2) = 9o(91(2))

— —————
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Solving the Galton-Watson process for networks

» The number of third neighbors K3 is the sum of excess
degrees K3

Ko
Ks=> Kai
i=1
» Using the combination property and gk, (z) = go(91(2))

9k (2) = 9k, (91(2)) = 90(91(91(2)))

— —————
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Solving the Galton-Watson process for networks

» We get a recursive equations

Ik (2) = 9o(2)
Ik, (2) = 9k, ,(91(2))

» Writing closed form solutions for p(ky) often not possible
» The expected value can be solved in closed form for any d:

2y d—1
(Ka) = (@) (k) = (W) Koo

» Diverges if (q) > 1
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Solving the Galton-Watson process for networks

> |f for some d we get Ky = 0 we say that there is an
extinction
> (q) > 1 : Probability of extinction smaller than 1
(supercritical)
> () < 1: Probability of extinction is 1 (subcritical)
» When (q) = 1 the system is at critical state

» The extinction d time, total number of reachable nodes
>4 Ka etc. are distributed as power-laws p(d) oc d*

> The exponents of these power-laws are the critical
exponents
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Example: Erdds-Rényi networks

» The “percolation threshold” for G(N, p) was solved
numerically in the Exercise 2.1d in CS-E5740:

Number of nodes = 10000
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Example: Erdds-Rényi networks

» G(N, p) has Poisson degree distribution when N — oo
while (k) is constant

> p(k) = e,
> Second moment (k) = (k)® + (k)
> Average excess degree

> (Kq) = (k)?
» The giant component exists iff (k) > 1
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Example: Erdds-Rényi networks

» Result can be compared to simulations (ER network with
N = 10% and (k) = 2)

1012 : : : ‘
1 X7 ]
0ol % x (Kg) = (k)

109 - o @ . . % |
108k — — = = simu I_at_lo_n _________ Y O ____]

(Ka)
=

o<
ox
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Example: Erdds-Rényi networks

» We can also try to solve the distributions of each K, for ER

networks:
> go(2) = e*(z=1) (Poisson degree distribution)
> 91(2) = 5 590(2) = €1 (Also Poisson!)
> gk, = Go(g1(2)) = e
> gk, = Go(@1(2)) = e®IE T
> ...

» We cannot write a closed form solution to the distribution of
Ky for general d
» Even Ko difficult
» For given d and ky we can write P(Ky = ky)
> Results are not pretty
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Example: Erdds-Rényi networks

» Examples for probabilities of Ky:
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Example: Erdds-Rényi networks

» Result can be compared to simulations (ER network with
N = 10° and (k) = 2)

K, K3 Ky
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Solving for component size distributions

» Solving the Galton-Watson process gives us a criterion for
the percolation threshold

» The expected number of nodes (Ky) in a BFS can be
solved for configuration model

> Accuracy of the approximation goes down when (Ky)
approaches the network size
» The full distribution of the number of nodes P(Ky = k) in a
BFS can be difficult to solve
» Next week: solution for the component size distribution
using GFs
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