CS-E5745
 Mathematical Methods for Network Science

Mikko Kivelä
Department of Computer Science
Aalto University, School of Science
mikko.kivela@aalto.fi
December 22, 2021

Generating functions and their use in networks

- Learning goals this week:
- Recap of probability generating functions from last week
- Learn how to use PGFs to solve component size distributions in networks
- We will be following the Section 13 in Newman: Networks, An Introduction

PGFs from last week

- Definition:

$$
\begin{equation*}
g(z)=p(0)+p(1) z+p(2) z^{2} \cdots=\sum_{k=0}^{\infty} p(k) z^{k} \tag{1}
\end{equation*}
$$

- $p(k)$ can be extracted through derivation:

$$
\begin{equation*}
p(k)=\left[\frac{1}{k!} \frac{d^{k}}{d z^{k}} g(z)\right]_{z=0} \tag{2}
\end{equation*}
$$

- Moments can also be calculated through derivation:

$$
\begin{equation*}
\left\langle X^{m}\right\rangle=\left[z \frac{d}{d z} \ldots z \frac{d}{d z} g(z)\right]_{z=1}=\left[\left(z \frac{d}{d z}\right)^{m} g(z)\right]_{z=1} \tag{3}
\end{equation*}
$$

PGFs from last week

- Sums of independent RVs

$$
\begin{array}{r}
g_{X_{1}+X_{2}}(z)=g_{X_{1}}(z) * g_{X_{2}}(z) \\
g_{\sum_{i=1}^{N} X_{i}}(z)=\left[g_{X_{i}}(z)\right]^{N} \\
g_{X_{1}+c}(z)=g_{X_{1}}(z) * z^{c} \tag{6}
\end{array}
$$

- If N is also a RV in $S=\sum_{i=1}^{N} X_{i}$:

$$
\begin{equation*}
g_{S}(z)=g_{N}\left(g_{X_{i}}(z)\right) \tag{7}
\end{equation*}
$$

Notation for networks (from Newman)

- For the degree distribution $p(k)$:

$$
g_{0}(z)=\sum_{k=0}^{\infty} p(k) z^{k}
$$

- For the excess degree distribution $q(k)$:

$$
g_{1}(z)=\sum_{k=0}^{\infty} q(k) z^{k}
$$

- These two are related:

$$
g_{1}(z)=\frac{1}{\langle k\rangle} \frac{d}{d z} g_{0}(z)
$$

Solving the Galton-Watson process for networks

- Last week we derived the equations for Galton-Watson processes

$$
\begin{aligned}
g_{K_{1}}(z) & =g_{0}(z) \\
g_{K_{d}}(z) & =g_{K_{d-1}}\left(g_{1}(z)\right)
\end{aligned}
$$

- Solution for the expected value:

$$
\left\langle K_{d}\right\rangle=\langle q\rangle^{d-1}\langle k\rangle=\left(\frac{\left\langle k^{2}\right\rangle-\langle k\rangle}{\langle k\rangle}\right)^{d-1}\langle k\rangle
$$

- A criterion for the percolation threshold!

Solving the Galton-Watson process for networks

- We have the percolation threshold, but we are still missing
- Shape of the relative giant size curve ($\sum_{d} K_{d}$ in the giant)
- Size distributions of small components ($\sum_{d} K_{d}$ when not in the giant)
- Note: GW process approximation for networks only works when d is small

Giant component size in ER networks

- Largest component size in ER networks with $N=10^{5}$

Expected small component size in ER networks

- Expected size of components other than the largest component in ER networks with $N=10^{5}$

Uniqueness of the giant component

- Assume that there are two large components in ER networks with S_{1} and S_{2} proportion of all nodes in them
- Number of nodes: $S_{1} N$ and $S_{2} N$
- Possible edges between the components: $S_{1} N S_{2} N=S_{1} S_{2} N^{2}$
- Probability that no two pairs are connected:

$$
q=(1-p)^{S_{1} S_{2} N^{2}}=\left(1-\frac{\langle k\rangle}{N-1}\right)^{S_{1} S_{2} N^{2}}
$$

- In "thermodynamic limit" ($N \rightarrow \infty$, s.t. $\langle k\rangle$ constant):

$$
q=q_{0} e^{-\langle k\rangle S_{1} S_{2} N} \rightarrow 0
$$

Solving for giant component size

- Idea: Instead of the GW process, we write down "self-consistency equations"
- Write down the probability random node not being in giant u as a function of u
- The fixed point where $u=f(u)$ gives us u
- The probability of random node in giant $S=1-u$

Solving for giant component size for ER networks

- Definition: u is the probability that (uniformly) randomly selected node doesn't belong to the giant component
- Note that for Poisson degree distributions: $p(k)=q(k)$
- If node i doesn't belong to the giant then for every other node j :
- There is no connection between i and j, or (probability $1-p$)
- There is connection, but j doesn't belong to the giant (probability pu)
- In total the following must hold $u=[(1-p)+p u]^{N-1}$
- $u=e^{-\langle k\rangle(1-u)}$, when $N \rightarrow \infty$

Solving for giant component size for ER networks

- Shape of the relative giant size curve for ER network (with $N=10^{5}$ nodes)

Solving for giant component size for configuration model (1/3)

- Definition: u is the probability that following an edge (and removing it) doesn't lead to the giant component
- If node i doesn't belong to the giant then none of the neighbors j belong to the giant
- The number of new neighbors the node i has k is distributed as the excess degree $q(k)$
- Probability that none of the k neighbors is in the giant is u^{k}
- In total the following must hold $u=\sum_{k=0}^{\infty} q(k) u^{k}$

Solving for giant component size for configuration model (2/3)

- In total the following must hold $u=\sum_{k=0}^{\infty} q(k) u^{k}$
- Using the definition of the PGF [Eq. (1)]: $u=g_{1}(u)$
- Probability of uniformly randomly selected node not being in the giant is $\sum_{k=0}^{\infty} p(k) u^{k}=g_{0}(u)$
- Returns the previous result for ER networks: $u=e^{-\langle k\rangle(1-u)}$

Solving for giant component size for configuration model (3/3)

- We can also solve the component size distributions of non-giant components
- Write equations for component size distributions using component size distributions
- Leads to nice equations when done using PGF's

Solving for component size distributions

- Separate giant component size and small component size distribution
- S: Probability that uniformly randomly selected node belongs to the giant component
- RV s: size of non-giant component where uniformly randomly selected node belongs to
- Notation from Newman:

$$
\begin{aligned}
& -P(s=k)=\pi_{k} \\
& -h_{0}(z)=g_{s}(z)
\end{aligned}
$$

- Sum of the above probabilities is one: $h_{0}(1)+S=1$

Solving for component size distributions

- RV s^{\prime} : Follow a link and remove it. s^{\prime} is the size of the non-giant component after that link is removed ("excess small component size")
- Notation from Newman:
- $P\left(s^{\prime}=k\right)=\rho_{k}$
- $h_{1}(z)=g_{s^{\prime}}(z)$

Solving for component size distributions

- $s=1+s_{1}^{\prime}+s_{2}^{\prime}+s_{3}^{\prime}$

Solving for component size distributions

- RVs s, s^{\prime}, and the first neighborhood size k_{1} are related

$$
s=1+\sum_{k=0}^{K_{1}} s^{\prime}
$$

Solving for component size distributions

- Notation from Newman: $h_{0}(z)=g_{s}(z)$ and $h_{1}(z)=g_{s^{\prime}}(z)$
- Using GF properties

$$
\begin{aligned}
s & =1+\sum_{k=0}^{K_{1}} s^{\prime} \Longleftrightarrow \\
h_{0}(z) & =z g_{0}\left(h_{1}(z)\right)
\end{aligned}
$$

Solving for component size distributions

- $s^{\prime}=1+s_{1}^{\prime}+s_{2}^{\prime}+s_{3}^{\prime}$

Solving for component size distributions

- $s^{\prime}\left(h_{1}\right)$ and the excess degree $K_{1, i}\left(g_{1}\right)$ are related

$$
s^{\prime}=1+\sum_{k=0}^{K_{1, i}} s^{\prime}
$$

Solving for component size distributions

- Using GF properties

$$
\begin{aligned}
s^{\prime} & =1+\sum_{k=0}^{K_{1, i}} s^{\prime} \Longleftrightarrow \\
h_{1}(z) & =z g_{1}\left(h_{1}(z)\right)
\end{aligned}
$$

Solving for component size distributions

- In total we have

$$
\begin{align*}
& h_{0}(z)=z g_{0}\left(h_{1}(z)\right) \tag{8}\\
& h_{1}(z)=z g_{1}\left(h_{1}(z)\right) \tag{9}
\end{align*}
$$

- Solving $h_{0}(z)$ possible but not easy
- Solving $h_{0}(1)$ easier
- Remember: $h_{0}(1)+S=1$

Solving for component size distributions

- Using $h_{0}(1)+S=1$ and Eq. (8):

$$
S=1-h_{0}(1)=1-g_{0}\left(h_{1}(1)\right)
$$

- The value h_{0} (1) can be solved from Eq. (9):

$$
h_{1}(1)=g_{1}\left(h_{1}(1)\right)
$$

- Using Newmans notation: $u=h_{1}(1)$ (=probability that following a link does not lead to the giant component):

$$
\begin{align*}
S & =1-g_{0}(u) \tag{10}\\
u & =g_{1}(u) \tag{11}
\end{align*}
$$

Solving for component size distributions

- With some (home)work one can use previous equations to solve for the expected small component size

$$
\begin{equation*}
\langle s\rangle=1+\frac{g_{0}^{\prime}(1) u^{2}}{g_{0}(u)\left[1-g_{1}^{\prime}(u)\right]} \tag{12}
\end{equation*}
$$

Solving for giant component size for ER networks

- Shape of the expected size of the small components in ER network (with $N=10^{5}$ nodes)

Solving for component size distributions

- With even more work one can find a formula for the whole small component size distribution!
- See Newman pp. 468-469

$$
\begin{equation*}
\pi_{s}=\frac{\langle k\rangle}{(s-1)!}\left[\frac{d^{s-2}}{d z^{s-2}}\left[g_{1}(z)\right]^{s}\right]_{z=0} \tag{13}
\end{equation*}
$$

- Note that the formula works only for $s>1$ and $\pi_{1}=p_{0}$

Solving for component size distribution for ER networks

- Component sizes in ER network (with $N=10^{7}$ nodes and $\langle k\rangle=0.8)$

Summary on component sizes

- We can now solve:
- Threshold for connectivity (percolation threshold)
- The (expected) number of nodes d steps away in BFS process
- The size of the giant component
- Component size distribution
- ... with some limitations:
- Equations are derived for large configuration models (but might give good approximations for real networks)
- We can write the equations but they might not have closed form solutions
- Some equations do not work for the critical point (one can also solve for this separately)

Extensions

- Similar ideas (PGF's, self-consistency equations ...) can be used for many extensions
- Networks with degree correlations
- Networks with triangles
- Mutual connectivity
- ...
- Some of these extensions are done in the possible projects

Percolation problems

- In percolation problems one removes nodes or edges can calculates the connected components
- Equivalent to finding component size distributions with altered degree distributions! (if done for configuration model or ER networks)
- If K and K^{\prime} are RV's of the original and the modified degree distribution, then percolation methods are given by $P\left(K^{\prime}=k \mid K=m\right)$
- $P\left(K^{\prime}=k\right)=\sum_{m=0}^{\infty} P\left(K^{\prime}=k \mid K=m\right) * P(K=m)$
- $g_{K^{\prime}}(z)=\sum_{k=0}^{\infty} \sum_{m=0}^{\infty} P\left(K^{\prime}=k \mid K=m\right) * P(K=m) z^{k}$
- Some projects might include percolation done in this way

