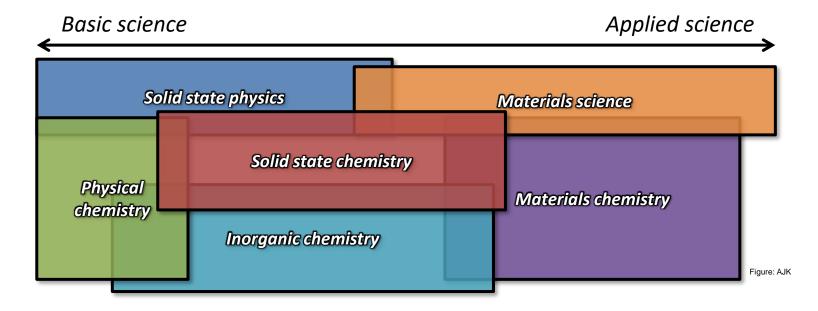
Solid State Chemistry CHEM-E4155 (5 cr)


Spring 2022

Antti Karttunen Department of Chemistry and Materials Science Aalto University

Solid state chemistry

- Synthesis, structures, properties, and applications of <u>crystalline</u> inorganic materials
- Atomic-level structure of materials is at the very heart of solid state chemistry
- "If you want to understand function, study structure"
 - Francis Crick (1962 Nobel Prize in Physiology or Medicine Structure of DNA)
- The classification illustrated below is a rather traditional one: concepts such as *metal-organic frameworks* bring organic/organometallic chemistry into the picture
- What is *your* background? Chemistry, materials science, something else?

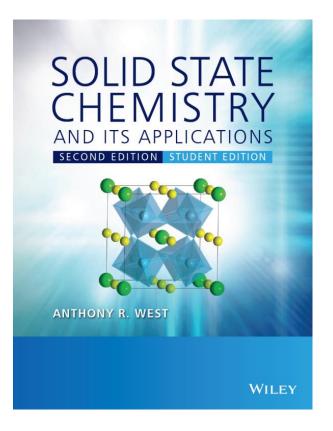
Course outline

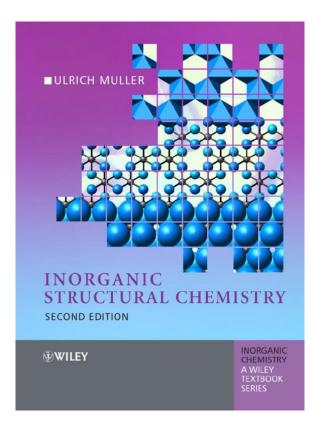
- **Teacher:** Antti Karttunen
- Lectures
 - 14 lectures (course calendar shown on a later slide)
 - Each lecture includes a set of exercises (a MyCourses Quiz)
 - We start the exercises together during the lecture.
 - New in 2022: Zulip workspace for discussions and questions about exercises.
- Project work
 - We create content in the Aalto Solid State Chemistry Wiki
 - Includes both independent and collaborative work (peer review)
- Grading
 - Exercises 50% and Project work 50%
- Workload
 - Lectures, combined with exercises ~28 h
 - Home problem solving ~28 h
 - Independent project work ~40 h

Honor code for exercises

- The purpose of the exercises is to support your learning
- Most of the exercises are graded automatically
 - There may also be some manually graded exercises
- It is perfectly fine to discuss the exercises with the other students
 - In fact, I encourage discussion during the teaching sessions
- You are **not allowed** to take answers directly from other students
 - This also means that you are **not allowed** to give answers directly to others
- The exercise answers and timestamps are monitored throughout the course

Course calendar


Lectures in Zoom (<u>https://aalto.zoom.us/j/65165606246</u>) at 8:30-10:00


Week	Lect.	Date	Торіс
Week 1	1	Wed 12.1.	Structure of crystalline materials. Symmetry.
Structure	2	Thu 13.1.	Structural databases, visualization of crystal structures.
Week 2	3	Wed 19.1.	Bonding in solids. Description of crystal structures.
Bonding	4	Thu 20.1.	Band theory. Band structures.
Week 3	5	Wed 26.1.	Phase diagrams, crystal growth.
Synthesis	6	Thu 27.1.	Solid state synthesis.
Week 4	7	Wed 2.2.	XRD, Miller indices. Powder XRD databases. Microscopies.
Characterization	8	Thu 3.2.	Spectroscopies and thermal analysis.
Week 5	9	Wed 9.2.	Abundance of elements, geochemistry, minerals.
Main groups	10	Thu 10.2.	Main group compounds, allotropes, Zintl phases.
Week 6	11	Wed 16.2.	d-block metals, ligand field theory, magnetism.
d-block metals	12	Thu 17.2.	d-block metal oxides and other compounds.
Examination week for study period III (no lectures).			
Week 7	13	Tue 1.3.	At 12.30-14.00 . Defects, non-stoichiometric compounds.
Defects and doping	14	Wed 2.3.	Semiconductors, doping, electrical properties.
Final Wiki project deadline after mid-March.			

Final Wiki project deadline after mid-March.

Literature for the course

- Solid State Chemistry and its Applications (2nd ed.), Anthony R. West, **2013**, Wiley.
- Inorganic Structural Chemistry (2nd ed.), Ulrich Müller, **2006**, Wiley.
- <u>Aalto Solid State Chemistry Wiki</u>

