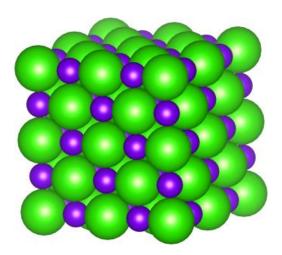
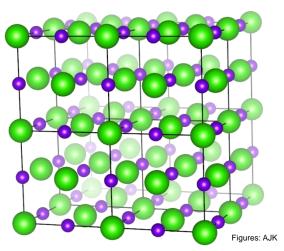
Lecture 1:

Structure of crystalline materials

- Basics of crystalline materials
 - Dimensionality of solids
 - Molecular vs. non-molecular solids
- X-ray diffraction
- Unit cell
- Crystal systems
- Symmetry
 - Point group symmetry and translational symmetry
 - Crystal classes
- Lattice
 - Lattice types and Bravais lattices
- Space groups

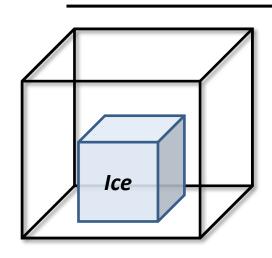




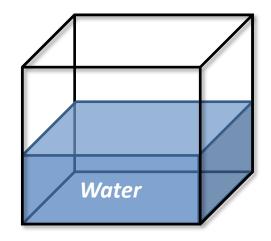
Basics of crystalline materials

States of bulk matter

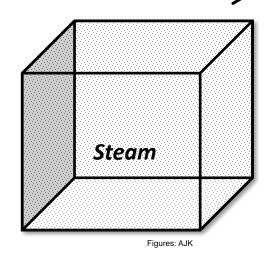
Temperature increases



Solid: Adopts and maintains a shape that is independent of the container it occupies.



Liquid: Adopts the shape of the part of the container it occupies and is separated from the unoccupied part of the container by a definite surface.



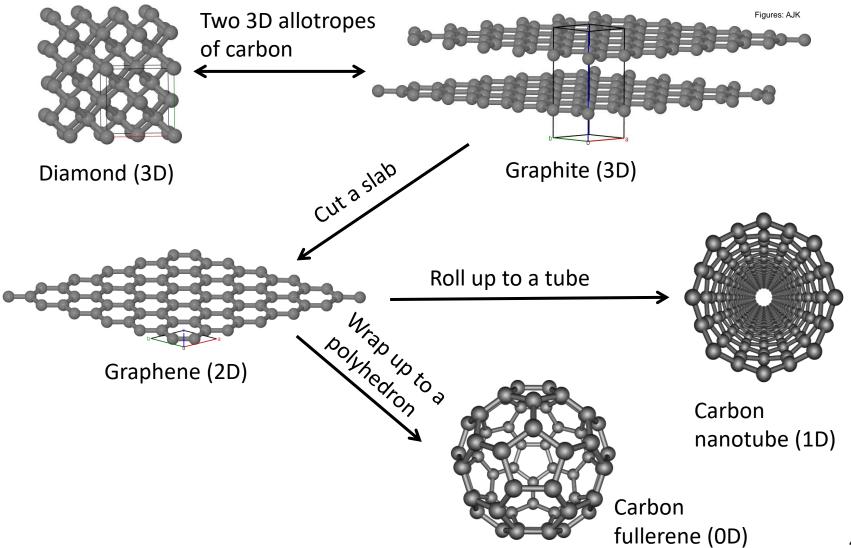
Gas: immediately fills any container it occupies

Condensed matter

Fluids (flow in response to forces such as gravity)

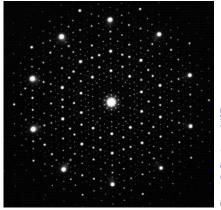
Molecular chemistry

Dimensionality of solids



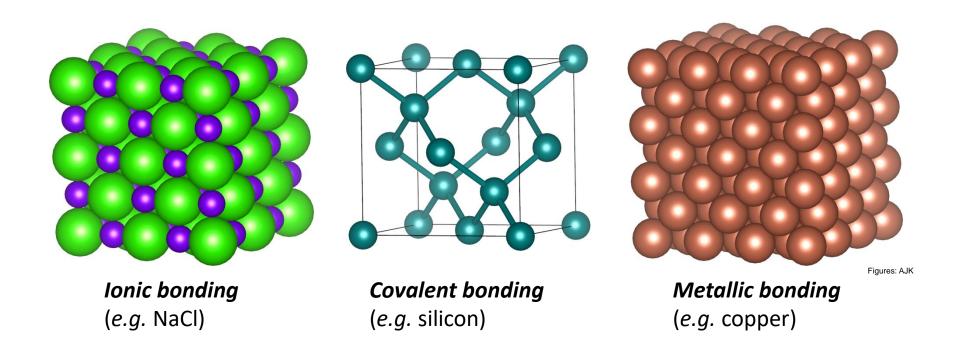
Crystalline materials

- A material is a crystal if it has essentially a sharp diffraction pattern (IUCr definition)
- The definition includes
 - Periodic crystals
 - Aperiodic crystals
 - Quasicrystals
- **Periodic** crystal is a **regular** arrangement of atoms in three dimensions. These include
 - Single crystals
 - Polycrystals composed of many crystallites
- Amorphous materials are non-crystalline and lack long-range order
 - Not discussed on this course



Silicon single crystal grown by Czochralski process (Deutsches Museum, München)

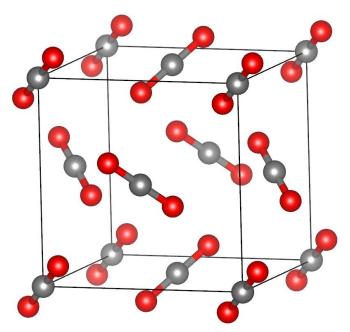
Non-molecular crystalline solids



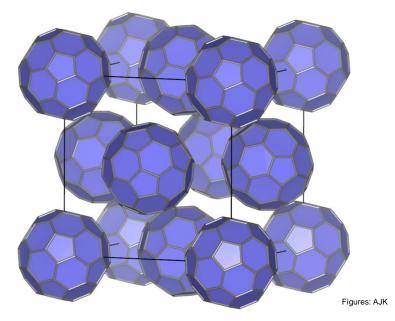
- Coordination polymers such as metal-organic frameworks show covalent bonding of metal atoms and organic molecules
- Coordination polymers are challenging the traditional classifications of solid state structures (see e.g. review of H. Furukawa et al., <u>Science 2013</u>, 341, 1230444).

Molecular crystalline solids

- Composed of molecules that are held together by (weak) van der Waals forces
- Discussed only little here, but can be interesting for intercalation chemistry
- Much more relevant for small-molecule chemistry
- **Crystal engineering** using e.g. **hydrogen** and **halogen** bonding is making the boundary between molecular and non-molecular solids less clear!



Solid CO₂ (space group *Pa*-3) *Acta Cryst. B* **1980**, *36*, 2750.



Solid C₆₀ (space group *Pa*-3) *Nature* **1991**, *353*, 147.

Structure determination of crystalline materials

Structure determination

Size scale increases

Unit cell (average crystal structure)

Diffraction techniques

- X-Ray diffraction (XRD)
- Neutron diffraction
- Electron diffraction

Lectures 1, 2 & 7

Nanostructure

Microscopy Diffraction

Lecture 7

Microstructure

Microscopy Diffraction Tomography

Lecture 7

Local structure and defects

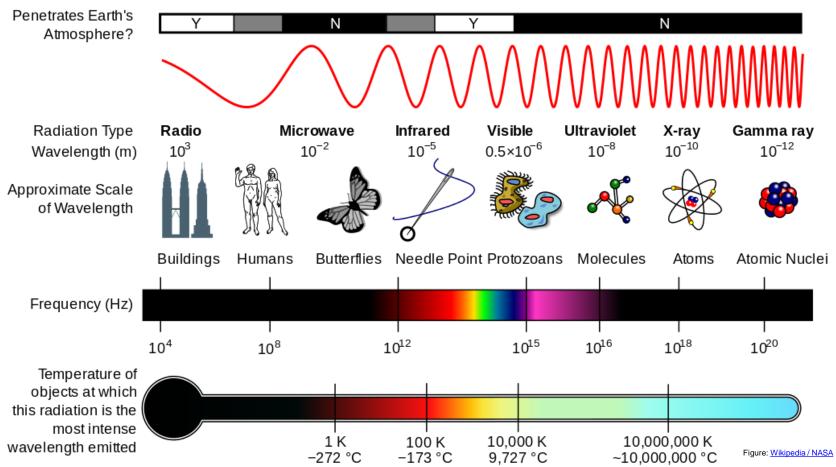
Spectroscopies

Lecture 8

9

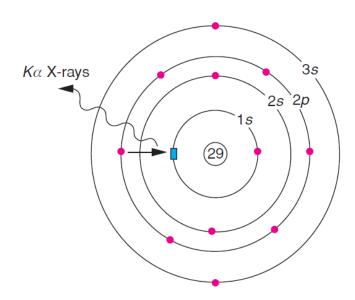
X-ray diffraction

- X-rays are electromagnetic radiation of wavelength ~ 1 Å (10⁻¹⁰ m)
 - Matches the scale of atomic-level structure!

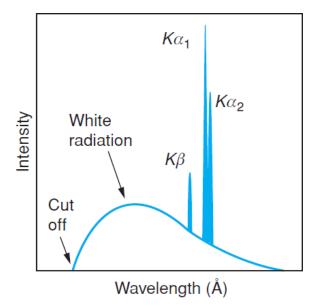


Generation of X-rays

- X-rays are produced with X-ray tubes (vacuum tubes converting electricity into X-rays).
- In an X-ray tube, high-energy charged particles, such as electrons accelerated through a voltages of 60 keV, collide with matter.
- For X-ray diffraction experiments monochromatic X-rays are used.



Generation of **Cu Kα X-rays**. A 1s electron is ionised, a 2p electron falls into the empty 1s level (blue) and the excess energy is released as X-rays.



Full X-ray emission spectrum of Cu. Particular wavelength, for example $Cu K\alpha$ can be isolated with a monochromator and then used for X-ray diffraction. 11

Bragg's law

- Consider crystals as built up from planes acting as semi-transparent mirrors
- **Bragg's law**: $2d \sin \theta = n\lambda$, where $n = \text{positive integer and } \lambda = \text{wavelength}$
- When BL satisfied, the reflected beams are in-phase and interfere constructively, giving rise to a diffraction pattern, that can be used to solve the crystal structure
- For some simple crystal structures, the planes also correspond to layers of atoms, but this is not generally the case (they are a concept, not physical reality)!

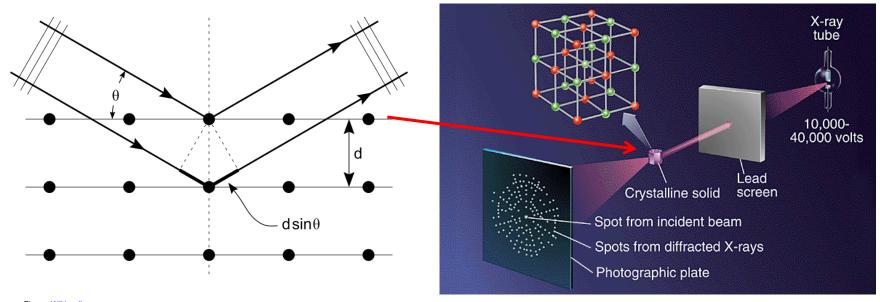
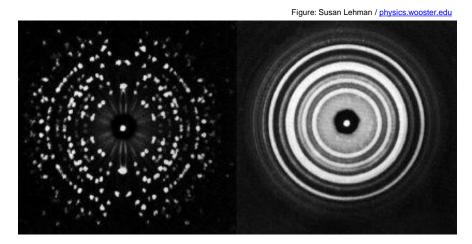


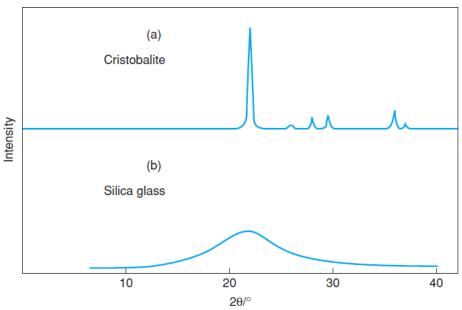
Figure: Wikipedia

Figure: http://www.scienceiscool.org/solids/intro.html (dead link)

Single crystal vs. powder X-ray

- The figure shows X-ray diffraction pattern of aluminum single crystal (left) and aluminum powder (right)
- Polycrystalline powder sample has random orientation of crystallites
- 1D summation of 3D diffraction process!
- The crystal structure might be deduced from a powder pattern with *Rietveld* refinement (typically requires a good model structure)
- The figure shows Powder X-ray diffraction pattern of crystalline (top) and amorphous (bottom) SiO₂



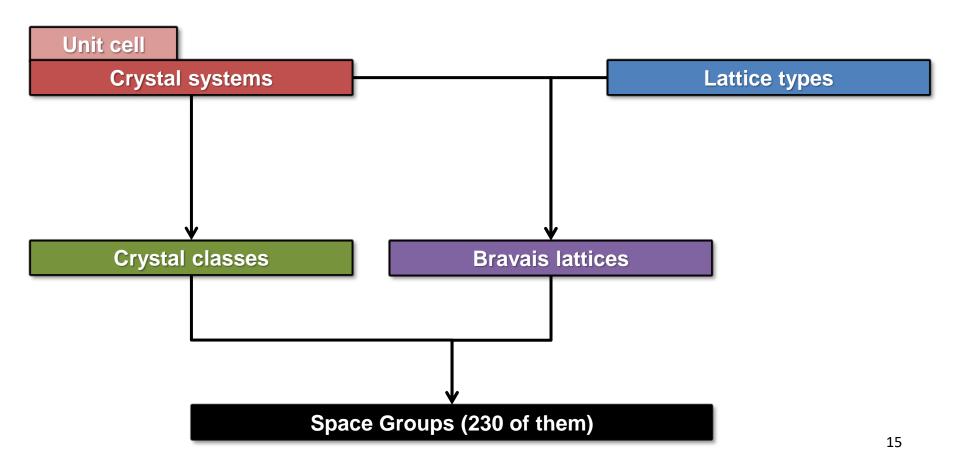


Ref: West p. 245

Key concepts for crystal structures

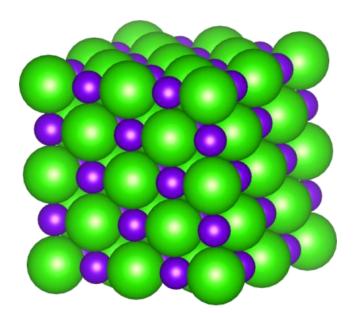
Key concepts for crystal structures

- To describe crystal structures, we will need the key concepts outlined below
- The following slides will introduce the concepts one by one, culminating in the concept of a space group

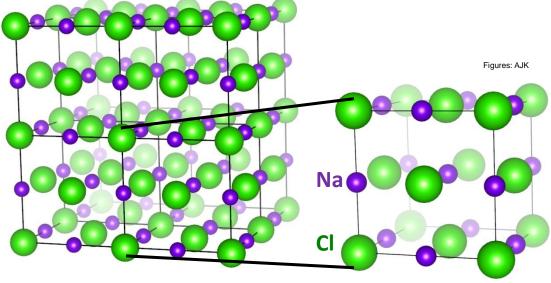


Unit cell

- *Crystal*: Regular arrangement of atoms in three dimensions
- The regular arrangement can be represented by a repeat unit called the unit cell
- *Unit cell*: The smallest repeating unit which shows the *full symmetry* of the crystal



NaCl crystal: Regular arrangement of Na and Cl (space-filling representation)



NaCl crystal (non-space-filling representation

NaCl unit cell

Crystal systems

Figure 1.3 (a) The seven crystal systems and their unit cell shapes; a, b, c, α , β , γ = Lattice parameters

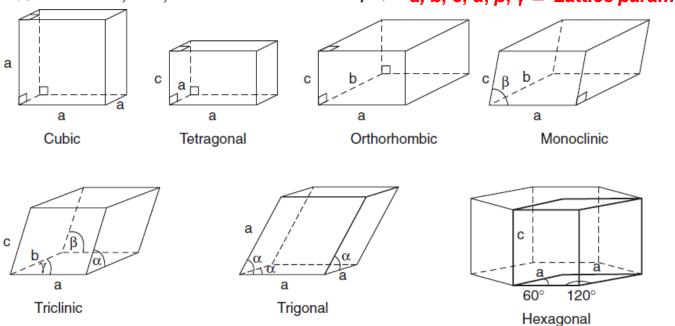
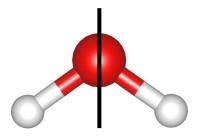


Table 1.1 The seven crystal systems

Crystal system	Unit cell shape b	Essential symmetry	Allowed lattices
Cubic Tetragonal Orthorhombic Hexagonal Trigonal (a) Trigonal (b) Monoclinic ^a Triclinic	$a = b = c, \alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c, \alpha = \beta = \gamma = 90^{\circ}$ $a \neq b \neq c, \alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ $a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ $a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ $a = b = c, \alpha = \beta = \gamma \neq 90^{\circ}$ $a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$ $a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	Four threefold axes One fourfold axis Three twofold axes or mirror planes One sixfold axis One threefold axis One threefold axis One twofold axis or mirror plane None	P, F, I P, I P, F, I, A (B or C) P P R P, C P Ref: West p. 3-4

Symmetry

- The most characteristic feature of any crystal structure is its **symmetry**
- The shape of the unit cell is not enough to determine the crystal system. It is the symmetry of the unit cell that really determines the crystal system
 - For example, a "pseudocubic" crystal structure could have a = b = c and $\alpha = \beta = \gamma = 90^\circ$, but it would not possess the correct cubic symmetry
- In the context of crystals, we will encounter two types of symmetry:
 - Point group symmetry (both in crystals and molecules)
 - Translational symmetry of the crystal lattice (only in crystals)
- We describe the symmetry properties of crystals and molecules in terms of:
 - Symmetry elements (for example, a mirror plane)
 - Symmetry operations (the actual process of applying a symmetry element)
- In crystals and molecules, a symmetry operation transfers an atom into a new spatial position that cannot be distinguished from its original position



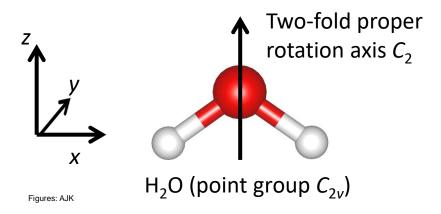
Mirror plane in a water molecule

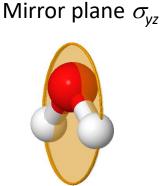
igure: AJK

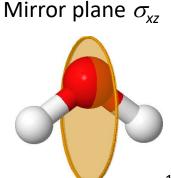
Point group symmetry

- In point group symmetry operations, at least one point stays unchanged during the symmetry operation
- For learning point group symmetry, we will utilize the Symmetry@Otterbein website: https://symotter.org/
- The **point group** of a molecule is based on the symmetry elements that are present

Symmetry element	Symmetry operation	Schönflies symbol
Symmetry plane (mirror plane)	Reflection through plane	σ
Inversion	Every point x,y,z translated to -x,-y,-z	i
Proper axis (rotation)	Rotation about axis by 360/n degrees	C_n
Improper axis (improper rotation)	Rotation by $360/n$ degrees followed by reflection through plane perpendicular to rotation axis	S_n







Symmetry elements in crystals

- Crystals may display rotational symmetries 2, 3, 4, and 6, not others
- In crystallography, the symmetries are labeled with *Hermann–Mauguin* symbols
- Crystals show several symmetry elements that are not present in molecules

Symmetry element	Hermann-Mauguin symbol (crystals)	Schönflies symbol (molecules)
Symmetry plane (mirror plane)	m	σ
Inversion	<u>1</u>	i
Proper axis (rotation)	<i>n</i> = 2, 3, 4, 6	C_n
Improper axis (improper rotation)	_	S_n
Elements only in crystals		
Inversion axis (point symmetry)	$\overline{n} = \overline{3}, \overline{4}, \overline{6}$	_
Glide plane (includes translation)	a, b, c, d, n	_
Screw axis (includes translation)	2 ₁ , 3 ₁ , etc.	_

(Inversion axis, glide plane, and screw axis explained in more detail in extra slides)

Crystal classes

• By combining the seven crystal systems and 32 crystallographic point groups, we obtain the following 32 **crystal classes**:

Crystal system	Crystal classes (point groups) in Hermann-Mauguin notation	Crystal classes (point groups) in Schönflies notation
Triclinic	1, 1	C_1, C_i
Monoclinic	2, m, 2/m	C_2 , C_s , C_{2h}
Orthorhombic	222, mm2, mmm	D_2 , C_{2v} , D_{2h}
Tetragonal	$4,\overline{4}, 4/m, 422, 4mm, \overline{4}2m, 4/mmm$	C_4 , S_4 , C_{4h} , D_4 , C_{4v} , D_{2d} , D_{4h}
Trigonal	$3, \overline{3}, 32, 3m, \overline{3}m$	C_3 , S_6 (C_{3i}), D_3 , C_{3v} , D_{3d}
Hexagonal	$6, \overline{6}, 6/m, 622, 6mm, \overline{6}m2, 6/mmm$	C_6 , C_{3h} , C_{6h} , D_6 , C_{6v} , D_{3h} , D_{6h}
Cubic	23, $\overline{4}$ 3 <i>m</i> , $m\overline{3}$, 432, $m\overline{3}$ <i>m</i>	T , T_d , T_h , O , O_h

Ref: Müller p. 24, Wikipedia

Lattice

- The most characteristic feature of any crystal structure is its **symmetry**
 - 1. Point group symmetry (discussed above)
 - 2. Translational symmetry of the crystal lattice
- Crystal structure = **basis** (atoms) + crystal lattice

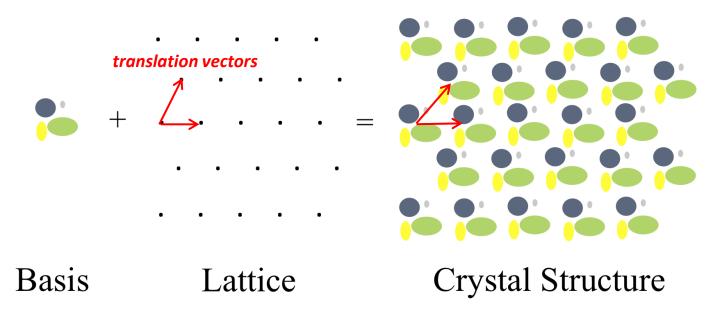
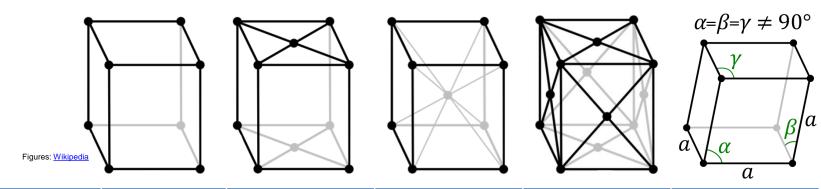


Figure: Andreas Mulyo

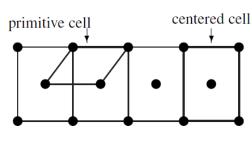
Lattice types

- Every crystal structure belongs to one of five lattice types:
 - The balls are lattice points, not atoms!



Lattice type	Primitive	Base-centered	Body-centered	Face-centered	Rhombohedral
Symbol	Р	A/B/C	1	F	R
V(C-cell)/V(P-cell)	1	2	2	4	3

- **Primitive unit cell**: unit cell with the smallest possible volume
- **Centered unit cell**: the smallest repeating unit which shows the full symmetry of the crystal
- The centered unit cell is 2, 3, or 4 times larger than the primitive cell (table: V(C-cell)/V(P-cell))

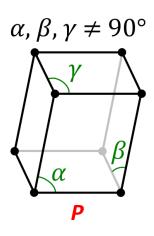


Ref: Müller p. 8

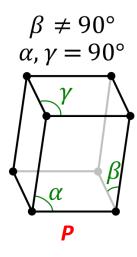
Bravais lattices (1)

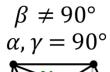
• By combining 7 crystal systems and 5 lattice types we obtain 14 Bravais lattices

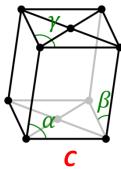
Triclinic



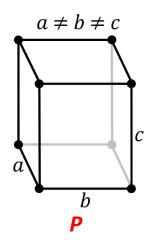
Monoclinic

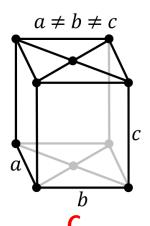


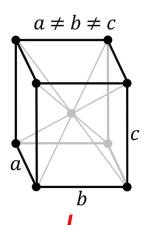


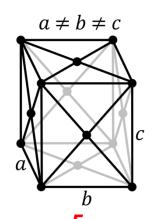


Orthorhombic





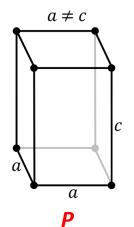


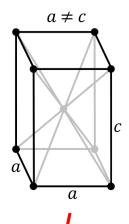


Figures: Wikipedia

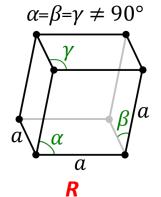
Bravais lattices (2)

Tetragonal

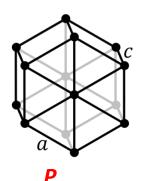




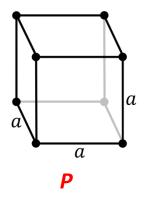
Rhombohedral

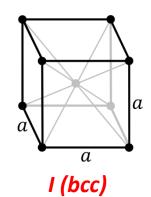


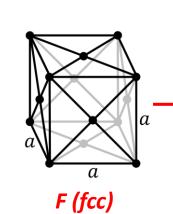
Hexagonal

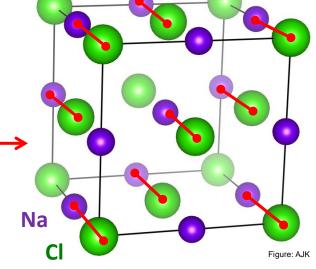


Cubic









fcc, basis: Cl + Na

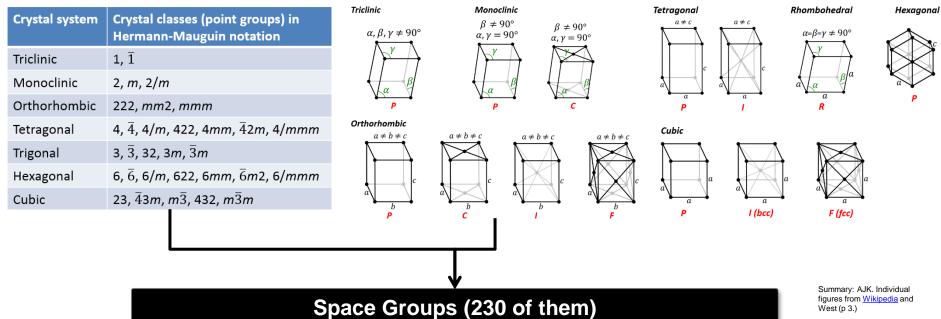
Figures: Wikipedia

25

Crystal systems (7 of them) Lattice types (5 of them) $\alpha = \beta = \gamma \neq 90^{\circ}$ С Cubic Orthorhombic Monoclinic Tetragonal **Primitive Body-centered** Rhombohedral **Base-centered Face-centered** 60° 120° Triclinic Trigonal Hexagonal

Crystal classes (32 of them)

Bravais lattices (14 of them)



Space groups

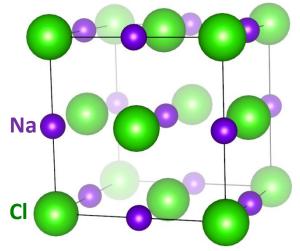
- The 32 crystal classes and 14 Bravais lattices give rise to 230 space groups
- The Hermann-Mauguin symbol for the space group of NaCl: $Fm\overline{3}m$ (or Fm-3m)
- The symbol begins with a capital letter *P, A, B, C, F, I,* or *R,* specifying the presence of *translational symmetry* in three dimensions and the lattice type (*centering*)
- The letter is followed by a listing of the other symmetry elements
- Some examples:
 - All *triclinic* space groups: P1 and P-1
 - Some monoclinic space groups: P2, Pm, C2/c
 - Some hexagonal space groups: P6, P6/mmm, P6/mcc
 - Some *cubic* space groups: *Pm*-3*m*, *Im*-3*m*
- Note that some space groups can be defined with alternate axes and/or origin (see e.g. orthorhombic SGs in http://img.chem.ucl.ac.uk/sgp/large/ortho.htm)
- Everything about space groups: <u>International Tables of Crystallography</u>
- Good resource: http://img.chem.ucl.ac.uk/sgp/large/sgp.htm
- Wikipedia: https://en.wikipedia.org/wiki/List_of-space_groups

Defining a crystal structure

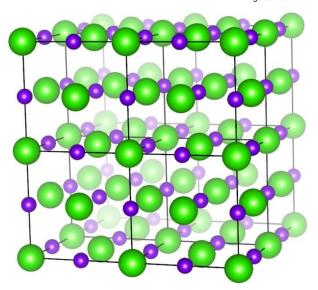
- A crystal structure is defined by
 - Space group
 - Lattice parameters
 - Atomic coordinates (positions) in fractional coordinates $(0.0 \le x,y,z < 1.0)$
 - Normally only symmetry-independent atoms in the asymmetric unit are listed
- For example, NaCl (ICSD code 655785)
 - Fm-3m
 - $-a = b = c = 5.6402 \text{ Å} (\alpha = \beta = \gamma = 90^{\circ} \text{ by definition for a cubic space group)}$
 - Atomic coordinates (x, y, z): CI: 0.0, 0.0, 0.0; Na: 0.5, 0.5, 0.5
- Typically, crystal structures are distributed in Crystallographic Information Files (CIF)
- A definition of a crystal structure is not usually enough to understand the real chemistry. For this, we need a description of the crystal structure
 - Concepts such as bonding, packing of spheres, coordination, polyhedra, ...

Formula units (Z)

- Counting the contents of a unit cell for NaCl:
- 8 Cl⁻ ions in the 8 vertices, each belonging to 8 adjacent cells = 8/8 = 1 Cl⁻ ion in total
- 6 Cl⁻ ions in the 6 centers of the faces, each belonging to two cells = 6/2 = **3** Cl⁻ ions
- 1 Na⁺ ion in the center of the cell, not shared with other cells
- 12 Na⁺ ions in the centers of the 12 edges,
 each belonging to 4 cells = 12 / 4 = 3 Na⁺ ions
- In total 4 Na⁺ ions and 4 Cl⁻ ions
 - NaCl is said to have 4 "formula units" per unit cell
 - Denoted with Z = 4



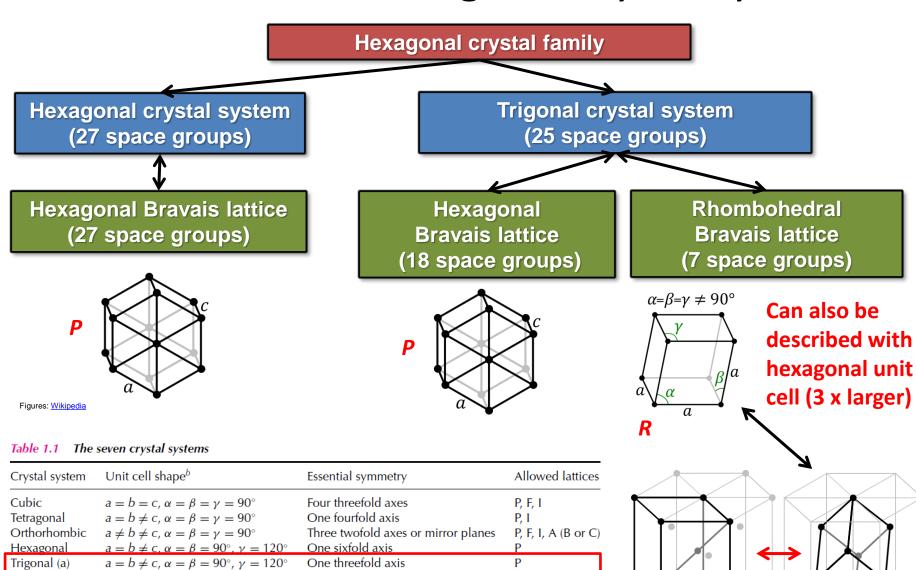
Figures: AJK



Extra slides

"Nice-to-know"-type material that is not needed for completing the exercises

More details on trigonal crystal system



P, C

One threefold axis

None

One twofold axis or mirror plane

Trigonal (b)

Triclinic

Monoclinic^a

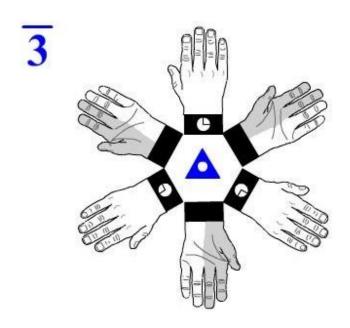
a = b = c, $\alpha = \beta = \gamma \neq 90^{\circ}$

 $a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$

 $a \neq b \neq c$, $\alpha = \gamma = 90^{\circ}$, $\beta \neq 90^{\circ}$

Symmetry elements in crystals: Inversion axis

- Denoted by \overline{n} . Rotation of 360° / n followed by inversion.
- $\overline{1}$ = equal to inversion center
- $\overline{2}$ = equal to mirror plane (m)
- $\overline{3}$, $\overline{4}$, $\overline{6}$ are actual inversion axes
- For example, $\overline{3}$ inversion axis (equal to S_6 improper rotation):



Symmetry elements in crystals: Glide plane

- Reflection followed by a translation
 - Simple glide planes are denoted as a, b, c (axis of the glide)
 - n glide: reflection followed by translation of 1/2 along two cell edges
 - d glide (diamond glide): reflection followed by translation of 1/4 along
 two cell edges

Glide plane (parallel to a, reflection followed by a translation of ½a)

a

y
a

a

a

a

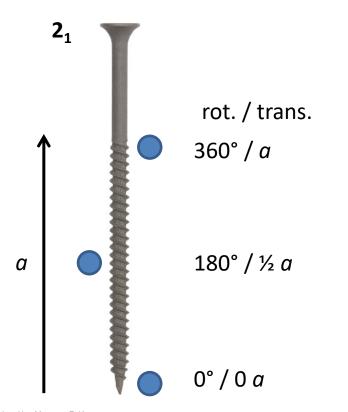
a

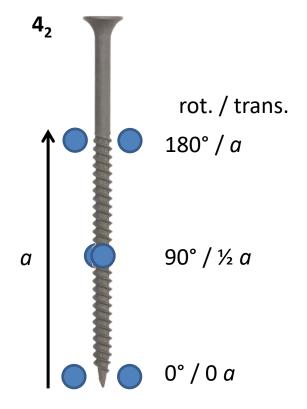
a

Figure: AJK

Symmetry elements in crystals: Screw axis

- Combination of rotation and translation, denoted as x_v :
 - Rotation of 360° / x; translation of y / x units along the screw axis
 - -2_1 screw axis: rotation of 360° / 2 = 180°; translation of 1/2 units
 - -4_2 screw axis: rotation of 360° / 4 = 90°; translation of 2/4 = 1/2 units





Quasicrystals (1)

- Quasicrystals exhibit long-range order, but do not have translational periodicity
- Quasicrystals can show "forbidden" rotational symmetries of 5, 8, 10, 12, etc.
- Discovered by Daniel Schechtman in 1982, Nobel prize 2011 (<u>link</u>)

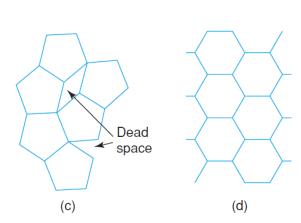
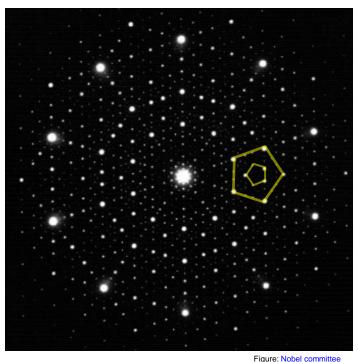
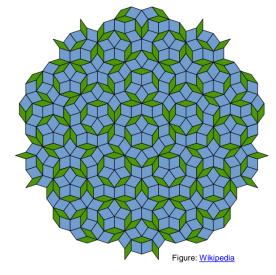


Figure 1.4. (c) the impossibility of forming a complete layer of pentagons; (d) a complete layer of hexagons



Electron diffraction pattern from an icosahedral quasicrystal

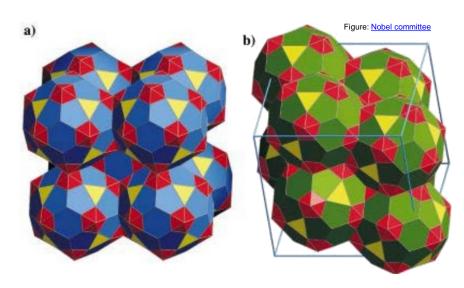


Penrose tiling (no translational periodicity)

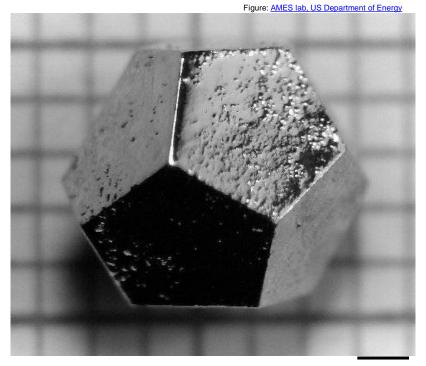
Ref: West p. 5-6

Quasicrystals (2)

- Icosahedral symmetry is allowed together with translational symmetry in 6dimensional space
- Refinement of quasicrystal models involves the refinement of the position and shape of the atomic surfaces in 6-dimensional space for icosahedral quasicrystals



Polyhedral arrangements in icosahedral quasicrystal *approximants* in the system Ca-Cd (*Angew. Chem.* **2001**, *40*, 4037-4039)



Ho-Mg-Zn dodecahedral quasicrystal (*Phys. Rev. B* **1999**, *59*, 308–321)

Perfect crystals do not exist

- Crystal structures from X-ray diffraction are "average" structures
- Real crystals possess defects (lecture 13)
- Point defects, line defects, grain boundaries, stacking faults, bulk defects, etc.
- Some defects can be characterized using techniques other than XRD (lecture 8)

```
CI Na CI Na CI Na CI Na CI
Na CI Na CI Na CI Na CI
Na CI Na CI Na CI Na CI
Na CI Na CI Na CI Na CI
Na CI Na CI Na CI Na CI
Na CI Na CI Na CI Na CI
Na CI Na CI Na CI Na CI Na
CI Na CI Na CI Na CI Na CI
Na CI Na CI Na CI Na CI
Na CI Na CI Na CI Na CI
Na CI Na CI Na CI Na CI
```

Figure 2.2 2D representation of a Schottky defect with cation and anion vacancies.