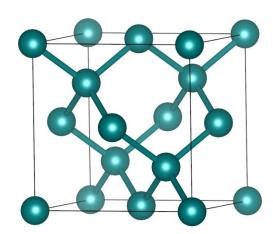
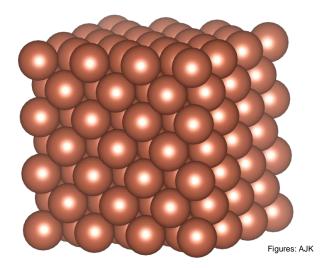

Lecture 3: Bonding in solids and description of crystal structures

- Bonding in solids
 - Electronegativity
 - Atomic and ionic radii
 - (Band theory in Lecture 4)
- Description of crystal structures
 - Coordination
 - Close packed structures
 - Metallic structures
 - Ionic structures with interstitial sites
- Concept of a structure type



Strong chemical bonding


- The chemical bonds in solids are usually classified as ionic, covalent, or metallic
 - The focus of the lecture is on these bonding types
- Examples of weaker (non-covalent) bond types: hydrogen bonds, halogen bonds

Ionic bonding (*e.g.* NaCl) Typically high symmetry and high coordination numbers.

Covalent bonding (e.g. Si) Typically highly directional bonds. Smaller coordination numbers than for ionic structures.

Metallic bonding (*e.g.* Cu) Delocalized valence electrons. Can result in high coordination and close packing of atoms

Electronegativity

Electronegativity

- The concept of *electronegativity* is an important tool for estimating how ionic or covalent a chemical bond is
- The electronegativity is a parameter introduced by Linus Pauling as a measure of the power of an atom to attract electrons to itself when it is part of a compound
- Pauling defined the difference of two electronegativities χ_A and χ_B in terms of bond dissociation energies, D_0 :

 $|\chi_{A} - \chi_{B}| = \{D_{0}(AB) - \frac{1}{2}[D_{0}(AA) + D_{0}(BB)]\}^{1/2}$

- D₀(AA) and D₀(BB) are the dissociation energies of A–A and B–B bonds and D₀(AB) is the dissociation energy of an A–B bond, all in eV units
- The expression gives differences of electronegativities
- To establish an absolute scale, Pauling set the electronegativity of **fluorine** to 3.98 (unitless quantity)

Pauling Electronegativities

V·T·E						I	Periodic	table o	f electro	onegativ	ity by P	auling s	cale						
					→ Ato	mic radiu	s decreas	$es \rightarrow lon$	ization er	nergy incr	eases \rightarrow	Electrone	gativity in	creases -	\rightarrow				
	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Group	•																		
↓ Period																			
1	H 2.20																		He
2	Li	Be												В	С	N	0	F	Ne
2	0.98	1.57												2.04	2.55	3.04	3.44	3.98	
3	Na	Mg												Al	Si	Р	S	CI	Ar
	0.93	1.31												1.61	1.90	2.19	2.58	3.16	
4	К	Са		Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	0.82	1.00		1.36	1.54	1.63	1.66	1.55	1.83	1.88	1.91	1.90	1.65	1.81	2.01	2.18	2.55	2.96	3.00
5	Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln 1.70	Sn	Sb	Te	1	Xe
	0.82	0.95		1.22	1.33	1.6	2.16	1.9	2.2	2.28	2.20	1.93	1.69	1.78	1.96	2.05	2.1	2.66	2.60
6	Cs 0.79	Ba 0.89	*	Lu 1.27	Hf 1.3	Ta 1.5	W 2.36	Re 1.9	Os 2.2	lr 2.20	Pt 2.28	Au 2.54	Hg 2.00	TI 1.62	Pb 2.33	Bi 2.02	Po 2.0	At 2.2	Rn 2.2
	Fr	Ra		Lr	Rf	Db		Bh	Hs	Mt	Ds		Cn	Nh	FI	Mc	Lv	Ts	
7	>0.79 ^[en 1]	ка 0.9	*	1.3 ^[en 2]	EXI	DD	Sg	БП	ПS	IVIL	DS	Rg	Ch	INIT		IVIC	LV	15	Og
		0.0		1.0															
				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
			*	1.1	1.12	1.13	1.14	1.13	1.17	1.2	1.2	1.1	1.22	1.23	1.24	1.25	1.1		
				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Em	Md	No		
			**	1.1	1.3	1.5	1.38	1.36	1.28	1.13	1.28	1.3	1.3	1.3	1.3	1.3	1.3		

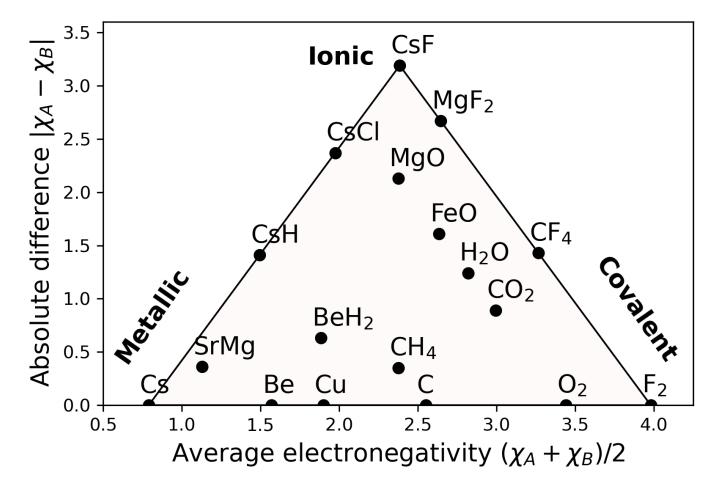
Figure: Wikipedia

Allen Electronegativities

- Pauling's electronegativity scale is the best known, but there are also others
- Allen determined his scale based on spectroscopic data (one-electron energies)
- Good correlation with Pauling electronegativities for the s- and p-block elements, but somewhat ambiguous for *d*- and *f*-metals

V·T·E							Electr	onega	tivity ı	using t	he Alle	en scale						
$\mathbf{Group} \rightarrow$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
↓ Period																		
1	н																	Нө
	2.300																	4.160
2	Li	Be											В	С	Ν	0	F	Ne
	0.912	1.576											2.051	2.544	3.066	3.610	4.193	4.787
3	Na	Mg											Al	Si	Р	S	CI	Ar
Ŭ	0.869	1.293											1.613	1.916	2.253	2.589	2.869	3.242
4	К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	0.734	1.034	1.19	1.38	1.53	1.65	1.75	1.80	1.84	1.88	1.85	1.588	1.756	1.994	2.211	2.424	2.685	2.966
5	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Ŭ	0.706	0.963	1.12	1.32	1.41	1.47	1.51	1.54	1.56	1.58	1.87	1.521	1.656	1.824	1.984	2.158	2.359	2.582
6	Cs	Ва	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Ŭ	0.659	0.881	1.09	1.16	1.34	1.47	1.60	1.65	1.68	1.72	1.92	1.765	1.789	1.854	2.01	2.19	2.39	2.60
7	Fr	Ra																
· '	0.67	0.89																

Figure: Wikipedia


Using electronegativities (χ)

- Electronegativities can be used to estimate the *polarity* of a bond
- There is **no** clear-cut division between covalent and ionic bonds!
- Note that the electronegativity difference $|\chi_A \chi_B| = 0$ both for **fully covalent** (*e.g.* C–C) and **fully metallic** bonds (*e.g.* Li–Li)
- Quantum chemical calculations can help to understand the nature of the bonding better
 - Even then, many controversies about various analysis methods exist
 - More discussion about the analysis methods in Lecture 4

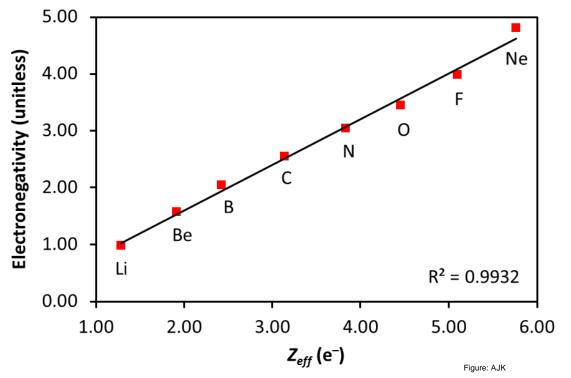
Bond A-B	$ \chi_{A} - \chi_{B} $	
Cs–F	3.19	Ionic
Na–Cl	2.23	
H–F	1.78	
Fe-O	1.61	
Si–O	1.54	
Zn–S	0.93	
C–H	0.35	Covalen

van Arkel-Ketalaar Triangles

- The electronegativies can be used to arrange binary compounds into so-called van Arkel-Ketalaar Triangles
- Very illustrative concept for estimating the nature of a chemical bond

What really determines χ ?

- Pauling determined the χ values from bond dissociation energies
- Allen used one-electron energies from spectroscopic data
- The periodic trends of electronegativity (and chemical bonding) can be discussed in terms of *effective nuclear charge* Z_{eff} experienced by the valence electrons
- $Z_{eff} = Z \sigma$, where Z is the atomic number and σ is **shielding** by other electrons
- The shielding can be determined from simple rules such as Slater's rules or from quantum chemical calculations
 - Clementi, E.; Raimondi, D. L., "Atomic Screening Constants from SCF Functions", J. Chem. Phys 1963, 38, 2686–2689
- Higher the Z_{eff} , the tighter the valence electrons are "bound" to the atom

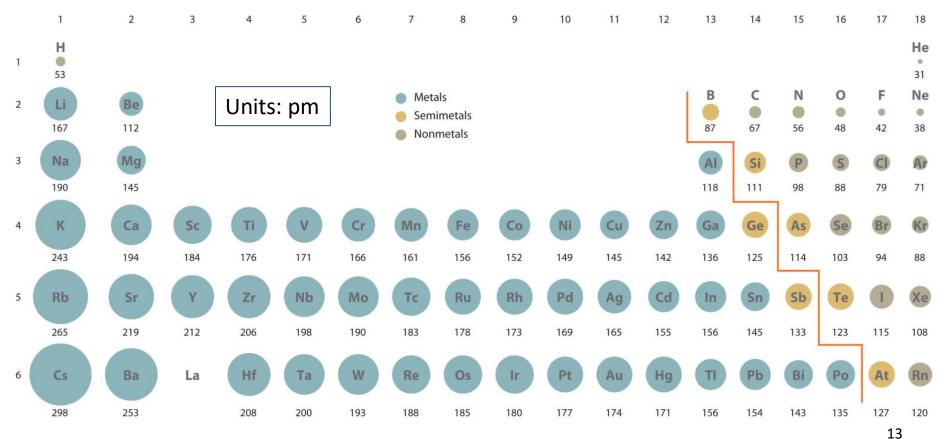

Element	Li	Ве	В	С	Ν	0	F	Ne
Ζ	3	4	5	6	7	8	9	10
Z _{eff}	1.28	1.91	2.42	3.14	3.83	4.45	5.10	5.76
χ	0.98	1.57	2.04	2.55	3.04	3.44	3.98	(4.8)*

* Allen electronegativity

χ vs. Z_{eff} for the 2nd period

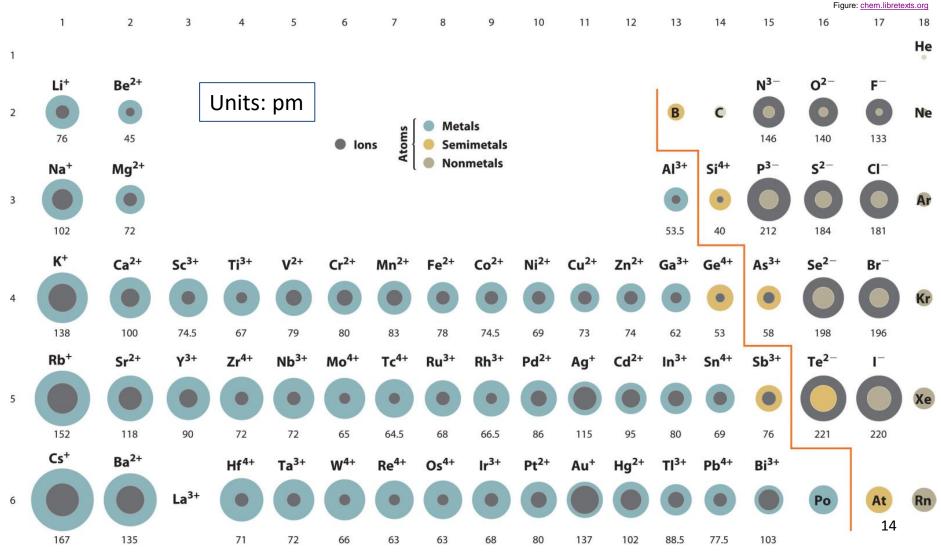
- χ and Z_{eff} do actually show a beautiful correlation when moving from left to right in the periodic table
- However, Z_{eff} of the valence electrons actually *increases* when moving down in periodic table (e.g. Z_{eff} (Cl) = 6.1 e⁻), while electronegativity *decreases*
- Full consideration of orbital shapes *etc.* required to understand the χ values
- The moral of the story: simple explanations of complex manyelectron systems may sound nice, but are probably not right

Electronegativity vs. Z_{eff}


Atomic radii

Atomic radii

- When the crystal structure of a material is available, the distances between atoms are often a very useful measure of the possible bonding between them
- However, the size of an atom or ion is not easy to define because there is not clear-cut definition for the "border" of an atom
- Various definitions for **atomic**, **ionic**, **covalent**, and **van der Waals** radii exist, here the following datasets are discussed:
 - Atomic radii of neutral atoms from quantum chemical calculations (E. Clementi *et al. J. Chem. Phys.* **1967**, *47*, 1300).
 - Ionic radii from experimental data (R. D. Shannon, Acta Cryst. 1976, 32, 751)
 - Covalent radii from quantum chemical calculations (P. Pyykkö, M. Atsumi, Chem. Eur. J. 2009, 15, 186)
 - van der Waals radii from experimental and quantum chemical data (Bondi, A. J. Phys. Chem. 1964, 68, 441; Truhlar et al. J. Phys. Chem. A, 2009, 113, 5806;
 S. Alvarez, Dalton Trans. 2013, 42, 8617).


Atomic radii for neutral atoms

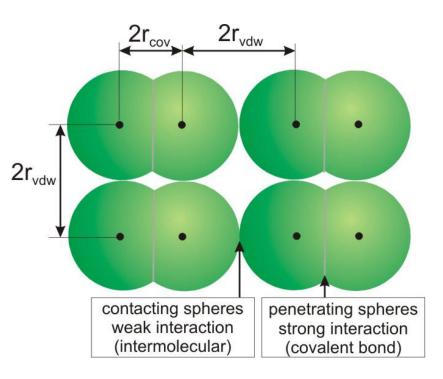
- Radii decrease when moving from left to right (Z_{eff} increases)
- Radii increase when moving down in the group (principal quantum number *n* increases, orbitals become more expanded)
- Useful for the illustration of periodic trends, but not that valuable otherwise

Shannon ionic radii

Ionic Radii (in pm units) of the most common ionic states of the s-, p-, and d-block elements. **Gray** circles indicate the sizes of the ions shown; **colored** circles indicate the sizes of the neutral atoms. Data available at: <u>http://abulafia.mt.ic.ac.uk/shannon/ptable.php</u>).

Applications of the ionic radii

- The ionic radii have been derived from a large number of experimental data
- They can be used for example:
 - To investigate whether a new crystal structure shows ionic bonding
 - To investigate whether a bond that is expected to be ionic has a reasonable length (even pointing out possible problems with the crystal structure)
- For example: The Na-Cl distance in solid NaCl is 282 pm, this compares well with the sum of the ionic radii: of Na⁺ (102 pm) and Cl⁻ (181 pm) = 283 pm
- Another application is the *radius ratio rules* for ionic structures (next slide)
- Note that the radii depend on the formal charge and the coordination of the ion!
 - The charge is more important than the coordination (there is not data for all coordination numbers)
 - Figure on the previous slide shows only the most common ionic state. The full dataset at <u>http://abulafia.mt.ic.ac.uk/shannon/ptable.php</u> has more details.


1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H																	2 He
32	D,	nde	kä (Salf		nci	cto	n+ (مام	at r	adi					2 ne 46
-	Py	уук	KU .	Jell	-00	1151	Sle	nt C	.00	alei	ILI	au					-
-		_															-
3 Li	4 Be				Ζ	Radiu	ıs, r _n :	Symbol				5 B	6 C	7 N	8 O	9 F	10 Ne
133	102					r	1					85	75	71	63	64	67
124	90					r	2					78	67	60	57	59	96
-	85					r	3					73	60	54	53	53	-
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
155	139											126	116	111	103	99	96
160	132											113	107	102	94	95	107
-	127											111	102	94	95	93	96
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
196	171	148	136	134	122	119	116	111	110	112	118	124	121	121	116	114	117
193	147	116	117	112	111	105	109	103	101	115	120	117	111	114	107	109	121
-	133	114	108	106	103	103	102	96	101	120	-	121	114	106	107	110	108
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
210	185	163	154	147	138	128	125	125	120	128	136	142	140	140	136	133	131
202	157	130	127	125	121	120	114	110	117	139	144	136	130	133	128	129	135
- 55 Cs	139 56 Ba	124	121 72 Hf	116 73 Ta	113 74 W	110 75 Re	103 76 Os	106 77 Ir	112 78 Pt	137 79 Au	- 80 Hg	146 81 Tl	132 82 Pb	127 83 Bi	121 84 Po	125 85 At	122 86 Rn
232	о Ва 196	La-Lu						77 Ir 122			0						
232	196		$152 \\ 128$	146 126	137 120	131 119	129 116	1122	$123 \\ 112$	124 121	$133 \\ 142$	144 142	$\frac{144}{135}$	151 141	145 135	147 138	142 145
209	149		128	119	120	119	109	107	112	121	142	142	135	135	135	138	133
- 87 Fr	149 88 Ra	Ac-Lr	122 104 Rf	105 Db	106 Sg	107 Bh	109 108 Hs	107 109 Mt	110 Ds	123 111 Rg	- 112	113	114	115	129	117	118
223	201	AC-LI	104 RI 157	105 Db	100 Sg 143	107 Bi	108 Hs 134	109 Mt 129	110 Ds	111 Ng	122	136	114 143	162	175	165	157
218	173		140	136	128	128	125	125	116	116	137	150	140	102	110	105	107
-	159		131	126	120	119	118	113	112	118	130						
	100		101	120	121	110	110	110	112	110	100						
		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	1
		180	163	176	174	173	172	168	169	168	167	166	165	164	170	162	
		139	137	138	137	135	134	134	135	135	133	133	133	131	129	131	
		139	131	128					132							131	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	$100~{\rm Fm}$	101 Md	102 No	$103 \mathrm{Lr}$	1
		186	175	169	170	171	172	166	166	168	168	165	167	173	176	161	
		153	143	138	134	136	135	135	136	139	140	140		139	159	141	
		140	136	129	118	116											

Self-Consistent Covalent Radii

- The Pyykkö Self-Consistent Covalent radii have been derived from a large number of experimental and computational data
- Similar to ionic radii, the covalent radii can be used for example:
 - To check whether a new crystal structure shows covalent bonding
 - To check whether an bond that is expected to be covalent has a reasonable length (even pointing out possible problems with the crystal structure)
- For example: The C-C distance in diamond is 154 pm, this compares well with the sum of the single-bond covalent radii 75 + 75 = 150 pm
- The availability of double and triple bond radii makes the data set useful for interpreting new crystal structures
- Original papers:
 - P. Pyykkö, M. Atsumi, *Chem. Eur. J.* **2009**, *15*, 186.
 - P. Pyykkö, M. Atsumi, *Chem. Eur. J.* **2009**, *15*, 12770.
 - P. Pyykkö, S. Riedel, M. Patzschke, *Chem. Eur. J.* **2005**, *11*, 3511.
- Another (experimental) set of radii: Alvarez et al. Dalton Trans., 2008, 2832.

van der Waals radii

- Significantly larger than covalent radii
- Can be used to check for weak interactions / contacts in a crystal structure
- The dataset of A. Bondi (J. Phys. Chem. 1964, 68, 441) was a major milestone
- Historically vdW radii have been rather difficult to determine for *d*-/*f*-metals
- The values below are a combination of experimental and quantum chemical values

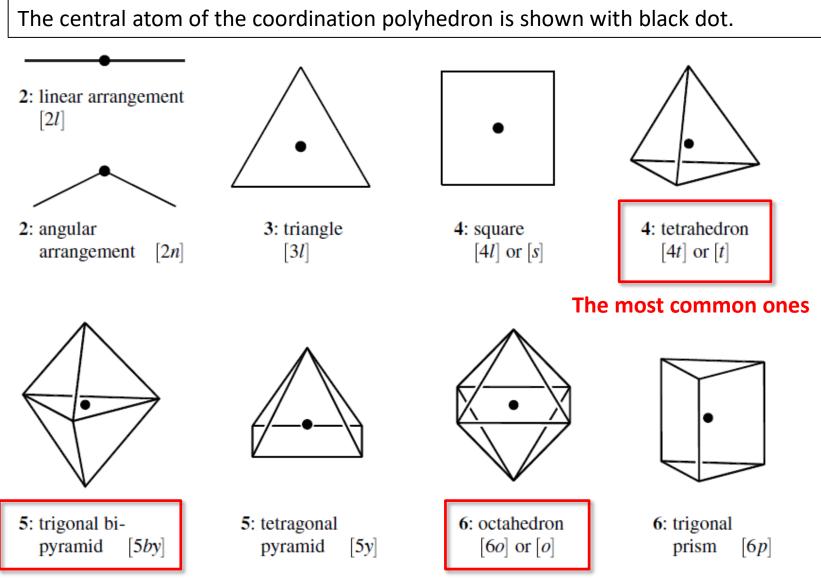
TABLE 12: Consistent van der Waals Radii for AllMain-Group Elements^a

	-						
1	2	13	14	15	16	17	18
Н							He
1.10							1.40
Li	Be	В	С	Ν	0	F	Ne
1.81	1.53	1.92	1.70	1.55	1.52	1.47	1.54
Na	Mg	Al	Si	Р	S	Cl	Ar
2.27	1.73	1.84	2.10	1.80	1.80	1.75	1.88
Κ	Ca	Ga	Ge	As	Se	Br	Kr
2.75	2.31	1.87	2.11	1.85	1.90	1.83	2.02
Rb	Sr	In	Sn	Sb	Te	Ι	Xe
3.03	2.49	1.93	2.17	2.06	2.06	1.98	2.16
Cs	Ba	T1	Pb	Bi	Ро	At	Rn
3.43	2.68	1.96	2.02	2.07	1.97	2.02	2.20
Fr	Ra						
3.48	2.83						

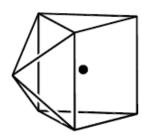
Ref: Truhlar et al. J. Phys. Chem. A, 2009, 113, 5806

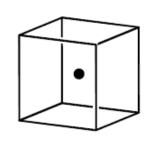
Alvarez van der Waals radii

- S. Alvarez, A cartography of the van der Waals territories, *Dalton Trans.* **2013**, *42*, 8617 (<u>link</u>).
- The most recent and the most comprehensive set of vdW radii
- Analysis of more than five million interatomic "non-bonded" distances in the Cambridge Structural Database
- Proposal of a consistent set of vdW radii for most naturally occurring elements
- Paper available in MyCourses (Materials -> Scientific papers)
- See r_{vdW} values in Table 1. Bondi values are given for comparison:

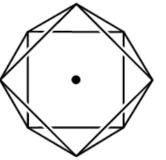

Z	Е	Bondi	Batsanov	$r_{\rm vdW}$	$ ho_{ m vdW}$ (%)	Data
1	Н	1.20		1.20	66	9888
2	Не	1.40		[1.43]		12
3	Li	1.81	2.2	2.12	76	11 067
4	Be		1.9	1.98	90	3515
5	В		1.8	1.91	70	152 194
6	С	1.70	1.7	1.77	82	385 475
7	Ν	1.55	1.6	1.66	52	187 967
8	Ο	1.52	1.55	1.50	73	420 207
9	F	1.47	1.5	1.46	66	497 497
10	Ne	1.54		[1.58]		12

Descriptive structural chemistry and structure types


Descriptive structural chemistry and structure types

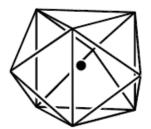

- We have already discussed the structure of crystalline materials from the perspective of the unit cell and lattice parameters (Lecture 1)
- The nature of the chemical bonding affects how a certain structure is described
 - For example, structures with metal cations can typically be described using coordination polyhedra
 - This also works the other way around: the local structure of a solid can immediately suggest a certain type of chemical bonding
- Typical concepts used in descriptive structural chemistry
 - Coordination
 - Linked (coordination) polyhedra
 - Close-packed structures (possibly with interstitial sites)
- Whenever possible, solid state structures are assigned to some structure type
 - Some examples of structure types: rock salt, zinc blende, wurtzite, ...
 - Summary of structure types: <u>https://wiki.aalto.fi/display/SSC/Structure+types</u>

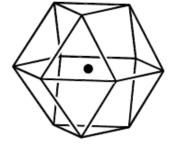
Coordination (1)


Coordination (2)

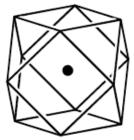


7: capped trigonal prism [6p1c]

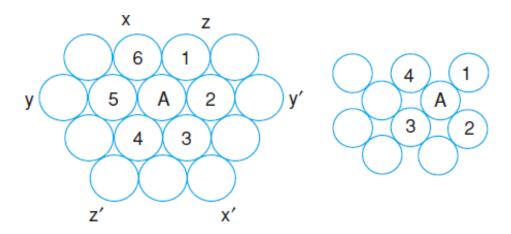

8: cube [8*cb*] or [*cb*]



8: square antiprism [8*acb*]

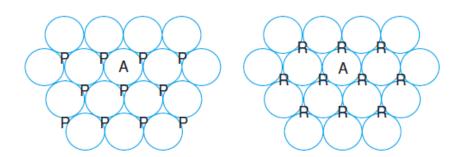

8: dodecahedron [8do] or [do] (dodecahedral = 12 faces. The polyhedron shown is actually a snub disphenoid)

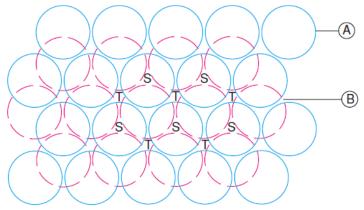
9: triply-capped trigonal prism [6p3c]


12: anticuboctahedron [12*aco*] or [*aco*]

12: cuboctahedron [12co] or [co]

Close Packing (1)

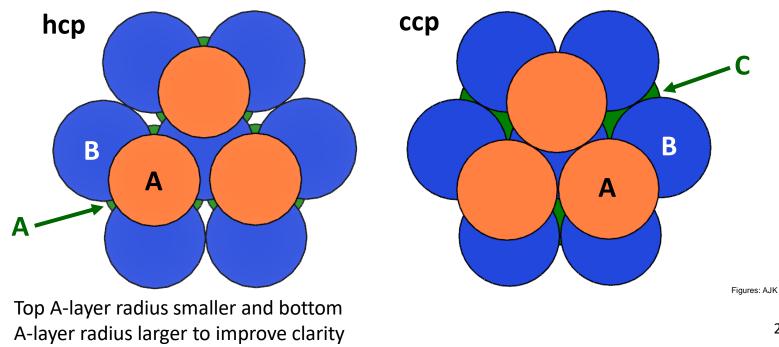

- Many metallic, ionic, covalent, and molecular crystal structures can be described using the concept of **close packing** (*cp*)
- The structures are usually arranged to have the maximum density and can be understood by considering the most efficient way of packing **equal-sized spheres**
- The most efficient way to pack spheres in *two* dimensions is shown below
- Each sphere, *e.g.* **A**, is in contact with six others -> six **nearest neighbours** and the **coordination number**, **CN** = 6 (the largest possible for a planar arrangement)
- MyCourses -> Materials -> Data files for lectures -> Lecture 3 -> Close-packing


A *close-packed* layer of equal-sized spheres. Three close packed directions xx', yy', and zz' occur. A non-*close-packed* layer with coordination number 4

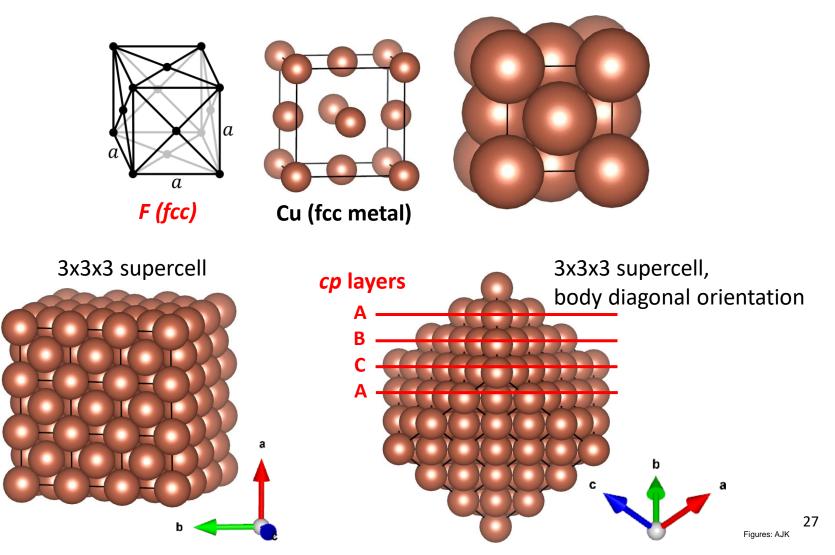
Close Packing (2)

- The most efficient way to pack spheres in *three* dimensions is to stack *cp* layers on top of each other
- There are two simple ways to do this, resulting in **hexagonal close packed** and **cubic close packed** structures
- The most efficient way for two *cp* layers A and B to be in contact is for each sphere of one layer to rest in a hollow between three spheres in the other layer (**P** or **R**)
- Addition of a third *cp* layer can also be done in two ways:
 - Hexagonal close packing (*hcp*): Third layer at **S**, layer sequence ...ABABAB...
 - Cubic close packing (*ccp*): Third layer at **T**, layer sequence ...ABCABC...

Alternative positions **P** and **R** for a second *cp* layer

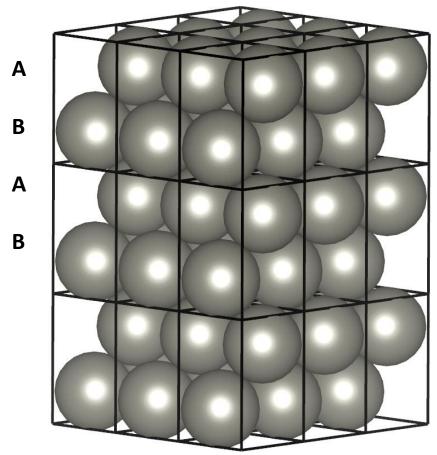


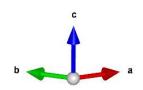
Two cp layers A and B. The B layer occupies the **P** positions


Ref: West p. 20

Close Packing (3)

- The simplest layer stacking sequences *hcp* and *ccp* are the most important ones
- More complex sequences with larger repeat units, e.g. ABCACB or ABAC can occur and some of these give rise to the phenomenon of **polytypism**.
- Each sphere is in contact with **12** others (figure: middle atom of the B-layer)
- **74.05%** of the total volume is occupied by spheres (maximum density possible in structures constructed of spheres of only one size)




ccp arrangement corresponds to face-centered cubic Bravais lattice

hcp

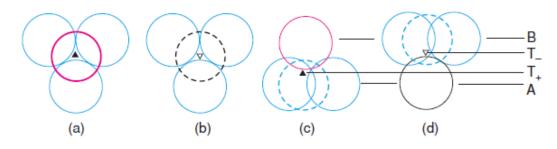
- *hcp* structure of Zn metal (space group $P6_3/mmc$)
 - The structure is slightly distorted, with 6 neighbors at 2.66 Å and 6 at 2.91 Å

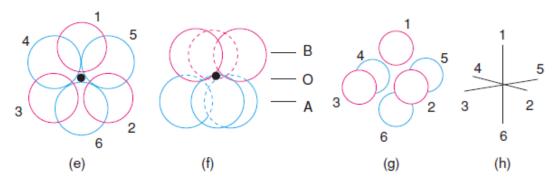
Structures of common metals

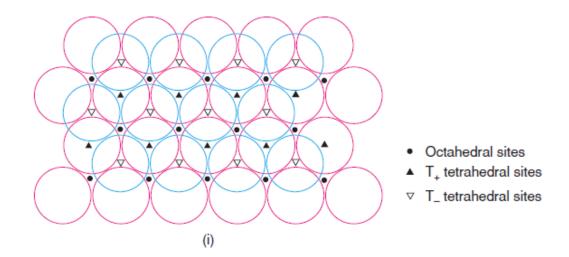
- Most metals crystallize in one of the three arrangements: *ccp* (*fcc*), *hcp*, or *bcc*
 - bcc is not a close-packed structure!
- It is still not well understood why particular metals prefer one structure type to another
- Quantum chemical calculations reveal that the lattice energies of *hcp* and *ccp* metal structures are comparable
- Therefore, the structure observed in a particular case probably depends on fine details of the bonding and the band structure of the metal

C	сср		hcp		bcc		
Metal	a/Å	Metal	a/Å	c/Å	Metal	a/Å	
Cu	3.6147	Be	2.2856	3.5842	Fe	2.8664	
Ag	4.0857	Mg	3.2094	5.2105	Cr	2.8846	
Au	4.0783	Zn	2.6649	4.9468	Mo	3.1469	
Al	4.0495	Cd	2.9788	5.6167	W	3.1650	
Ni	3.5240	Ti	2.9506	4.6788	Та	3.3026	
Pb	4.9502	Zr	3.2312	5.1477	Ba	5.019	

 Table 1.3
 Structures and unit cell dimensions of some common metals

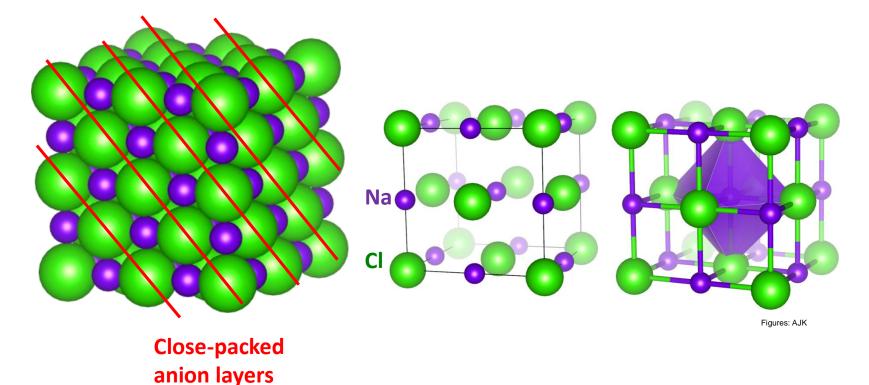

Periodic table of crystal structures


1						N	$\langle N \rangle$			\times	\mathbb{N}						2
Н							┥╽┝		↑ \/	$\overline{\mathbf{X}}$							He
HEX		Lege	end:						l 🕅	$\wedge \times$							HCP
3	4								a 🖣		a	5	6	7	8	9	10
Li	Be	/.	. = mixed	l structı	ure " 🛓				a			В	С	N	0	F	Ne
BCC	HCP				·	а	• •	а	-• •	а		RHO	HEX	HEX	SC	SC	FCC
11	12	[]	= predict	ed		•		(1)		- / (13	14	15	16	17	18
Na	Mg	stru	cture			Ρ		(bcc)		F (fcc)		AI	Si	Р	S	CI	Ar
BCC	HCP											FCC	DC	ORTH	ORTH	ORTH	FCC
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
BCC	FCC	HCP	HCP	BCC	BCC	BCC	BCC	HCP	FCC	FCC	HCP	ORTH	DC	RHO	HEX	ORTH	FCC
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
BCC	FCC	HCP	HCP	BCC	BCC	HCP	HCP	FCC	FCC	FCC	HCP	TETR	TETR	RHO	HEX	ORTH	FCC
55	56	57*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
BCC	BCC	DHCP	HCP	BCC/TETR	BCC	HCP	HCP	FCC	FCC	FCC	RHO	HCP	FCC	RHO	SC/RHO	[FCC]	FCC
87	88	89**	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
[BCC]	BCC	FCC	[HCP]	[BCC]	[BCC]	[HCP]	[HCP]	[FCC]	[BCC]	[BCC]	[HCP]						[FCC]
									~ ~ ~	05		07			70		
			58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		*	Ce	Pr DHCP	Nd DHCP	Pm	Sm	Eu BCC	Gd	Tb HCP	Dy HCP	Ho	Er HCP	Tm	Yb FCC	Lu HCP	
			DHCP/FCC			DHCP	RHO		HCP			HCP		HCP			
			90	91	92 U	93 No	94 Du	95	96	97	98	99	100	101	102	103	
		**	Th FCC	Pa TETR	ORTH	Np ORTH	Pu MON	Am DHCP	Cm DHCP	Bk DHCP	Cf DHCP	Es FCC	Fm	Md	No	Lr	
			FCC	IEIR	ORTH	ORTH	MON	OHCP	OHCP	OHCP	DHCP	FUU	[FCC]	[FCC]	[FCC]	[HCP]	


Figures: Wikipedia

Close packing in ionic materials

- When the anion is larger than the cation in an ionic material:
 - The structures often contain **close-packed layers of anions**
 - The cations occupy **interstitial sites** between the close-packed layers
- For example: NaCl, Al₂O₃, Na₂O, and ZnO.
- In such structures there are several variables:
 - Anion stacking sequence (*hcp* or *ccp*)
 - Number and type of interstitial sites occupied by cations.
 - Tetrahedral and octahedral interstitial sites are present in cp structures
- Summary of structure types: <u>https://wiki.aalto.fi/display/SSC/Structure+types</u>


Figure 1.23 Tetrahedral and octahedral sites between two cp anion layers, seen from different perspectives. (a, b) Projection down threefold axis of T_+ , T_- sites. (c, d) Tetrahedral sites edge-on. (e) Projection down threefold axis of octahedral site and (f) seen edge-on. (g, h) Conventional representation of octahedral site. (i) Distribution of T_+ , T_- , O sites between two cp layers.

T₊, T_, and O sites

Ref: West p. 27

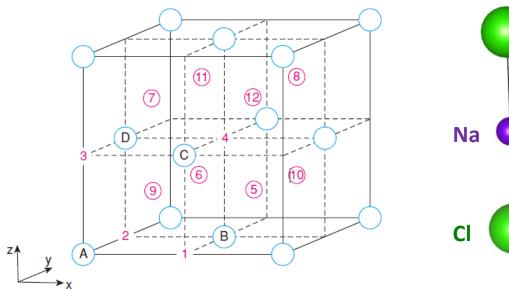
Octahedral interstitials in NaCl structure

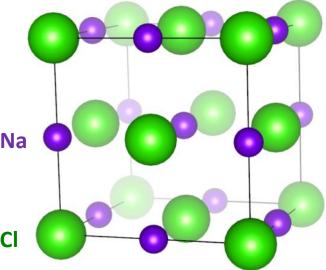
- Close-packed layers of Cl⁻ anions
- Na⁺ cations in the octahedral interstitials
- https://wiki.aalto.fi/pages/viewpage.action?pageId=165132721

Examples of interstitial sites

Ref: West p. 28

• It is rare that all the interstitial sites in a *cp* structure are occupied


Table 1.4 Some close packed structures


• Often one set is full or partly occupied and the remaining sets are empty

		Interstitial sites		
Anion arrangement	T ₊	T_	0	Examples
сср	_	_	1	NaCl, rock salt
-	1	_	_	ZnS, blende or sphalerite
	1/8	1/8	1/2	$MgAl_2O_4$, spinel
	_	_	1/2	$CdCl_2$
	_	_	1/3	CrCl ₃
	1	1	_	K_2O , antifluorite
hcp	_	_	1	NiAs
-	1	_	_	ZnS, wurtzite
	_	_	1/2	Cdl_2
	_	_	1/2	TiO_2 , rutile ^a
	_	_	2/3	Al_2O_3 , corundum
	1/8	1/8	1/2	Mg ₂ SiO ₄ , olivine
<i>сср '</i> BaO₃' layers	-	_	1/4	BaTiO ₃ , perovskite

^aThe hcp oxide layers in rutile are not planar but are buckled; the oxide arrangement may alternatively be described as tetragonal packed, tp. ³⁴

Cation sites in an fcc anion array

Figure 1.24 Available cation sites, 1–12, in an fcc anion array.

The various cation positions in Fig. 1.24 have the following coordinates:

octahedral	$1: \frac{1}{2}00$	$2:0^{1}/_{2}0$	$3:00^{1}/_{2}$	4: ¹ / ₂ ¹ / ₂ ¹ / ₂
tetrahedral, T ₊	5: ³ / ₄ ¹ / ₄ ¹ / ₄	6: ¹ / ₄ ³ / ₄ ¹ / ₄	7: ¹ / ₄ ¹ / ₄ ³ / ₄	8: 3/4 3/4 3/4
tetrahedral, T_	9: 1/4 1/4 1/4	10: ³ / ₄ ³ / ₄ ¹ / ₄	11: ¹ / ₄ ³ / ₄ ³ / ₄	12: ³ / ₄ ¹ / ₄ ³ / ₄