Lecture 4: Band theory
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projected DOS

e Short introduction to quantum chemical
materials modelling

* Band theory of solids
— Molecules vs. solids
— Band structures
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* Analysis of chemical bonding in solids

Solid State Chemistry CHEM-E4155, Antti Karttunen, Aalto University, 2022



Quantum chemical
materials modelling

* Quantum chemical methods allow to study chemical
systems at the level of individual electrons.

— Exact solutions are not feasible, approximate
methods needed

— The most common method: Density Functional
Theory (DFT)

— Powerful computational resources are needed

* Quantum chemical materials modelling techniques
can be used to:
1. Assist in the interpretation and explanation of
experimental results

2. Predict the existence and properties of new
materials and molecules

Figures: AJK 2



Solid state chemistry with
Density Functional Theory (DFT)

e The vast majority of computational solid-state chemistry is currently carried out with
Density Functional Theory (DFT)

— Currently the most practical computational approach for solids
— Typically, 10! — 10% atoms in the unit cell, 103 and beyond with supercomputers
* No system-dependent parametrization required (ab initio / first principles)

— Only the universal physical constants and the unit cell coordinates of the system
are required to predict the properties of the system
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From molecular orbitals to
electronic band structure
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Molecular orbital theory (1)

Molecular orbital Oxygen molecule O,

diagram of hydrogen Atom Mole;ile Atom
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Ref: Atkins’ Physical Chemistry, 9th ed. p. 383



Molecular orbital theory (2)

, Antibonding MO
Molecular orbitals (MO) are constructed from a
Linear Combination of Atomic Orbitals (LCAO):
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The MO coefficients c,; and the energies of the MOs
can be calculated with quantum chemical methods.
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For a longer introduction on MO theory, see for ‘ -

example Atkins’ Physical Chemistry or LibreTexts. AO A /
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https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_Chem1_(Lower)/09%3A_Chemical_Bonding_and_Molecular_Structure/9.08%3A_Molecular_Orbital_Theory

Bonding in Extended Structures

* Short introduction to band structures using
two 1D model structures (infinite chains):

1. Equally spaced H atoms
2. Stack of square planar PtH,*




From H, to a large ring of H atoms
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Bloch functions for the H atom chain

Use translational symmetry and write the

wave function ¢ of the H atom chain as a

linear combination of the H(1s) orbitals ¥,
o

n=0 1 2 4 ...
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Bloch function

Phase factor (translation)
The resulting wave functions for two k: = ’ £ (k)
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= - X+ X = X+ Graphs of E(k) vs. k are called band structures. You can be sure that
= Xo 1 e 3 they can be much more complicated than this simple one. However, no

_@_O—@—O— matter how complicated they are, they can still be understood.



Band width or dispersion

Wave functions for two k:
_ 0 -
k=0 \%"Ze xn";xn
= xo-r Xyt X2+X3+ LR

k=% Vg = ; emn Xp = ; ('1)n Xn
a

= X = Xg* Xp= Xz + +-

Let’s vary the lattice parameter a

The band width is set by inter- unit cell
overlap. Band width = dispersion

Large band width means that the atoms in
a unit cell are interacting with the atoms in
neighboring unit cells

e Small band width (flat band) means that
the atoms in a unit cell are not interacting
with the neighboring unit cells
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The band structure of a chain of hydrogen

atoms spaced 3, 2, and 1 A apart.
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Stack of square planar PtH,*
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Band structures in real solids
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Band structures in real solids

* Inthe 1D chains discussed above, it was enough to consider the band dispersion

curves E(k) for one line (0 -> rt/a)

* In 3D solids, k is called the wave vector and has three components (k,, ky, k,)

* E(k) needs to be considered for several lines within the first Brillouin zone

— Primitive cell in reciprocal space, uniquely defined for all Bravais lattices

*  Where do the band energies come from?

— Quantum chemical calculations (usually density functional theory, DFT)

— They can be measured also experimentally with e.g. electron cyclotron

resonance (not that easily, though)

\b,

Brillouin zone of an

Silicon (Fd-3m) FCC lattice (Si)

Figures: AJK
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Energy (eV)
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NaCl: insulator, large
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Band gap: 8.75 eV (DFT)
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Band structure and band gap
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Electronic Density of States




Density of states

The band structures are a powerful description of the electronic structure of a
solid, but often the "spaghetti diagram” does not immediately tell much more than
just the nature of the band gap

A more “chemical” look at the band structure can be obtained with Density of
States diagrams (DOS)

DOS(E)dE = number of levels between E and E + dE

DOS(E) is proportional to the inverse of the slope of E(k) vs. k
— The flatter the band, the greater the density of states at that energy
— “Molecular bands” lead into very sharp features in DOS(E)
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Density of states for PtH, stack
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Figure 8 Band structure and density of states for an eclipsed PtH,*~ stac_lc. The
DOS curves are broadened so that the two-peaked shape of the xy peak in the
DOS is not resolved. 17
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Atom-projected DOS

* |tisalso possible to create atom-projected DOS plots that tell
how different atoms are contributing to the band structure at
certain energies

Band structure Density of states
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The band structure and atom-projected DOS of Cu,O

Ref: Phys. Rev. B 2017, 96, 014304 (DOI). 18


http://doi.org/10.1103/PhysRevB.96.014304

Band structures are reciprocal-space descriptions of the electronic structure
What about real-space views into chemical bonding?

Real-space representations of
chemical bonding in solids




Electron density (p)

vy =3
Na Cl
NaCl (Fm-3m) Total electron density Electron density difference plot
(isovalue 0.008 a.u.). p(Nacl) - p(non-interacting
atoms) (isovalue 0.008 a.u.).

Not much insight into

bonding p has increased in the blue
region and decreased in the red
region compared to a lattice of
isolated Na and Cl atoms. NaCl is
highly ionic.

Figures: AJK
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o oo Selected Crystalline
f),' Orbitals (CO) of silicon

3&/\ LUQOS
o\ T

L
=)

AN

Crystalline orbitals are rather
delocalized (by definition).
Orbital plot isovalues 0.012 a.u.




Band-projected electron densities

Compared to crystalline orbitals, band-projected electron densities often offer a
better view into the bonding
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Band-projected electron density for three
HOCOs (isovalue 0.0015 a.u.)
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