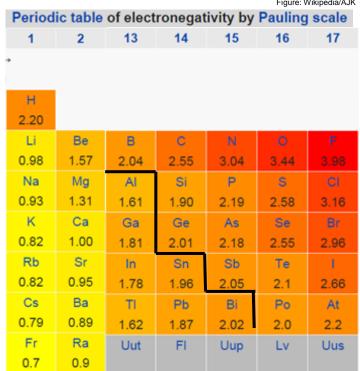

Lecture 10: Main group compounds

- Some general trends and classifications for non-molecular main group compounds
- Allotropes
 - Group 14 elements
 - Group 15 elements
 - Group 16 elements
- Zintl phases
 - General principles
 - Typical examples
 - Zintl ions
 - Semiconducting clathrates

Literature


Main group elements

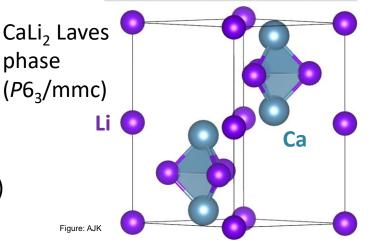

Periodic table of electronegativity by Pauling scale																		
→ Atomic radius decreases → Ionization energy increases → Electronegativity increases →																		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Group – ↓ Period)																	
1	H 2.20																	He
2	Li 0.98	Be 1.57							letal/	moto	امنط	lino	B 2.04	C 2.55	N 3.04	O 3.44	F 3.98	Ne
3	Na 0.93	Mg 1.31						IVI	letai/	meta	illola	iine	AI 1.61	Si 1.90	P 2.19	\$ 2.58	CI 3.16	Ar
4	K 0.82	Ca 1.00	Sc 1.36	Ti 1.54	V 1.63	Cr 1.66	Mn 1.55	Fe 1.83	Co 1.88	Ni 1.91	Cu 1.90	Zn 1.65	Ga 1.81	Ge 2.01	As 2.18	Se 2.55	Br 2.96	Kr 3.00
5	Rb 0.82	Sr 0.95	Y 1.22	Zr 1.33	Nb 1.6	Mo 2.16	Tc 1.9	Ru 2.2	Rh 2.28	Pd 2.20	Ag 1.93	Cd 1.69	In 1.78	Sn 1.96	Sb 2.05	Te 2.1	l 2.66	Xe 2.60
6	Cs 0.79	Ba 0.89	*	Hf 1.3	Ta 1.5	W 2.36	Re 1.9	Os 2.2	lr 2.20	Pt 2.28	Au 2.54	Hg 2.00	TI 1.62	Pb 1.87	Bi 2.02	Po 2.0	At 2.2	Rn 2.2
7	Fr 0.7	Ra 0.9	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
		*	La 1.1	Ce 1.12	Pr 1.13	Nd 1.14	Pm 1.13	Sm 1.17	Eu 1.2	Gd 1.2	Tb 1.1	Dy 1.22	Ho 1.23	Er 1.24	Tm 1.25	Yb 1.1	Lu 1.27	
		**	Ac 1.1	Th 1.3	Pa 1.5	U 1.38	Np 1.36	Pu 1.28	Am 1.13	Cm 1.28	Bk 1.3	Cf 1.3	Es 1.3	Fm 1.3	Md 1.3	No 1.3	Lr 1.3	

Figure: Wikipedia

Overview of main group compounds (1)

- Group 1+2 compounds
 - Not so relevant, but some interesting examples
 such as Laves phase CaLi₂
- Groups 1 + 17 and groups 2 + 17 (NaCl, MgCl₂, ...)
 - Typically simple salts (discussed previously)
- Halides known practically for all main groups 13-15
 - Mostly molecular for B, C, Si, Ge, Sn, group 15, and group 16 (e.g. SiCl₄, PCl₅, SF₆)
 - Mostly non-molecular for Al, Ga, In, Tl, Pb
 - Almost follows metal/metalloid line
- Oxides
 - Simple salts for groups 1 and 2 (e.g. MgO)
 - Stable oxides for groups 13-16, not for 17
 - Vast number of minerals
- Other chalcogenides (S, Se, Te)
 - Similarly to O, chalcogenides known practically for all main group elements (groups 1, 2, 13-15)

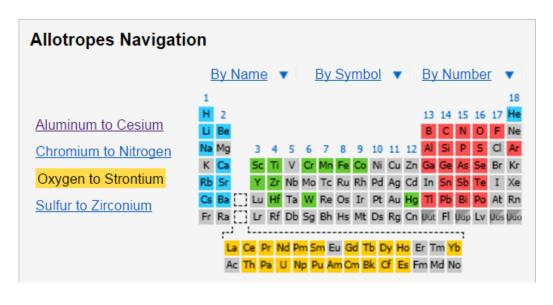
Overview of main group compounds (2)

- Group 1/2 + 14: Carbides, silicides, germanides, ...
 - CaC₂, Mg₂Si, CaGe₂, ...
- Group 1/2 + 15: Nitrides, phosphides, arsenides, ...
 - Li₃N, Li₃P, Li₃As, ...
- Main group compound semiconductors
 - 13-15 (BN, GaN, GaAs, etc.)
 - 14-16 (PbTe, PbSnTe, SnS, etc.)
 - 15-16 (Sb₂Se₃, Bi₂Te₃, etc.)
- Some elements are technologically extremely important as such or as simple alloys/compounds
 - Si, Ge, Si_xGe_{1-x}, SiC (semiconductors)
 - Al and Mg as structural metals

Periodic table of electronegativity by Pauling scale									
1	2	13	14	15	16	17			
÷									
H									
2.20									
Li	Be	В	С	N	0	F			
0.98	1.57	2.04	2.55	3.04	3.44	3.98			
Na	Mg	Al	Si	Р	S	CI			
0.93	1.31	1.61	1.90	2.19	2.58	3.16			
K	Ca	Ga	Ge	As	Se	Br			
0.82	1.00	1.81	2.01	2.18	2.55	2.96			
Rb	Sr	In	Sn	Sb	Te	1			
0.82	0.95	1.78	1.96	2.05	2.1	2.66			
Cs	Ba	TI	Pb	Bi	Po	At			
0.79	0.89	1.62	1.87	2.02	2.0	2.2			
Fr	Ra	Uut	FI	Uup	Lv	Uus			
0.7	0.9								

Figure: Wikipedia/AJK

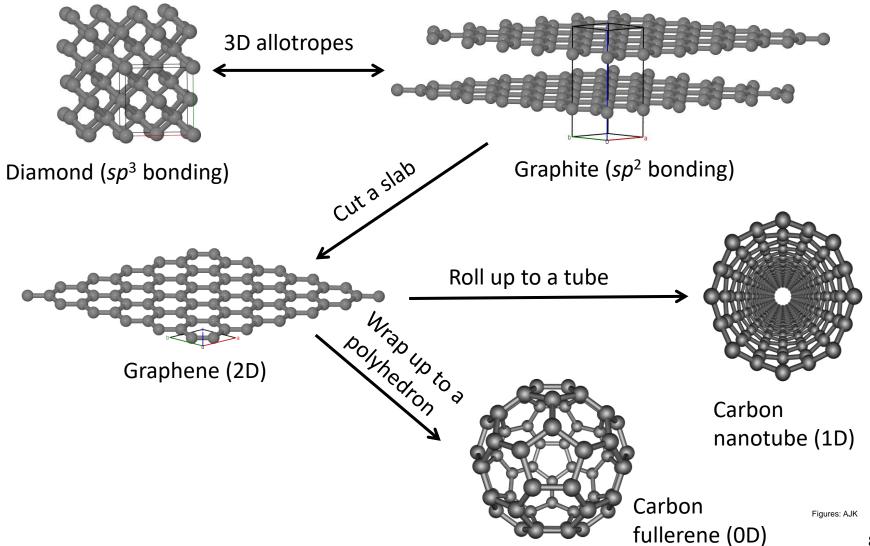
Focus of the lecture: Allotropes and Zintl phases


- Several main group elements show very rich allotropy in ambient pressure
 - Different structural modifications of the same element (<u>IUPAC Gold Book</u>)
 - Highly interesting from fundamental scientific point of view, but also of high technological relevance (for example, allotropes of carbon)
 - Here we consider atmospheric pressure only!
- **Zintl phases** are an important class of main group compounds with connections to G14-16 allotropes
 - Include semiconductors with applications in thermoelectrics, etc.
- Key concept for the lecture: <u>isoelectronic principle</u>
 - Same number of valence electrons and the same structure (= number and connectivity of atoms), but different composition (CO vs. N₂)

13	14	15	16
В	С	N	0
Al	Si	Р	S
Ca	C -	Λ -	_
Ga	Ge	As	Se
In	Sn	Sb	Te

Main groups 13-16, elements showing allotropy highlighted

Allotropy


- Knowledgedoor.com has a good listing of allotropes with original references
 - http://www.knowledgedoor.com/2/elements handbook/allotropes.html
- Note that many are for high pressure
- "Textbook"-level information, the most recent research not included
- http://www.knowledgedoor.com/ is actually a rather good source of physical data (references to original data available)
- Let's focus on few examples of group 14, 15, and 16 allotropes

Carbon
allotrope category
allotrope
allotrope
alternate name
allotrope category
allotrope
alternate name
allotrope
alternate name
allotrope
allotrope
allotrope category
allotrope
symbol
allotrope
symbol

diamond	•
cubic diamond	•
hexagonal diamond	•
Ionsdaleite	•
graphite	•
hexagonal graphite	•
α-graphite	•
hombohedral graphite	•
β-graphite	•
turbostratic graphite	•
chaoite	•
fullerenes	•
fullerene-c ₆₀	•
c ₆₀	•
fullerene-C ₇₀	•
C ₇₀	•

The allotropy of carbon

The allotropy of silicon

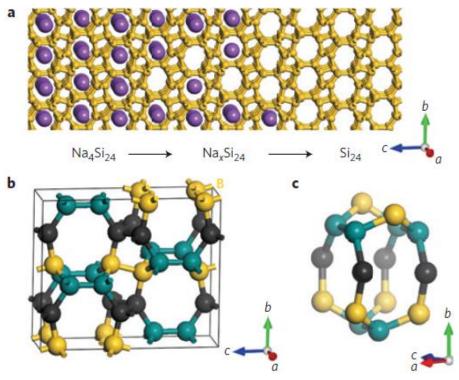
Short overview available in: A. J. Karttunen, D. Usvyat, M. Schütz, L. Maschio,
 Dispersion interactions in silicon allotropes, *Phys. Chem. Chem. Phys.* 2017, 19, 7699
 (DOI: 10.1039/c6cp08873b)

Table 1 Silicon allotropes included in this study. The structures are ordered according to their relative energy ΔE at the LMP2/TZVPP level (see below) from the most to the least stable structure

Pearson ^a	Name(s) ^b	Space group	a^{c} (Å)	b^c (Å)	c^c (Å)	<i>k</i> -Grid ^{<i>d</i>}	Notes
cF8	Alpha (α)/3C	Fd3m	5.43			$12 \times 12 \times 12$	Diamond structure. Most stable Si allotrope under STP conditions.
hP8	4H	<i>P</i> 6 ₃ / <i>mmc</i>	3.83		12.59	$12 \times 12 \times 4$	Hexagonal polytype of 3C. 4H-Ge has been synthesized as a bulk material starting from m -allo-Ge. 62,63
hP4	2H	<i>P</i> 6 ₃ / <i>mmc</i>	3.83		6.32	$12 \times 12 \times 6$	Hexagonal polytype of 3C. 2H-Si has been fabricated on GaP nanowire templates. ⁶⁴
tP12	cdp/T12	$P4_2/ncm$	5.19		9.24	$8 \times 8 \times 4$	Hypothetical allotrope, topology the same as in CdP ₂ . ^{16,65}
oP32	GAa4	Pbcm	7.85	11.29	7.45	$4 \times 4 \times 4$	The most stable building block of stacking-faulted <i>m-allo</i> -Ge (synthesized as a bulk material structure starting from Li ₇ Ge ₁₂). ^{17,63}
hP6	unj/NGS	$P6_{1}22$	5.44		5.08	$8 \times 8 \times 8$	Hypothetical allotrope, topology the same as for the Ga–Sn network in NaGaSn ₅ . ^{17,66}
<i>tP</i> 24	tum1	$P4_2/nmc$	7.42		9.15	$6 \times 6 \times 4$	Hypothetical allotrope, topology the same as for the B–Si network in LiBSi ₂ . ⁶⁷
oC24	CAS	Cmcm	3.82	10.68	12.66	$8 \times 8 \times 4$	Has been synthesized from Na ₄ Si ₂₄ . ⁶⁸
<i>cF</i> 136	Clathrate II	Fd3m	14.65			$4 \times 4 \times 4$	Has been synthesized from Na _x Si ₁₃₆ , ^{4,5} also known for Ge. ⁷
cI46	Clathrate VIII	<i>I</i> 43 <i>m</i>	10.04			$4 \times 4 \times 4$	Hypothetical allotrope, experimentally known in type-VIII Ge and Sn clathrates. 13,69,70
<i>cP</i> 46	Clathrate I	Pm3n	10.16			$4 \times 4 \times 4$	Hypothetical allotrope, experimentally known in Na ₈ Si ₄₆ type-I clathrate. ^{13,69,70}

Open-framework allotrope of Si

nature materials


LETTERS

PUBLISHED ONLINE: 17 NOVEMBER 2014 | DOI: 10.1038/NMAT4140

Synthesis of an open-framework allotrope of silicon

Duck Young Kim^{1†}, Stevce Stefanoski^{1†}, Oleksandr O. Kurakevych^{1,2†} and Timothy A. Strobel^{1*†}

Silicon is ubiquitous in contemporary technology. The most stable form of silicon at ambient conditions takes on the structure of diamond (cF8, d-Si) and is an indirect bandgap semiconductor, which prevents it from being considered as a next-generation platform for semiconductor technologies¹⁻⁴. Here, we report the formation of a new orthorhombic allotrope of silicon, Si24, using a novel two-step synthesis methodology. First, a Na₄Si₂₄ precursor was synthesized at high pressure⁵; second, sodium was removed from the precursor by a thermal 'degassing' process. The Cmcm structure of Si₂₄, which has 24 Si atoms per unit cell (oC24), contains open channels along the crystallographic a-axis that are formed from sixand eight-membered sp³ silicon rings. This new allotrope possesses a quasidirect bandgap near 1.3 eV. Our combined experimental/theoretical study expands the known allotropy for element fourteen and the unique high-pressure precursor synthesis methodology demonstrates the potential for new materials with desirable properties.

Si₁₃₆ and Ge₁₃₆ allotropes

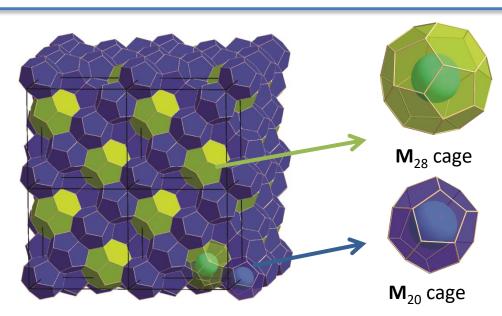
On the clathrate form of elemental silicon, Si_{136} : preparation and characterisation of Na_xSi_{136} ($x \to 0$)

Abdelaziz Ammar ^{a,1}, Christian Cros ^{a,*}, Michel Pouchard ^a, Nicolas Jaussaud ^a, Jean-Marc Bassat ^a, Gérard Villeneuve ^b, Mathieu Duttine ^b, Michel Ménétrier ^a, Edouard Reny ^a Solid State Sciences 6 (2004) 393–400

Vacuum route

NATURE|Vol 443|21 September 2006

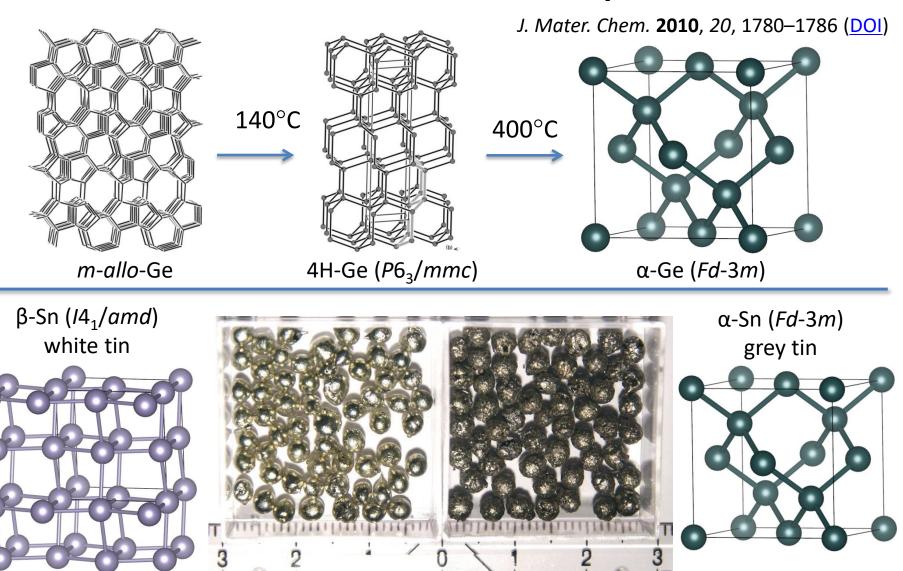
LETTERS

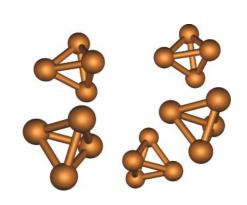

A guest-free germanium clathrate

Ionic liquid route, discussed in a later slide

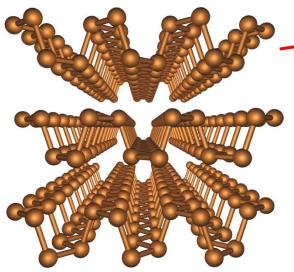
Arnold M. Guloy^{1,2}, Reiner Ramlau¹, Zhongjia Tang^{1,2}, Walter Schnelle¹, Michael Baitinger¹ & Yuri Grin¹

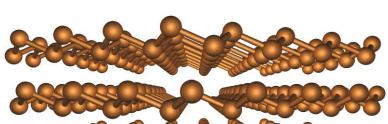
Clathrate-II (Fd-3m)


Known for: Si₁₃₆ Ge₁₃₆

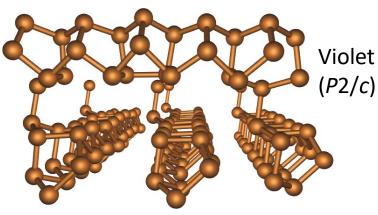

(**M** = Si, Ge)

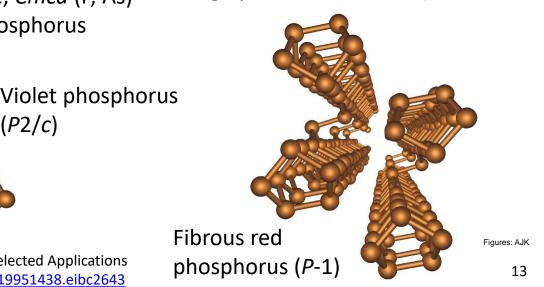
Normally the cages are occupied by guest atoms (Na, K, etc.), but the guests can be removed


Ge and Sn allotropes


Group 15 allotropic modifications

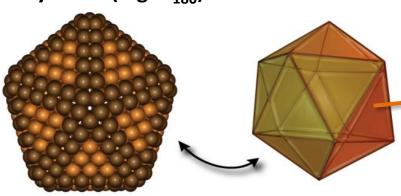
Tetrahedral molecules (P₄, As₄, Sb₄) White phosphorus


Orthorhombic layered structure, *Cmca* (P, As) Black phosphorus

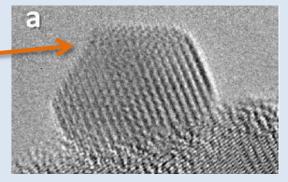

Individual sheets can be cleaved

-> phosphorene

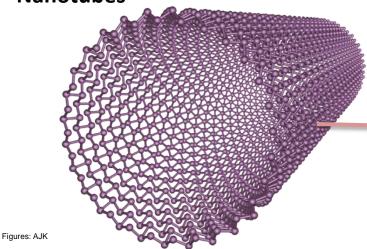
Trigonal layered structure, R-3m (P in high pressure, As, Sb, Bi)


Phosphorus: The Allotropes Stability, Synthesis, and Selected Applications T. Nilges, P. Schmidt, R. Weihrich, DOI: 10.1002/9781119951438.eibc2643

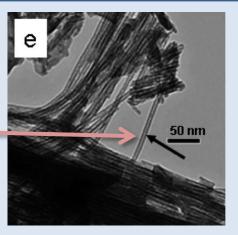
Group 15 nanostructures


Analogous to the carbon fullerenes and nanotubes, but possess puckered atomic structure

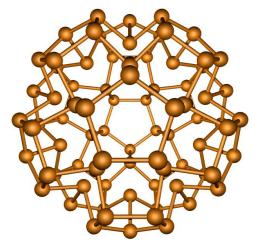
Polyhedra (e.g. P₁₈₀)


Chem. Eur. J. **2007**, 13, 5232 (DOI) Theor. Chem. Acc. **2011**, 129, 412 (DOI)

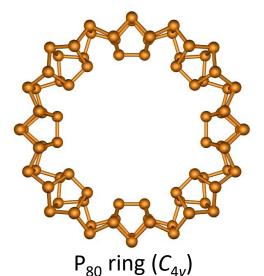
Bismuth nanoicosahedra


Y. Selzer et al, *Nano Lett.* **2012**, *12*, 1087.

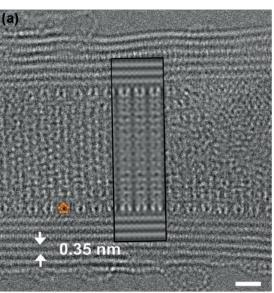
Nanotubes

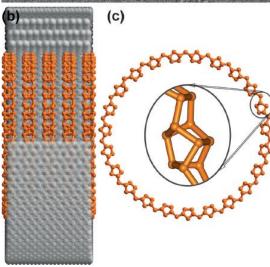

J. Phys. Chem. C **2009**, 113, 12220 (DOI)

Bismuth nanotubes

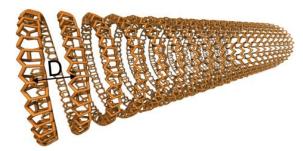


Pfefferle et al, <u>J. Phys. Chem. C, **2010**</u>, 114, 3431.

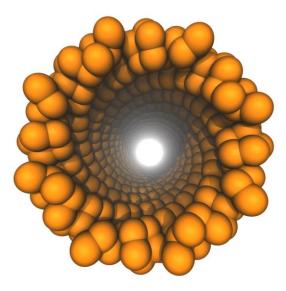

Phosphorus nanostructures



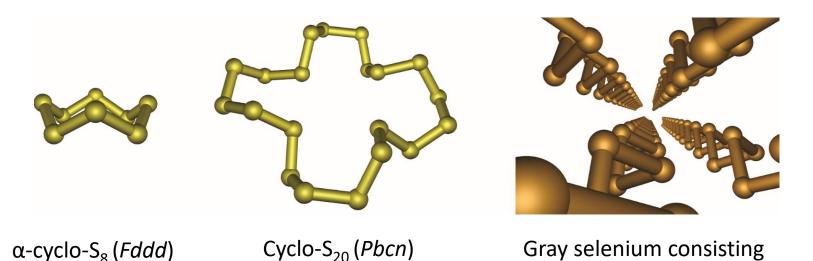
 P_{80} fullerene (I_h)



Icosahedral and Ring-shaped Allotropes of Phosphorus Karttunen, A. J.; Linnolahti, M.; Pakkanen, T. A. *Chem. Eur. J.* **2007**, *13*, 5232–5237 (DOI).



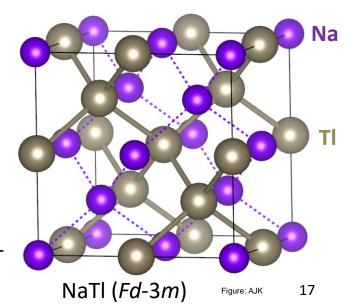
Assembly of Ring-Shaped Phosphorus within Carbon Nanotube Nanoreactors, Zhang *et al. Angew. Chem. Int. Ed.* **2017**, *56*, 1850-1854 (DOI).


Red phosphorus helices

One-dimensional Phosphorus Nanostructures: from Nanorings to Nanohelices Sansone, G.; Maschio, L.; Karttunen, A. J. *Chem. Eur. J.* **2017**, 23, 15884–15888. (DOI).

Group 16 allotropes

- Whereas the allotropes of group 15 elements are three-coordinate, the additional valence electron of group 16 elements makes their allotropes two-coordinate
- This imposes limits on the capability to form infinite structural networks, but the elemental chemistry of S and Se is still very rich
- The only known crystalline form of Te at room pressure is similar to gray Se


of helical chains (P3₁21)

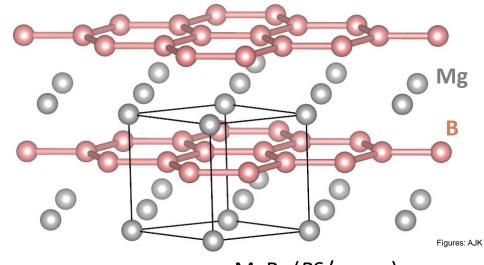
Zintl phases

- Zintl phases are *valence-balanced* semiconductors
 - Charge transfer from Group 1 or 2 elements to Group 13-16 elements
- For example, NaTl (sodium thallide)
 - Each Na atom donates 1e⁻
 - Each Tl atom accepts 1e⁻
- The electron configuration of the anionic Tl network is now analogous to group 14 elements
 - TI atoms adopt 4-coordinated diamond structure
 - The Na⁺ ions are packed as diamond, too
 - Covalent bonding within the TI network, ionic bonding between the anionic network and the cations (or mixed ionic / covalent)
- Basically, the 8-electron rule in action
- Ideally, Zintl phases should be semiconducting
 - However, in reality many are metallic (e.g. NaTl)
 - Bonding is more complex than the ideal "valencebalanced" (or there are impurities)

Period	ic table	of elect	ronegat	ivity by	Pauling	scale
1	2	13	14	15	16	17
÷						
Н						
2.20						
Li	Be	В	С	N	0	F
0.98	1.57	2.04	2.55	3.04	3.44	3.98
Na	Mg	AI	Si	Р	S	CI
0.93	1.31	1.61	1.90	2.19	2.58	3.16
K	Ca	Ga	Ge	As	Se	Br
0.82	1.00	1.81	2.01	2.18	2.55	2.96
Rb	Sr	In	Sn	Sb	Te	1
0.82	0.95	1.78	1.96	2.05	2.1	2.66
Cs	Ba	TI	Pb	Bi	Po	At
0.79	0.89	1.62	1.87	2.02	2.0	2.2
Fr	Ra	Uut	FI	Uup	Lv	Uus
0.7	0.9					

Figure: Wikipedia/AJK

Examples of Zintl phases (1)

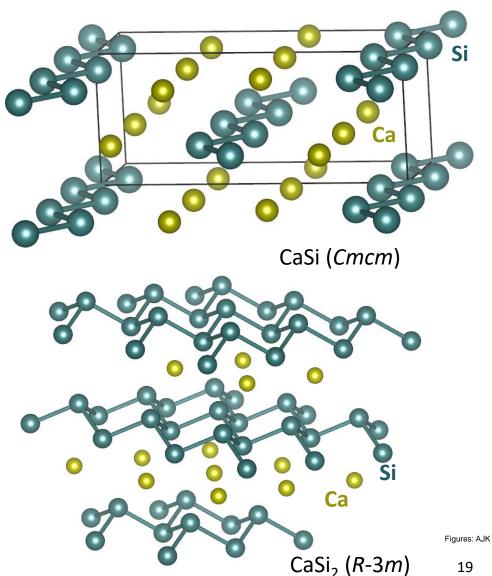

NaSi (Na₄Si₄)

- Each Na atom donates 1e⁻
- Each Si atom accepts 1e⁻
- Si₄⁴⁻ tetrahedra are isoelectronic with P₄ tetrahedra (white phosphorus)

Na₄Si₄ (C2/c)

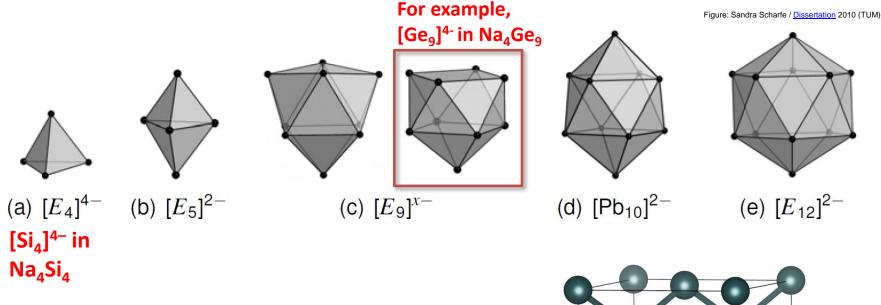
MgB_2

- Each Mg atom donates 2e⁻
- Each B atom accepts 1e⁻
- The resulting two-dimensional Bnetwork is isoelectronic with graphene

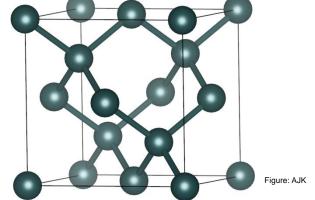

Examples of Zintl phases (2)

CaSi

- Each Ca atom donates 2e⁻
- Each Si atom accepts 2e⁻
- The resulting one-dimensional Sichains are closely related to Sechains (but planar, not helical)

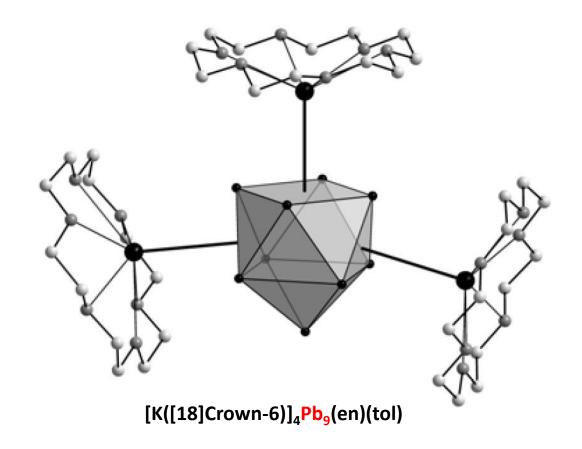

CaSi₂

- Each Ca atom donates 2e⁻
- Each Si atom accepts 1e⁻
- The resulting two-dimensional Sinetwork is isoelectronic and structurally analogous with As / Sb / Bi



Group 14 Zintl ions (Si, Ge, Sn, Pb)

Many solid-state Zintl phases contain discrete anions

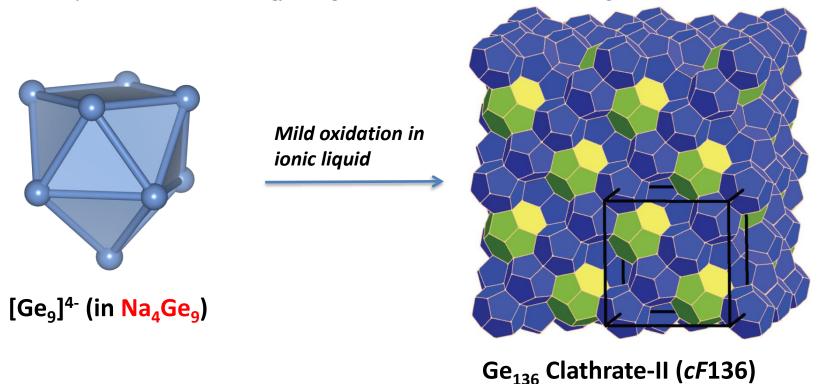


Strained bond angles in comparison to diamond-like bulk α -Si / α -Ge / α -Sn with 109.5° angles

Zintl Ions, Cage Compounds, and Intermetalloid Clusters of Group 14 and Group 15 Elements, S. Scharfe, F. Kraus, S. Stegmaier, A. Schier, T. F. Fässler, *Angew. Chem. Int. Ed.* **2011**, *50*, 3630–3670 (DOI).

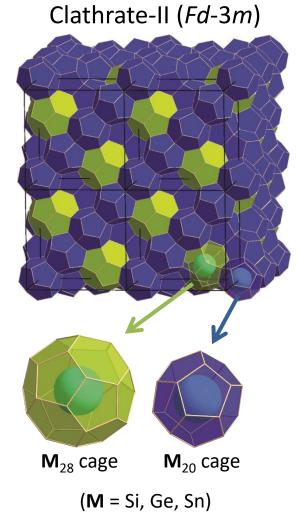
Zintl ions can be crystallized from solution

S. Scharfe, **Dissertation**, Technical University of Munich, **2010**


Zintl phases as precursors for preparing novel materials

NATURE Vol 443 21 September 2006

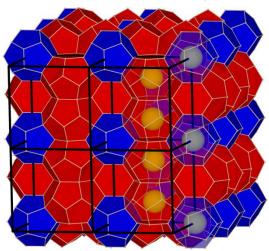
LETTERS


A guest-free germanium clathrate

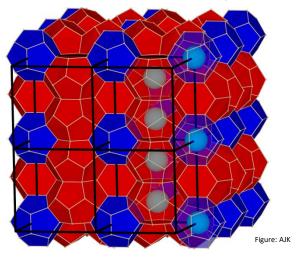
Arnold M. Guloy^{1,2}, Reiner Ramlau¹, Zhongjia Tang^{1,2}, Walter Schnelle¹, Michael Baitinger¹ & Yuri Grin¹

Zintl phases: Semiconducting group 14 clathrates (1)

- The microporous 3D framework of the group 14 clathrates is composed of fused atomic cages
- The cages are normally occupied by guest atoms, but guest-free Si- and Geframeworks are known, as well
- The group 14 clathrates are excellent thermoelectric materials¹
 - Great thermal properties
 - Good electronic properties

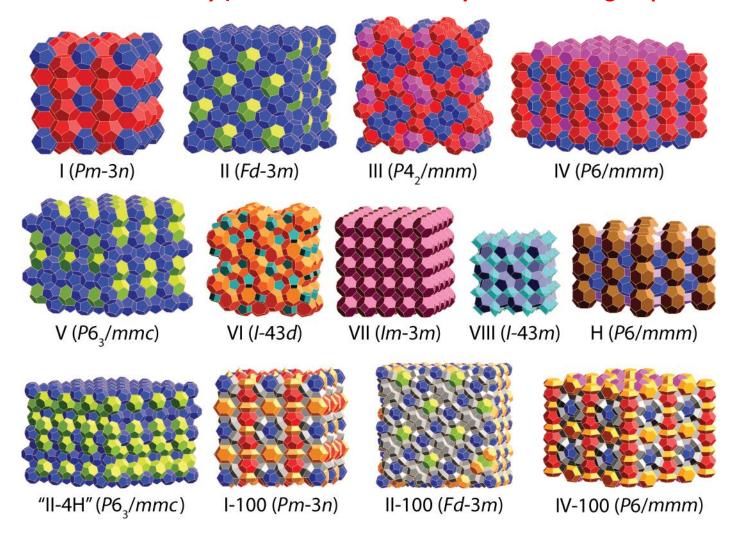


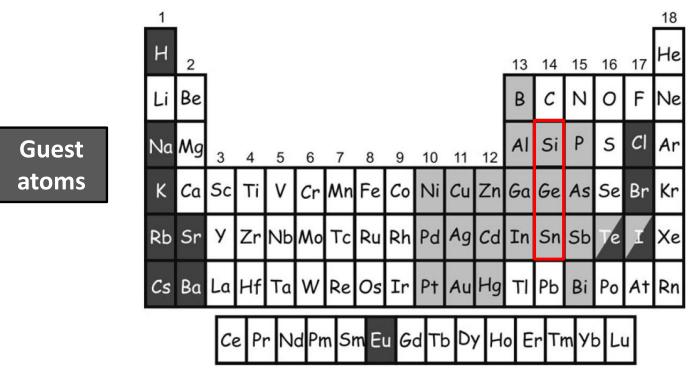
 ¹ G. S. Nolas et al. *Phys. Rev. Lett.*, **1999**, *82*, 779.
 G. S. Nolas et al. *J. Mater. Chem.*, **2008**, *18*, 842.
 B. B. Iversen et al. *Dalton Trans.*, **2010**, *39*, 978.


Zintl phases: Semiconducting group 14 clathrates (2)

- Charge transfer occurs between the guest and the framework
- The charge is (usually) balanced by heteroatoms in the framework
 - Metallic systems such as Na₂₄Si₁₃₆ are also known
- The atomic composition and properties are somewhat tunable

Clathrate-I (Pm-3n, 46 framework atoms in the unit cell)


- Ba₈[Ga₁₆Ge₃₀] (anionic framework)
- Each Ba atom donates 2e⁻
- Ga atoms have 1e⁻ less than Ge, so the 4coordinated framework needs 16e⁻


- I₈[As₈Ge₃₈] (cationic framework!)
- Each I atom accepts 1e⁻
- As atoms have 1e⁻ more than Ge, these extra electrons are donated to the I atoms

Examples of clathrate frameworks

Very rich structural chemistry (all frameworks are not yet known for group 14 clathrates)

Currently known group 14 clathrates

Framework atoms

200+ phases are currently known. Typical synthesis routes:

- Shake & Bake
- Flux method
- Czochralski pulling

Shevelkov, A. V.; Kovnir, K. Struct. Bond. 2011, 139, 97.

Recent review: Dolyniuk, J.-A.; Owens-Baird, B.; Wang, J.; Zaikina, J. V.; Kovnir K. *Materials Science and Engineering*, **2016**, *R108*, 1–46

Examples of clathrate phases

Si-based	Ge-based	Ge-based	Sn-based
$Na_8[Si_{46}]$	$K_8[Al_8Ge_{38}]$	$I_8[Ge_{38}P_8]$	$K_{1.6}Cs_{6.4}[Sn_{44}\square_2]$
$Na_{8-x}Ba_{x}[Si_{46}]$	$Rb_{8}[Al_{8}Ge_{38}]$	$Br_8[Ge_{38}P_8]$	$Rb_8[Sn_{44.6} \square_{1.4}]$
$Na_xBa_6[Si_{46}]$	$K_8[Ga_8Ge_{38}]$	$Cl_8[Ge_{38}P_8]$	$Cs_8[Sn_{44}\square_2]$
$K_{7.62}\square_{0.38}[Si_{46}]$	$Rb_8[Ga_8Ge_{38}]$	$I_{8}[Ge_{38}As_{8}]$	$K_8[Al_8Sn_{38}]$
$Rb_{6.15} \square_{1.85} [Si_{46}]$	$Cs_8[Ga_8Ge_{38}]$	$Br_8[Ge_{38}As_8]$	$Rb_8[Al_8Sn_{38}]$
$K_8[Ga_8Si_{38}]$	$K_8[In_8Ge_{38}]$	$Cl_8[Ge_{38}As_8]$	$K_8[Ga_8Sn_{38}]$
$Rb_8[Al_8Si_{38}]$	$Rb_8[In_8Ge_{38}]$	$I_8[Ge_{38}Sb_8]$	$Rb_8[Ga_8Sn_{38}]$
$Rb_8[Ga_8Si_{38}]$	$Cs_8[In_8Ge_{38}]$	$Br_8[Ge_{38}Sb_8]$	$Cs_8[Ga_8Sn_{38}]$
100[0005130]	C88[III8GC38]	$I_{8}[Ge_{14}Ga_{12}Sb_{20}]$	$Cs_8[Zn_4Sn_{42}]$
		0[2 214 2 3123 220]	$Cs_8[Cd_4Sn_{42}]$