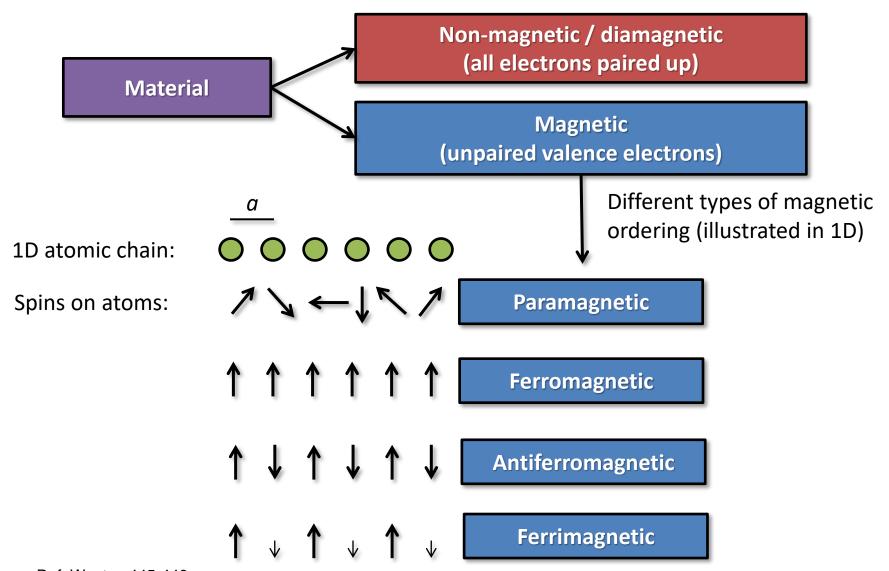
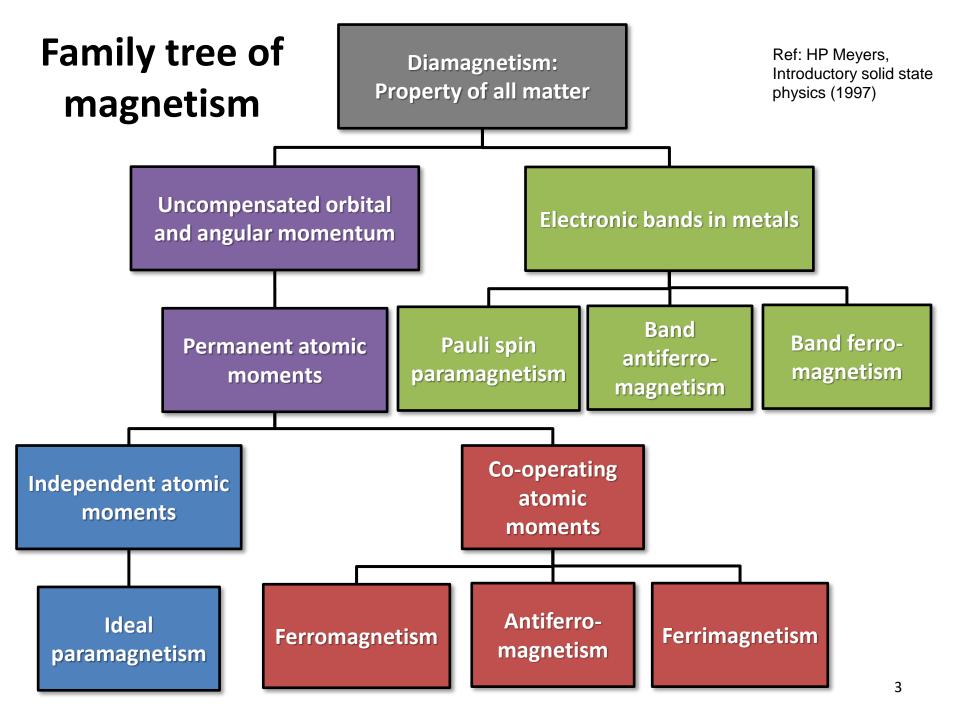

Lecture 12: Magnetism and *d*-block compounds


- Magnetism
 - Magnetic susceptibility
 - Various magnetic configurations
 - Temperature dependence
- d-block metal oxides
 - Bonding
 - Important structural types
 - Functionalities
- Other compounds of d-block elements



Figures: AJK

Spin-based magnetism

Ref: West p. 445-446

Magnetic susceptibility

• When a substance is placed in a magnetic field H (units A m⁻¹), the magnetic induction B (units T, tesla) is

$$B = \mu H = \mu_0 H + \mu_0 M$$
,

where μ is *permeability*, μ_0 is the permeability of free space ($4\pi * 10^{-7} \text{ H m}^{-1}$, H = henry) and M is the magnetic moment or **magnetization** of the sample

- Magnetization = magnetic moment per unit volume or mass
- $\mu_0 H$ is the induction generated by the field alone and $\mu_0 M$ is the additional induction contributed by the sample
- The magnetic susceptibility, χ , is defined as the ratio of magnetization M to field H:

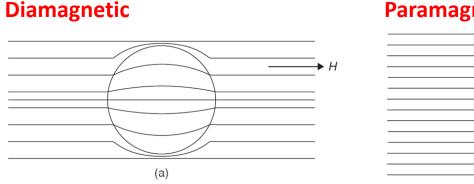
$$\chi = \frac{M}{H}$$

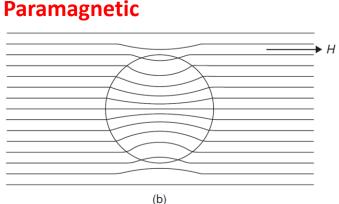
- In other words: high magnetization M means high susceptibility χ
- Susceptibility χ is the most important measurable quantity for the characterization of magnetic properties
 - Provides a measure of the response of a sample to an applied magnetic field
 - Somewhat analogous to polarizability (response to an applied electric field)

Ref: West p. 446

Classification based on susceptibility χ

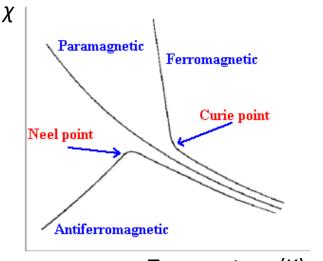
- The different kinds of magnetic behavior may be distinguished by the values of χ
 - In diamagnetic materials, χ is very small and slightly negative
 - In paramagnetic materials, χ is small and positive
 - In *ferromagnetic* materials, $\chi > 1$ and such materials are strongly attracted to a magnetic field.
 - In *antiferromagnetic* materials, χ is positive and comparable to paramagnetic substances (or somewhat smaller).


Behavior	Typical χ values	Change of χ with increase in temperature	Field dependent
Diamagnetism	 -8 × 10⁻⁶ for Cu −1 for superconductors 	None	No
Paramagnetism	0.1–0.001 for <i>d</i> -metal compounds	Decreases	No
Pauli paramagnetism	8.3×10^{-4} for Mn	None	Yes
Ferromagnetism	5×10^3 for Fe	Decreases	Yes
Antiferromagnetism	0-10-2	Increases	(Yes)


Ref: West p. 447

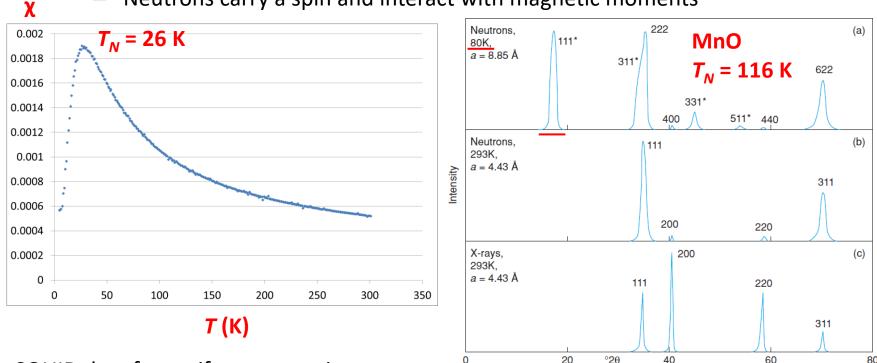
5

Dia- and paramagnetism


- Diamagnetism is a property of all materials
- When diamagnetism dominates, there is a slight repulsion by a magnetic field
 - Diamagnetism is associated with orbital motion of electrons in atoms.
 - This orbital motion generates a small electric field
 - In the presence of an external field, the orbital motion is modified slightly to give a magnetic moment that opposes the applied field leading to a slight repulsion effect which is explained by Lenz's law of electromagnetism.
 - Superconductors represent a special, extreme type of diamagnetism since they repel magnetic fields completely, leading in magnetic levitation
- Paramagnetic materials are attracted by a magnetic field

Temperature dependence of magnetism

- Ordered magnetic structures lose their ordered structures above a certain temperature
 - Curie temperature, T_c for ferromagnets and ferrimagnets
 - **Néel temperature**, T_N for antiferromagnets
- The spins become disordered and the materials become paramagnetic


Table 9.2 Some Curie and Néel temperatures

Element	$T_{\rm c}/{\rm K}$	T_{N}/K
Cr		308
Mn		100
Fe	1043	
Co	1404	
Ni	631	
Ce		12.5
Pr		25
Nd		19
Sm		14.8
Eu		90
Gd	293	
Tb	222	229
Dy	85	179
Ho	20	131
Er	20	84
Tm	25	56

Temperature (K)

Experimental characterization of the magnetic ground state

- SQUID (Superconducting Quantum Interference Device)
 - Very sensitive magnetometer (measure susceptibility as a function of T)
- Neutron diffraction
 - Neutrons carry a spin and interact with magnetic moments

SQUID data for antiferromagnetic SrU₂F₁₂ (Otto Mustonen / Aalto)

Figure 5.26 Schematic neutron and powder XRD patterns for MnO for $\lambda = 1.542$ Å. Peaks are assigned Miller indices for the cubic unit cells given. Neutron data adapted from Shull, Strauser and Wollan, Phys. Rev., 83, 333, © 1951 American Physical Society.

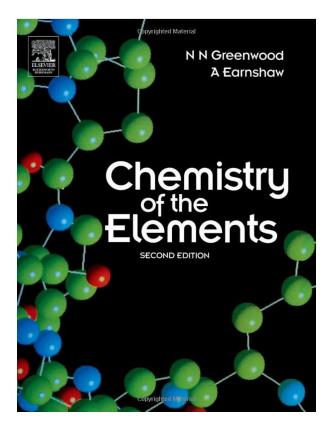

d-block metal oxides

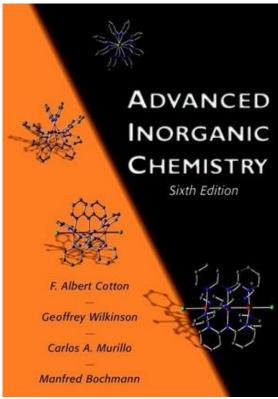
d-block metal oxides

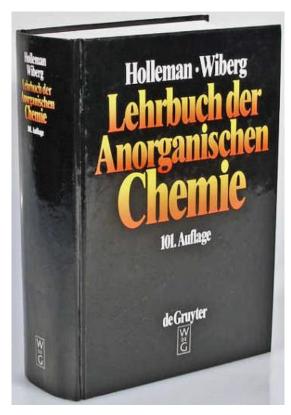
Pauling electronegativities

	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
	1.36	1.54	1.63	1.66	1.55	1.83	1.88	1.91	1.90	1.65
	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd
	1.22	1.33	1.6	2.16	1.9	2.2	2.28	2.20	1.93	1.69
		Hf	Ta	W	Re	Os	lr.	Pt	Au	Hg
*	1.3	1.5	2.36	1.9	2.2	2.20	2.28	2.54	2.00	

- Pauling electronegativity (EN) of oxygen is 3.44
- EN differences (EN average):
 - FeO = 1.61 (2.63)
 - ZnO = 1.79 (2.55)
 - TiO₂ = 1.9 (2.49)
- Mixed ionic-covalent bonding, typically insulating or semiconducting materials
- Due to band structure features:
 - Some *d*-metal oxides are metallic (e.g. RuO₂)
 - Some d-metal oxides are halfmetals (e.g. CrO₂)




TiO,


ZnO

Literature

- The amount of known d-metal oxides is vast
 - Over 100 binary d-metal oxides are known at ambient pressure (TiO₂, ZnO, ...)
 - Hundreds of ternary d-metal oxides are known (Fe₂TiO₄, NiCo₂O₄, ...)
 - Even for one class of $A_2B'B''O_6$ "double perovskites", > 1000 structures are known

d-metal oxides as functional materials

- Li-ion battery materials (LiNi_xMn_yCo_zO₂, LiMn₂O₄, LiFePO₄, Li₄Ti₅O₁₂, etc.)
- High-temperature superconductors (YBa₂Cu₃O_{7-x}, etc.)
- Ferro/ferrimagnets (magnetite Fe_3O_4 , maghemite γ - Fe_2O_3 , magnetic storage)
- Catalysts (PdO, PtO₂, etc.)
- Solid oxide fuel cells (YSZ = ZrO₂-Y₂O₃ etc.)
- Thermal barrier coatings (e.g. YSZ)
- High-temperature thermoelectrics (NaCo₂O₄, ZnO, etc.)
- Protective coatings (e.g. Al₂O₃ coatings fabricated with ALD)

Discussed in CHEM-E4215 Functional Inorganic Materials

Some everyday metal oxides

Inert, non-toxic, abundant

TiO₂ (sunscreen, white pigment)

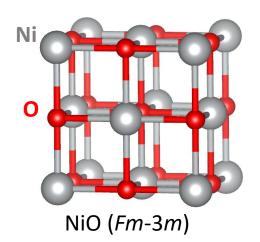
ZnO (pigment, food additive, medicine, ...)

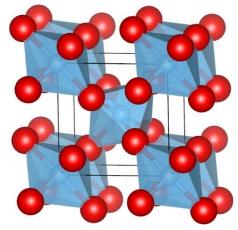
Rust contains α -Fe₂O₃ · nH₂O

Native oxides on the surface of metals (here Al_2O_3)

CuO (dietary supplement for animals, colourful pigments)

Important structure types for d-metal oxides


"Non-oxide" structure types


- NaCl (rocksalt): TiO, MnO, FeO, CoO, NiO
- ZnS (wurtzite): ZnO
- Not important for oxides:
 - CsCl, ZnS (sphalerite), NiAs

"Oxide" structure types

- Rutile (TiO_2)
- Perovskite (CaTiO₃)
- Spinel (MgAl₂O₄)
- Corundum (Al₂O₃)
- Olivine (Mg, Fe)₂SiO₄

See <u>Solid State Chemistry Wiki</u> for structure types. Here only perovskites are discussed in detail.

 TiO_2 rutile ($P4_2/mnm$)

CaTiO₃ perovskite (*Pm*-3*m*)

Figures: AJK

- General formula ABX₃, where A and B are cations and X is anion
 - ccp anion array, B cations at octahedral sites
- In oxides: ABO₃, for example A²⁺B⁴⁺O₃ in CaTiO₃
- Non-oxide example: Fluoroperovskite TlMnF₃ with Tl¹⁺Mn²⁺F₃
- Cubic CaTiO₃ perovskite is a high-temperature phase!
 - At lower temperatures, numerous perovskites crystallize at lower symmetry crystal systems (tetragonal, orthorhombic, monoclinic)

Perovskites as functional materials

Table 1.19 Perovskites: some composition–property correlations

Composition	Property	<u> </u>
CaTiO ₃	Dielectric	
BaTiO ₃	Ferroelectric	
$Pb(Mg_{1/3}Nb_{2/3})O_3$	Relaxor ferroelectric	
$Pb(Zr_{1-x}Ti_x)O_3$	Piezoelectric	
$(Ba_{1-x}La_x)TiO_3$	Semiconductor	
$(Y_{1/3}Ba_{2/3})CuO_{3-x}$	Superconductor	
Na_xWO_3	Mixed conductor (Na+, e-); electrochromic	
SrCeO ₃ :H	Proton conductor	
RE TM O _{3-x}	Mixed conductor (O^{2-}, e^{-})	
$Li_{0.5-3x}La_{0.5+x}TiO_3$	Li ⁺ ion conductor	
A MnO _{3-δ}	Giant magnetoresistance effect	

RE = rare earth; TM = transition metal.

Discussed in CHEM-E4215 Functional Inorganic Materials

A₂B'B''O₆ double perovskites (1)

- Several classes of perovskite derivatives have been studied extensively
- Widely studied A₂B'B"O₆ perovskites are also known as "Double perovskites"
- Lots of ongoing materials research for example in the field of *spintronics*
 - Spin-liquid-like state in a spin-1/2 square-lattice antiferromagnet perovskite (DOI), O. Mustonen, et al. *Nature Commun.* 2018, 9, 1085.

 $A_2B'B''O_6$ perovskites: A review

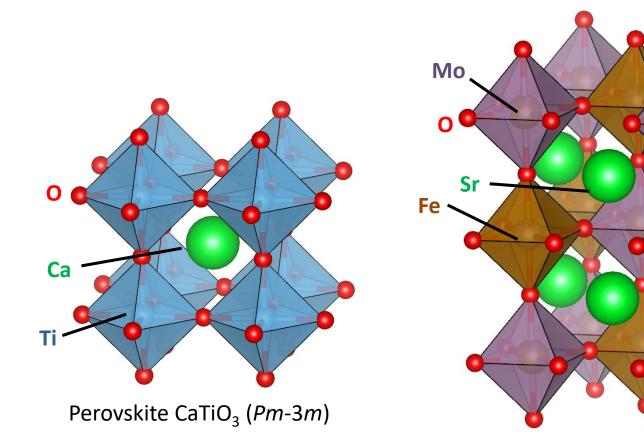
Sami Vasala, Maarit Karppinen*

Laboratory of Inorganic Chemistry, Department of Chemistry, School of Chemical Technology, Aalto University, P.O. Box 16100, FI-00076 AALTO, Finland

ARTICLE INFO

Article history: Available online 6 September 2014

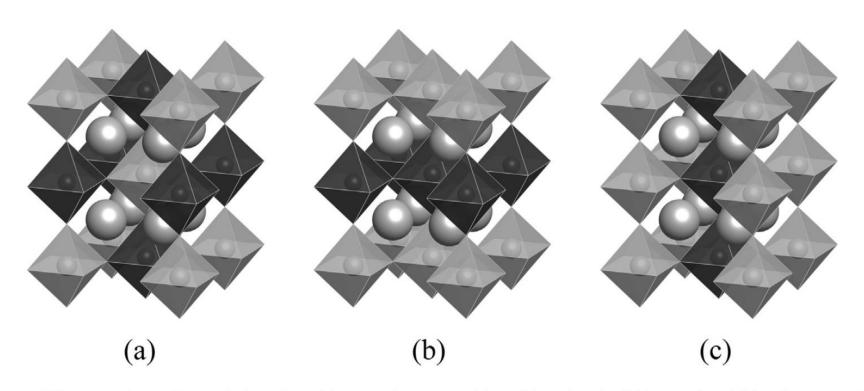
Keywords:
Double perovskite oxides
Crystal structure
Cation ordering
Valence mixing
Electronic properties
Magnetic properties


ABSTRACT

The B-site substituted perovskite oxides $A_2B'B''O_6$ have in the recent decades gained an increasing amount of interest due to their various interesting properties and possible applications. Here we survey the literature for ca one thousand $A_2B'B''O_6$ perovskite compounds. Crystal structures and the various crystal chemistry features such as ordering and valence mixing of the B cations characteristic to these compounds are reviewed, together with their electronic and magnetic properties. Most importantly, the thorough examination of the research so far carried out allows us to make predictions for a number of new $A_2B'B''O_6$ compounds yet to be synthesized and reveal exciting but not yet fully explored puzzles related to this family of functional oxide materials.

© 2014 Elsevier Ltd. All rights reserved.

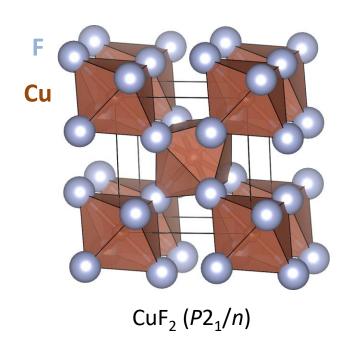
S. Vasala, M. Karppinen, *Progress in Solid State Chemistry*, **2015**, *43*, 1–36 (DOI).

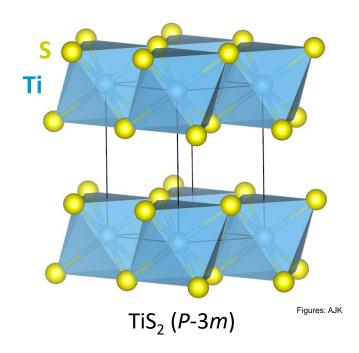

A₂B'B"O₆ double perovskites (2)

 Sr_2FeMoO_6 (I4/mmm) Rocksalt-like ordering of FeO_6 and MoO_6 polyhedra

Figures: AJK

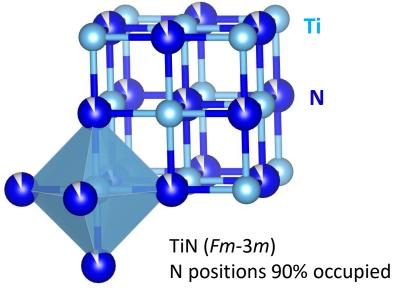
A₂B'B''O₆ double perovskites (3)


Fig. 1. Different *B*-site cation orderings found in $A_2B'B''O_6$ perovskites: (a) rock-salt, (b) layered and (c) columnar order.


S. Vasala, M. Karppinen, *Progress in Solid State Chemistry*, **2015**, *43*, 1–36.

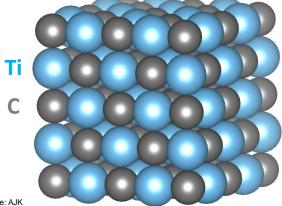
Non-oxide *d*-block compounds

d-block + p-block compounds (1)


- d-block + group 17 (F, Cl, Br, I)
 - All d-metals form halides with group 17 elements
 - Many are molecular, but numerous polymeric / 3D structures are also known
- d-block + group 16 (O, S, Se, Te)
 - Oxides typically form 3D networks, but some are molecular (e.g. CrO₃)
 - S, Se, Te compounds often show 2D sheets (like TiS₂, MoS₂, WS₂, ...)

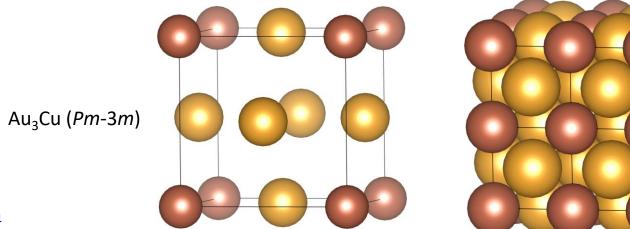
d-block + p-block compounds (2)

- *d*-block + group 15 (N, P, As, Sb, Bi)
 - Many nitrides are particularly important due to their hardness (coatings)
 - For example: TiN (see figure below)
 - Numerous phosphides, arsenides, and antimonides are known. Bismuth is already so metallic that it rather forms alloys
 - <u>Phosphides</u> show various different phosphorus anions and anion networks (e.g. P_2^{4-} , isoelectronic to Cl_2)

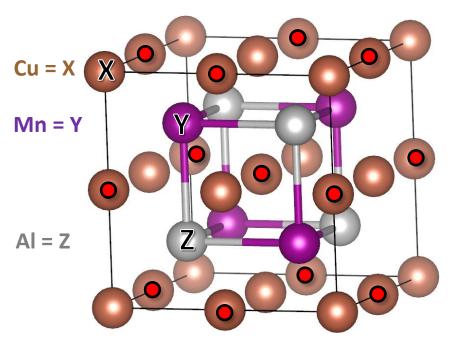


TiN coatings have gold-like appearance

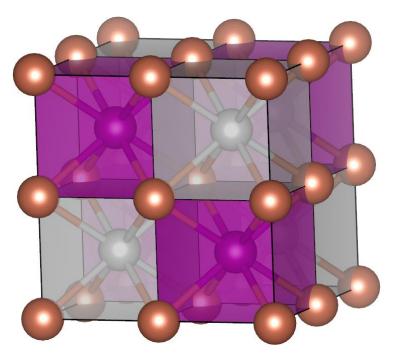
Figure: Wikipedia


d-block + p-block compounds (3)

- *d*-block + group 14 (C, Si, Ge, Sn, Pb)
 - Many carbides are technologically highly relevant
 - For example, cementite Fe₃C is present in most steels.
 - Some carbides such as TiC and WC are extremely hard (Mohs hardness ~ 9)
 - Organometallic chemistry (compounds with M-C bonds) is a huge branch of chemistry, but since it mainly deals with molecular species, not discussed here
 - Many silicides and germanides are well-known, but tin and lead are metallic and rather form alloys (e.g. Cu + Sn = bronze, typically ~90% Cu)
- d-block + group 13 (B, Al, Ga, In, Tl)
 - Many borides are hard materials, e.g. OsB₂, WB₄, and ReB₂
 - Al, Ga, In, Tl -> metallic, rather form alloys and intermetallic compounds


Intermetallic compounds

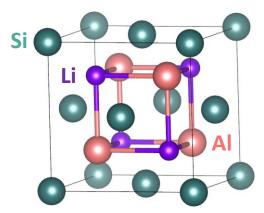
- Intermetallics are solid-state compounds exhibiting
 - Metallic bonding (metal-metal bonds)
 - Defined stoichiometry
 - **Ordered** crystal structure (different from **metal alloys**)
- Definition normally includes also s- and p-block metals (Na, Mg, Al, etc.)
 - For example, Cu₃Al, NiAl, Ni₃Al, Cu₃Sn... (ordered structures!)
- Often offer a compromise between ceramic and metallic properties
- Can also display desirable magnetic, superconducting, and chemical properties, due to mixed metallic and covalent/ionic bonding
- Heusler compounds discussed here as examples, Laves phases as extra material



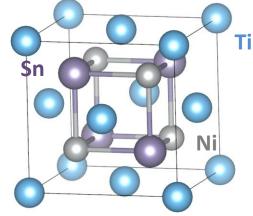
Heusler alloys

- Intermetallics with composition X₂YZ and face-centered cubic crystal structure
- For example, Cu₂MnAl, Ni₂TiSn, Co₂MnSi, ...
- Removing half of the X atoms, the second fcc sublattice marked with red dots, lowers the symmetry to F-43m and gives rise to Half-Heusler phases

 $Cu_2MnAl (Fm-3m)$ Cu = X; Mn = Y, Al = Z Mn-Al contacts drawn for clarity, not bonds Metallic, ferromagnetic



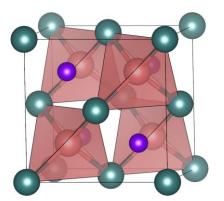
Another view: all metal atoms are 8-coordinated


Figures: AJK

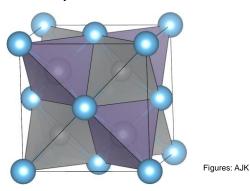
Half-Heusler phases

- Half-Heusler: XYZ (e.g. NiTiSn, CoTiSb, LiAlSi)
- Semiconductors, when 8 or 18 valence electrons (VE)
- Studied for example because of their thermoelectric properties

LiAlSi (*F*-43*m*)
Si = **X**; Li = **Y**; Al = **Z**Semiconductor (8 valence e⁻)
Can be considered as a Zintl phase!
Li-Al drawn for clarity, not bonds



TiSnNi (F-43m)


Ti = X; Sn = Y; Ni = Z

Semiconductor (18 VE)

Sn-Ni contacts drawn for clarity, not bonds

Another view, Si and Al 4-coordinated, Li⁺ cations

Another view, Sn and Ni 4-coordinated, Ti 8-coord. ²⁶

Extra slides

"Nice-to-know"-type material that is not needed for completing the exercises

Pauli paramagnetism

• In addition to the strong ferro- or antiferromagnetic coupling shown by some metals, most metals display a weak *Pauli paramagnetism* in the presence of a magnetic field

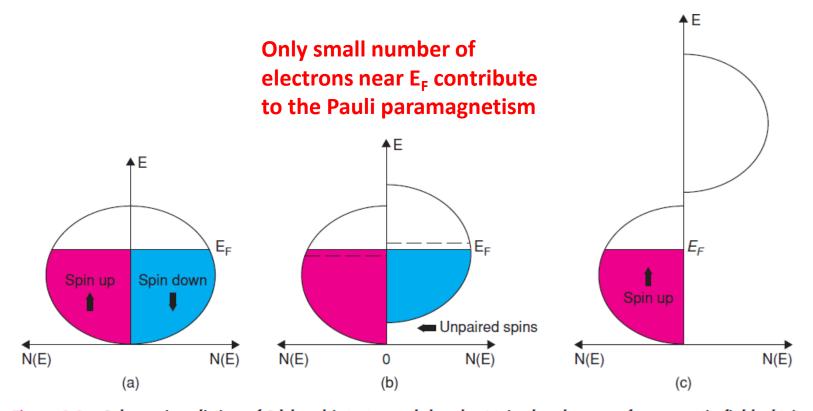


Figure 9.9 Schematic splitting of 3d band into two sub-bands: (a) in the absence of a magnetic field; (b) in Pauli paramagnets, an energy difference develops in a magnetic field; (c) in ferromagnetic transition metals, the splitting occurs spontaneously.

Ref: West p. 458

28

Antiferromagnetic ordering: superexchange

Superexchange is the mechanism of antiferromagnetism in, e.g. NiO

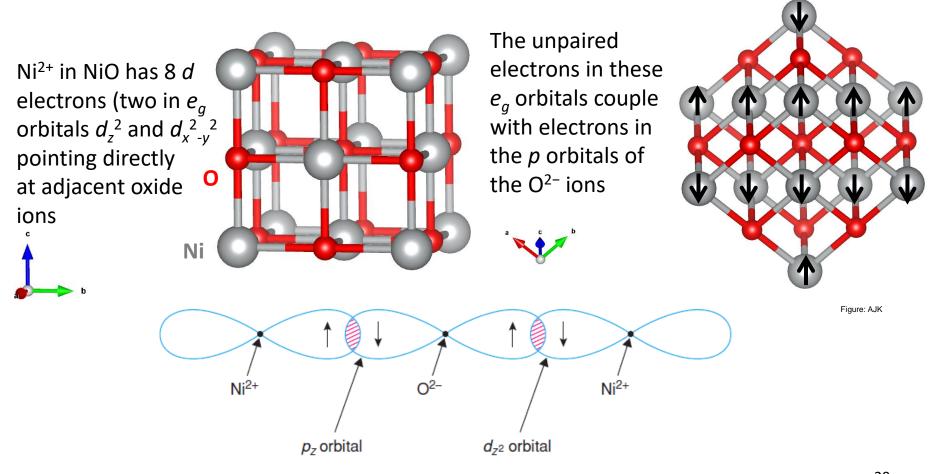
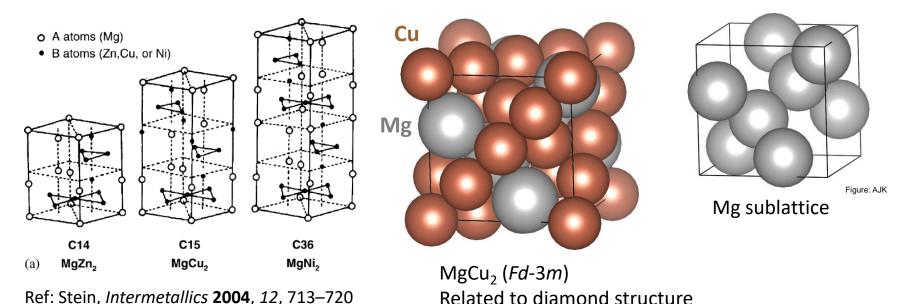



Figure 9.5 Antiferromagnetic coupling of spins of d electrons on Ni²⁺ ions through p electrons of oxide ions.

Laves phases

- Laves phases form the largest group of intermetallic compounds
 - Often also referred to as Friauf-Laves phases
- General composition AB₂ with the larger A atoms in the center of a 16-atom
 (Frank–Kasper) polyhedron and smaller B atoms in the centers of icosahedra (12-c)
- More than 1400 binary and ternary Laves phases are reported in Pearson's Handbook of Crystallographic Data for Intermetallic Phases
- Three different polytypes: MgCu₂ (cubic), MgZn₂ (hex), and MgNi₂ (hex).

