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Lecture 2 overview

Bayesian networks (also called ’belief networks’)

Definition
Motivation

Independence in Bayesian networks

d-separation
Markov equivalence

Computation using Bayesian networks

Ch. 3 in Barber
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Bayesian networks

A Bayesian network is a directed acyclic graph (DAG) in which nodes
represent random variables, whose joint distribution can be written as

p(x1, . . . , xD ) =
D

∏
i=1
p(xi |pa(xi )),

where pa(xi ) represent the parents of xi .
Example:

p(a, b, c, d , e) = p(a)p(b)p(c |a, b)p(d |c)p(e|b, c)
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Bayesian networks in machine learning

An important conceptual tool

BNs are a concise way to represent and communicate the structure and
assumptions of a model

Computational effi ciency

Compact representation of the joint distribution
Effi cient algorithms exist to compute conditional distributions
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Example 1: Prediction of drug sensitivity

Solution combines: multiple kernel learning, multiview learning,
multitask learning, Bayesian inference

Team Aalto rank 1/47. (Costello et al. Nature Biotechnology, 2014)

Bayesian wetworks were used to communicate the model structure in
a compact way
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Example 2: Combining expert feedback with observed data

A probabilistic model for treating expert feedback as additional data

Helps to improve prediction accuracy when data are limited, as in
precision medicine (Sundin et al. Bioinformatics, 2018)
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Reading independence statements from the DAG

Motivating example: do the following independence statements hold:

A ⊥⊥ B
A ⊥⊥ B |E
D ⊥⊥ E |C?
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Independence in Bayesian networks (1/2)

Possible BNs with three nodes and two links

In (a), (b), and (c), A and B are conditionally independent given C .

p(a, b|c) = p(a|c)p(b|c)

In (d), A and B are not conditionally independent given C

p(a, b|c) ∝ p(a)p(b)p(c |a, b)
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Independence in Bayesian networks (2/2)

In (a), (b), and (c), A and B are marginally dependent

In (d) the variables A and B are marginally independent

p(a, b) = ∑
c
p(a, b, c) = ∑

c
p(a)p(b)p(c |a, b) = p(a)p(b)
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Collider

A collider (v-structure, head-to-head meeting) has two incoming
arrows along a chosen path

C a collider

A ⊥⊥ B
A 6⊥⊥ B |C
e.g. A =’Talented in sports’,
B =’Talented in maths’, C =’Admitted
to school’

C a non-collider

A 6⊥⊥ B
A ⊥⊥ B |C
e.g. A =’Cumulative sum of n− 1 dice
throws’, C =’Cumsum of n throws’,
B =’Cumsum of n+ 1 throws’
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Blocked paths

A path between variables A and B is blocked by a set of variables C,
if

there is a collider in the path s.t. neither the collider nor any of its
descendants is in the conditioning set C
there is a non-collider in the path that is in the conditioning set C.

Sets of variables A and B are d-separated by C if all paths between
A and B are blocked by C.

d-separation implies: A ⊥⊥ B|C

A ⊥⊥ B?
A ⊥⊥ B |E?
D ⊥⊥ E |C?
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Markov equivalence

Two graphs are Markov equivalent, if they

entail the same conditional independencies
equivalently: have the same d-separations

For example:
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Determining Markov equivalence

skeleton: undirected graph obtained by removing directions
immorality: a collider structure A→ C ← B, such that there is no
direct edge between A and B

Two graphs are Markov equivalent if and only if they have the same
skeleton and the same set of immoralities
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Limitations of expressibility*

t1 ⊥⊥ t2, y2 and t2 ⊥⊥ t1, y1
No Bayesian network for
t1, t2, y1, y2 exists that could
capture these independence
statements (why?)

A generalized class of models with
bi-directed edges

Pekka Marttinen (Aalto University) Advanced probabilistic methods January, 2021 14 / 29



How to select a DAG to model the system?

Full graph can represent any distribution:

p(x1, x2, x3, x4) = p(x1|x2, x3, x4)p(x2|x3, x4)p(x3|x4)p(x4),

or equally valid

p(x1, x2, x3, x4) = p(x3|x4, x1, x2)p(x4|x1, x2)p(x1|x2)p(x2).

Misses all benefits of structure!

Graph can only be determined up to Markov equivalence class
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Example on using too simple or too complex a DAG (1/2)

Simulate data from the ’true model’

Train a model with training data, try to predict D given S and H in
the test data

S =’Smoking’, H =’Hypertension’, D =’(Some) Disease’
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Example on using too simple or too complex DAG (2/2)

Having a bit too simple model is much worse for prediction accuracy
than having a bit too complex model

Advisable to include all components that may be useful in the
prediction model
However: way too complex models waste data to learn redundant
parameters

Other interesting points:

M3 seems better than M1. Why?
The negative impact of having too complex a model is most severe
when the amount of training data is limited (overfitting).
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Possible ways to specify the graph

1 Construct the graph using assumptions about the system

add edges based on perceived direct causalities
Details in the following slides 1

2 Learn structure from data

Ch. 9.5

Before use, the model should always be checked

cross-validation
inspection or residuals
. . .

1The slides about causal DAGs follow the derivations of Richard E. Neapolitan
(2004) Learning Bayesian Networks, Ch. 1.5
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Definition of causality (1/2)*

Let S =’Sprinkler on’, G =’Grass wet’
By observing the values of S and G , we would surely find them
dependent, so p(s, g) 6= p(s)p(g)
Non-symmetric:

Turning the sprinkler on makes grass wet
Watering the grass (by some means other than the sprinkler) does not
turn the sprinkler on
Interpretation: S is a cause of G

www.123rf.com
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Definition of causality (2/2)*

The causality can be defined by intervetions (manipulations of
variables)

Set the value of a putative cause to a certain value.
Investigate if the distribution of the putative effect changes

For example (S =’Sprinkler on’, G =’Grass wet’):

p(G = 1|do(S = 1)) 6= p(G = 1|do(S = 0))
p(S = 1|do(G = 1)) = p(S = 1|do(G = 0))

Therefore: S is a cause of G

Interventions form the basis of randomized controlled experiments
that are used in clinical trials, for example to assess the effectiveness
of a drug.
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Causal DAG

Suppose our understanding of the causal influences is the following:
A history of smoking (H) causes bronchitis (B) and lung cancer (L).
Bronchitis (B) and lung cancer (L) can cause fatigue (F ).
Lung cancer can cause a positive chest X-ray (C )

A few additional assumptions aside (see next slide), the following
DAG with empirically determined conditional distributions could be
used to represent our knowledge

Neapolitan (2004, Fig 10)
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Underlying assumptions in causal DAGs

Correlation between F
and G could be explained
by the following causal
structures:

When constructing DAGs
using causal edges, we
must assume

No feedback loops (c)
No hidden common
causes (d)
No selection bias (e) Neapolitan (2014, Fig 1.12)
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Inference

Inference corresponds to using the distribution to answer a question
about the environment.

Examples

What is the probability p(x = 4|y = 1, z = 2)?
What is the most likely joint state of the distribution p(x, y)?
What is the probability the stock market will do down tomorrow?

Computational Effi ciency

For singly-connected graps (e.g. trees), there exist effi cient algorithms
based on the concept of message passing.
In general, the case of multiply-connected models is computationally
ineffi cient.
Ch 5 & 6
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Computation - example (1/3)

A: ’Alarm is on’, B : ’There’s a burglar in the house’, E :’There’s an
earthquake’, R :’Radio reports of an earthquake’

Compute p(B = 1|A = 1),the probability that there’s a burglar, given the
alarm is on.

Conditional probabilities:

p(A = 1|B,E ) B E
0.9999 1 1
0.99 1 0
0.99 0 1
0.0001 0 0

p(R = 1|E ) E
1 1
0 0

p(E = 1) = 0.000001

p(B = 1) = 0.01
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Computation - example (2/3)

p(B = 1|A = 1) 1
=
p(B = 1,A = 1)

p(A = 1)

2
=

∑e∑rp(B = 1,A = 1,E = e,R = r)
∑b∑e∑rp(B = b,A = 1,E = e,R = r)

3
=

∑e∑rp(A = 1|B = 1,E = e)p(B = 1)p(E = e)p(R = r |E = e)
∑b∑e∑rp(A = 1|B = b,E = e)p(B = b)p(E = e)p(R = r |E = e)

1: definition of conditional probability, 2: marginalization, 3: factorization
of the joint distribution according to the BN
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Computation - example (3/3)

By reordering to simplify computations, we get further that

. . . = ∑ep(A = 1|B = 1,E = e)p(B = 1)p(E = e)∑rp(R = r |E = e)
∑b∑ep(A = 1|B = b,E = e)p(B = b)p(E = e)∑rp(R = r |E = e)

,

and, because ∑rp(R = r |E = e) = 1, we finally get

. . . = ∑ep(A = 1|B = 1,E = e)p(B = 1)p(E = e)
∑b∑ep(A = 1|B = b,E = e)p(B = b)p(E = e)

≈ 0.99.

Note: even further re-ordering would have been possible.

Note 2: People are not in general very good at estimating this kind of
probabilities. Could you have come up with the result approximately
from the given probabilities, without actually doing the computations?
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Message passing - a simple example (1/2)*

Compute marginal p(a = 0) in the given graph

p(a = 0) = ∑
b∈{0,1}

∑
c∈{0,1}

∑
d∈{0,1}

p(a = 0, b, c , d)

= ∑
b∈{0,1}

∑
c∈{0,1}

∑
d∈{0,1}

p(a = 0|b)p(b|c)p(c |d)p(d)

Naive computation: summation of 2T−1 = 8 terms

Pekka Marttinen (Aalto University) Advanced probabilistic methods January, 2021 27 / 29



Message passing - a simple example (2/2)*

A more effi cient approach is to eliminate one variable at a time:

p(a = 0) = ∑
b∈{0,1}

∑
c∈{0,1}

p(a = 0|b)p(b|c) ∑
d∈{0,1}

p(c |d)p(d)︸ ︷︷ ︸
γd (c )

= ∑
b∈{0,1}

p(a = 0|b) ∑
c∈{0,1}

p(b|c)γd (c)︸ ︷︷ ︸
γc (b)

= ∑
b∈{0,1}

p(a = 0|b)γc (b)

Computational cost: 2× (T − 1) = 6 summations
Variable elimination: eliminate variables starting from the end of the
chain (or a leaf of a tree)
Pass a message (information) from the eliminated variable to its
neighbor in the chain.
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Main points

The definition of Bayesian networks

Reading (conditional) independendies using d-separation

Understanding why it is important to select the model (network)
structure appropriately

Computation of marginal and conditional distributions using a BN
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