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Lecture 4 overview

Bayesian Linear Parameter Models (LPMs), continued

Lecture 3: Posterior computation given fixed hyperparameters
ML-II: Determining hyperparameters
Example using radial basis functions

Logistic regression for classification

Laplace approximation

Gaussian mixture models (GMMs)

Suggested reading:

Barber, Ch. 18
Bishop, Pattern Recognition and Machine Learning, p. 110-113
(2.3.9): Mixtures of Gaussians
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Recap: Bayesian linear regression

Data: D = {(xi , yi ), i = 1, . . . ,N}
Model:

yi = wT xi + ηi , i = 1, . . . ,N

ηi ∼ N(0, β−1), w ∼ N(0, α−1I)

Parameters: w called weights or regression coeffi cients
Hyperparameters: Γ = (α, β)
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Non-linear transformation of the inputs

Assume model yi = wT φ(xi )+ηi
φ(xi ) represent some transformation of xi and are called basis
functions
Example

weights drawn from N(w|0, α−1I); β is the noise precision.
w = (− 0.7, 1.1,−0.8,−1.1,−0.8,−0.6,−0.6, 0.2,−0.2, 0.6,−0.9)
for radial basis functions ordered from left to right (left panel)
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Importance of learning hyperparameters

(a): raw data and 15 radial basis functions
φi (x) = exp

(
−0.5(x − ci )2/λ2

)
with λ = 0.032 and ci spread

evenly over the input space

(b): predictions with β = 100 and α = 1 (severe overfitting)

(c): predictions with ML-II fitted hyperparameter values
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Determining hyperparameters

The hyperparameter posterior distribution is

p(Γ|D) ∝ p(D|Γ)p(Γ)

If p(Γ) ≈ const the optimal hyperparameter Γ∗ is given by

Γ∗ = argmax
Γ
p(D|Γ),

where the marginal likelihood

p(D|Γ) =
∫
p(D|Γ,w)p(w|Γ)dw

Selecting hyperparameters that maximize the marginal likelihood is
called ML-II (a.k.a. evidence maximization, empirical Bayes,
maximum marginal likelihood)
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ML vs. ML-II

In maximum likelihood, we select parameter values w that maximize
the log-likelihood

log p(y |w, x) =
N

∑
i=1
logN(yi |wT φ(xi ), β−1)

ŵ = argmax
w
{log p(y |w, x)} (does not depend on β)

In ML-II, we select hyperparameter values α and β that maximize the
(log-)marginal likelihood (parameters w integrated out)

p(y |Γ, x) =
∫
p(y |Γ,w, x)p(w|Γ)dw

Γ∗ = argmax
Γ
{log p(y |Γ, x)}
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Hyperparameter optimization in practice

EM-algorithm

using the gradient

compute log-marginal likelihood over a grid of values and choose the
best value

use some standard optimization routine
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Alternative to ML-II: validation data (1/2)*

Set the hyperparameters Γ to the value that minimizes the prediction
error in the validation data

{Xval ,Yval} =
{
(xvalj , y

val
j ), j = 1, . . . ,M

}
.

Mean squared error (MSE)

MSE(Γ) =
1
M

M

∑
j=1
(y valj − ỹ valj )2,

where

ỹ valj = mT φ(xvalj ), m =E (w|Γ,Xtrain,Ytrain)
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Alternative to ML-II: validation data (2/2)*

Or by maximizing the validation data marginal likelihood

p(Yval |Γ,Dtrain,Xval ) =
∫
w
p(Yval |w,Xval , Γ)p(w|Γ,Xtrain,Ytrain)dw

Possible extension: cross-validation
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Learning radial basis function width (1/2)

A set of 10 evenly spaced radial basis functions is used
φi (x) = exp

(
−0.5(x − ci )2/λ2

)
Γ = (α, β) optimized for different width parameters λ
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Learning radial basis function width (2/2)

The log marginal likelihood

log p(D|λ, α∗(λ), β∗(λ))

having optimized α and β using ML-II. These values depend on λ.

The best model corresponds to λ = 0.37.
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Logistic regression for classification

Binary classification problem: D ={(xi , ci ), i = 1, . . . ,N}, where the
output c ∈ {0, 1}.
Let p denote the probability that p(c = 1|x)
Logistic (linear) regression

log
p

1− p = w
T x

Or, equivalently
p(c = 1|x) = σ(wT x),

where σ(·) is the so-called logistic sigmoid

σ(x) =
ex

1+ ex
=

1
1+ e−x
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Logistic regression for classification

When used for classification, the decision boundary is defined by
p(c = 1|x) = p(c = 0|x) = 0.5. This corresponds to a hyperplane

wT x = 0.

Classification rule

wT x > 0→ c = 1

wT x < 0→ c = 0

Note: x can include a constant term, x = (1, x1, . . . , xD ), such that
the intercept is automatically included

wT x = w0 + w1x1 + . . .+ wDxD
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Logistic regression, interpretation of parameters*

log
(

p
1− p

)
= w0 + w1x

⇔ p
1− p = exp(w0 + w1x)

Interpretation: when x increases by one unit, the odds p
1−p of

belonging in class 1 increases by a factor equal to ew1 .

If x is binary itself, x ∈ {0, 1}, then ew1 is the odds ratio between
classes x = 1 and x = 0.

a common term in medical literature, e.g., X=’smoking’, C=’cancer’.
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Prior for logistic regression

Gaussian prior

p(w|α) = ND (w|0,α−1I) = α
D
2 (2π)−

D
2 e−

α
2w

Tw

where α is the precision.

Given D ={(xi , ci ), i = 1, . . . ,N} the posterior equals

p(w|α,D) = p(D|w, α)p(w|α)
p(D|α) =

1
p(D|α)p(w|α)

N

∏
i=1
p(ci |xi ,w)

(not of standard form, Laplace approximation is feasible to compute).
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Laplace approximation

Gaussian approximation at the mode

modified from Bishop, Fig. 4.14
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Laplace approximation of posterior distribution

In general, for any posterior p(w|α,D) it holds that

p(w|α,D) ∝ exp(−E (w)), E (w) = − log p(w|α,D).

1 Approximate E (w) by a 2nd order Taylor polynomial Ẽ (w) at the
minimum w

Ẽ (w) = E (w) +
1
2
(w−w)THw(w−w)

(Note, this is quadratic in w.)
2 Obtain a Gaussian approximation q(w|α,D):

p(w|α,D) ≈ q(w|α,D) ∝ exp(−Ẽ (w))

For logistic regression,

E (w) =
α

2
wTw−

N

∑
i=1
log σ(wT hi ), hi ≡ (2ci − 1)xi .
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Laplace approximation in practice

In practice:

Find the minimum w of E (w) analytically (root of the derivative) or by
numerical optimization, e.g. Newton’s method:

wnew = w−H−1w ∇E

When converged, compute the Hessian Hw of E (w) at w.
The posterior approximation is

q(w|α,D) = N(w|m,S), m =w, S = H−1w .

Reminder: if f ≡ f (x1, . . . , xn)

Hf =


∂2f
∂x 21

· · · ∂2f
∂x1∂xn

...
...

∂2f
∂xn∂x1

· · · ∂2f
∂x 2n


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Laplace approximation for a univariate posterior
distribution

For some univariate parameter θ, you are given a prior p(θ) and the
likelihood p(x|θ).
How do you calculate the Laplace approximation q(θ|x) of the
posterior p(θ|x)?
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Laplace approximation for logistic regression

Bayesian logistic regression with RBF functions
φi (x) = exp(−λ(x−mi )2).
mi placed on a subset of training points, λ set to 2
Hyperparameter α optimized as with the Bayesian linear regression by
maximizing the approximated marginal likelihood (→ α = 0.45).
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General comments on usage*

Curse of dimensionality limits the use of RBFs to low-dimensional
cases

Number of required basis functions grows exponentially w.r.t. the
dimension D
Possible remedy: place basis functions on observations
Alternatives: kernel methods, Gaussian processes

With sparse priors, standard linear models can be used with very large
D

y = ∑Di=1 wi xi + ε
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Gaussian mixture models (motivation)

Standard Gaussian model (left) gives bad fit to data with clusters

Combination of two Gaussians (right) is much better
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Gaussian mixture models

Gaussian mixture model with K components has density

p(x) =
K

∑
k=1

πkN(x|µk ,Σk ).

N(x |µk ,Σk ) is a component with its own mean µk and covariance
Σk .
πk are the mixing coeffi cients, which satisfy ∑k πk = 1,
0 ≤ πk ≤ 1.
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GMMs, latent variable representation (1/2)

Equivalent formulation is obtained by defining latent variables
zn=(zn1, . . . , znK ) which tell the component for observation xn
In detail zn is a vector with exactly one element equal to 1 and other
elements equal to 0. znk = 1 means that the observation xn belongs
to component k.

zn = (0, . . . , 0, 1︸︷︷︸
k th elem.

, 0, . . . , 0)T
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GMMs, latent variable representation (2/2)

Define

p(znk = 1) = πk and p(xn |znk = 1) = N(xn |µk ,Σk ),
or equivalently

p(zn) =
K

∏
k=1

πznkk and p(xn |zn) =
K

∏
k=1

N(xn |µk ,Σk )znk

Then
p(xn) = ∑

zn

p(zn)p(xn |zn) = ∑
k

πkN(xn |µk ,Σk )

→ xn has marginally the
Gaussian mixture model
distribution.
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GMM: responsibilities (1/2)

Posterior probability p(znk = 1|xn) that observation xn was generated
by component k

γ(znk ) ≡ p(znk = 1|xn) =
p(znk = 1)p(xn |znk = 1)

∑K
j=1 p(znj = 1)p(xn |znj = 1)

=
πkN(xn |µk ,Σk )

∑K
j=1 πjN(xn |µj ,Σj )

γ(znk ) can be viewed as the responsibility that component k takes
for explaining the observation xn
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GMM: responsibilities (2/2)

(left) samples from a joint distribution p(z)p(x|z), showing both
cluster labels z and observations x (complete data)
(center) samples from the marginal distribution p(x) (incomplete
data)

(right) responsibilities of the data points, computed using known
parameters π = (π1, . . . ,πK ), µ = µ1, . . . , µK , Σ = (Σ1, . . . ,ΣK ).
Problem: in practice π, µ, and Σ are usually unknown.
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Important points

In classification, no closed form solution is available for logistic
regression and approximations, e.g., the Laplace approximation, are
needed.

Hyperparameters can be set by maximizing the marginal likelihood
(either exact or approximate).

Definition of the Gaussian mixture model.

Representing the GMM using discrete latent variables, which specify
the components (or clusters) of the observations.
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