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Lecture 4 overview

Bayesian Linear Parameter Models (LPMs), continued

e Lecture 3: Posterior computation given fixed hyperparameters
e ML-II: Determining hyperparameters
e Example using radial basis functions

Logistic regression for classification

o Laplace approximation

Gaussian mixture models (GMMs)

Suggested reading:

e Barber, Ch. 18
e Bishop, Pattern Recognition and Machine Learning, p. 110-113
(2.3.9): Mixtures of Gaussians
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Recap: Bayesian linear regression

Data: D ={(x;,y;),i=1,...,N}
Model:

yi:WTX;+77/, i=1,...,N
7i~ N©O,B7Y), w~ N®O a I

Parameters: w called weights or regression coefficients
Hyperparameters: T = (a, )

LI
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Non-linear transformation of the inputs

o Assume model y; = w’ ¢(x;)+7;

@ ¢(x;) represent some transformation of x; and are called basis
functions

@ Example

o weights drawn from N(w|0,x~11); B is the noise precision.
ew=(—-0711-08,-1.1,-0.8,-0.6,—-0.6,0.2,—0.2,0.6, —0.9)
for radial basis functions ordered from left to right (left panel)

alpha=1, beta=30 alpha=10, beta=3
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Importance of learning hyperparameters

e (a): raw data and 15 radial basis functions
¢i(x) = exp (—0.5(x — ¢;)?/A?) with A = 0.03% and ¢; spread
evenly over the input space

o (b): predictions with B =100 and & = 1 (severe overfitting)

@ (c): predictions with ML-II fitted hyperparameter values

X!

e ’ /\f N /\/\L /_/'\\
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Determining hyperparameters

@ The hyperparameter posterior distribution is
p(I|D) & p(D|1)p(T)
o If p(T') & const the optimal hyperparameter I'* is given by
I =arg max p(D|T),
where the marginal likelihood
p(DIT) = [ p(DIT,w)p(w|T)dw
@ Selecting hyperparameters that maximize the marginal likelihood is

called ML-11 (a.k.a. evidence maximization, empirical Bayes,
maximum marginal likelihood)
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ML vs. ML-II

@ In maximum likelihood, we select parameter values w that maximize
the log-likelihood

N
log p(y|w,x) = ) log N(yilw"¢(x;), p*)
i=1
w = arg max{log p(y|w,x)} (does not depend on B)
w

@ In ML-II, we select hyperparameter values « and 8 that maximize the
(log-)marginal likelihood (parameters w integrated out)

pUIT %) = [ p(yIT,w, x)p(wir)dw

I = argmax{log p(y|T', x) }
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Hyperparameter optimization in practice

EM-algorithm

using the gradient

compute log-marginal likelihood over a grid of values and choose the
best value

@ use some standard optimization routine
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Alternative to ML-II: validation data (1/2)*

@ Set the hyperparameters I' to the value that minimizes the prediction
error in the validation data

{Xvat, Yvar } = {( val ijal),j = 1,...,M}.

@ Mean squared error (MSE)
M
MSE Z val ~val ,

where

v =mTp(x),  m=E(W|T, Xerain, Verain)
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Alternative to ML-II: validation data (2/2)*

@ Or by maximizing the validation data marginal likelihood

p(yvallrvptrainv‘)(va ) = / P(yval|W:Xval:r)p(W|r: Xtrainvytrain)dw

@ Possible extension: cross-validation
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Learning radial basis function width (1/2)

@ A set of 10 evenly spaced radial basis functions is used
¢i(x) = exp (—0.5(x — ¢;)2/A?)
o I' = («, B) optimized for different width parameters A
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Learning radial basis function width (2/2)

x10

log marginal likelihood

1 0 01 02 03 04 05 06 07
lambda

@ The log marginal likelihood

log p(D|A, a™(A), B*(A))

having optimized « and B using ML-II. These values depend on A.
@ The best model corresponds to A = 0.37.
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Logistic regression for classification

Binary classification problem: D ={(x;, ¢;),i =1,..., N}, where the
output ¢ € {0,1}.
Let p denote the probability that p(c = 1|x)

Logistic (linear) regression

log P _ w’x
1-p
Or, equivalently
p(c=1[x) = o(w'x),
where o (+) is the so-called logistic sigmoid

e* 1

U(X): 1+ ex - 1+ e X
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Logistic regression for classification

@ When used for classification, the decision boundary is defined by
p(c = 1|x) = p(c = 0|x) = 0.5. This corresponds to a hyperplane

w’'x=0.
Classification rule

wix>0—-c=1
wix<0—c=0
@ Note: x can include a constant term, x = (1,x1, . ,XD), such that
the intercept is automatically included

wa:Wo+W1x1+...+WDxD
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Logistic regression, interpretation of parameters*

log <p> = wp + wix
1-p

R exp(wp + wix)

1-p

@ Interpretation: when x increases by one unit, the odds ﬁ of
belonging in class 1 increases by a factor equal to e".

o If x is binary itself, x € {0, 1}, then e" is the odds ratio between
classes x =1 and x = 0.

e a common term in medical literature, e.g., X="smoking’, C="cancer’.
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Prior for logistic regression

o Gaussian prior
p(wla) = Np(w|0,a7 1) = a

where « is the precision.
e Given D ={(x/,¢;),i =1,..., N} the posterior equals

_pOwplwl) 1

(not of standard form, Laplace approximation is feasible to compute).
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Laplace approximation

@ Gaussian approximation at the mode
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modified from Bishop, Fig. 4.14

Pekka Marttinen (Aalto University) Advanced probabilistic methods February, 2021 17 /



Laplace approximation of posterior distribution

@ In general, for any posterior p(w|a, D) it holds that
p(wle, D) o exp(—E(w)),  E(w) =  log p(wle, D).
© Approximate E(w) by a 2nd order Taylor polynomial E(w) at the
minimum w
E(w) = E(w) + %(W—W)THW(W—W)

(Note, this is quadratic in w.)
@ Obtain a Gaussian approximation g(w|a, D):

p(w|a, D) = g(w|a, D) o exp(—E(w))
@ For logistic regression,

N
E(w) = gWTW -) logor(w'h;), h; = (2¢ —1)x,.
i=1
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Laplace approximation in practice

@ In practice:

o Find the minimum W of E(w) analytically (root of the derivative) or by
numerical optimization, e.g. Newton’s method:

w'W —w —H,VE

o When converged, compute the Hessian Hy of E(w) at w.
e The posterior approximation is

g(wla, D) = N(wjm,S), m=w, S= H%l.

e Reminder: if f = f(x1,...,xp)

%f 9%f
ax12 0x10xp
Hf =
9%f 9%f
0X,0x1 ox2
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Laplace approximation for a univariate posterior

distribution

e For some univariate parameter 6, you are given a prior p(6) and the
likelihood p(x|@).

@ How do you calculate the Laplace approximation g(8|x) of the
posterior p(0]x)?
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Laplace approximation for logistic regression

@ Bayesian logistic regression with RBF functions
$1(x) = exp(—A(x— m;)2).

@ m; placed on a subset of training points, A set to 2

@ Hyperparameter « optimized as with the Bayesian linear regression by
maximizing the approximated marginal likelihood (— a = 0.45).

6 T T T T
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General comments on usage*

@ Curse of dimensionality limits the use of RBFs to low-dimensional
cases

o Number of required basis functions grows exponentially w.r.t. the

dimension D
o Possible remedy: place basis functions on observations
o Alternatives: kernel methods, Gaussian processes

@ With sparse priors, standard linear models can be used with very large
D

oy=YP wx +e
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Gaussian mixture models (motivation

e Standard Gaussian model (left) gives bad fit to data with clusters

o Combination of two Gaussians (right) is much better
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Gaussian mixture models

@ Gaussian mixture model with K components has density

p(x) = 3" N (xl i, Z5).
k=1

o N(x|pk, k) is a component with its own mean i, and covariance
Y.

@ 714 are the mixing coefficients, which satisfy )}, mx =1,
0 <7 < 1.

Pekka Marttinen (Aalto University) Advanced probabilistic methods February, 2021 24 /29



GMMs, latent variable representation (1/2)

@ Equivalent formulation is obtained by defining latent variables
2,=(Zp1, - .., Znk ) which tell the component for observation x,

@ In detail z, is a vector with exactly one element equal to 1 and other
elements equal to 0. z,x = 1 means that the observation x,, belongs

to component k.

0.5 0.5

o

0 0.5
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GMMs, latent variable representation (2/2)

@ Define

p(zok = 1) = 71 and p(Xn|zok = 1) = N(xp|pk, Zk),
or equivalently

K

K
p(z,) = Hni"“ and  p(x,|z,) = HN(X,,Luk,Zk)Z"k
k=1 k=1

@ Then
Zp Xn|Zn :anN(xn’kaZk)
k

— X, has marginally the
Gaussian mixture model
distribution. u 5
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GMM: responsibilities (1/2)

@ Posterior probability p(z,x = 1|x,) that observation x, was generated
by component k

p(zok = 1)p(Xp|zpx = 1)
Y1 p(znj = 1)p(xn|znj = 1)
_ TN (x| pie, Zie)

Y N (x|, Z5)

')’(an) = p(zak = 1’Xn> =

@ 7(znk) can be viewed as the responsibility that component k takes
for explaining the observation x,

Pekka Marttinen (Aalto University) Advanced probabilistic methods February, 2021 27 /29



GMM: responsibilities (2/2)

o (left) samples from a joint distribution p(z)p(x|z), showing both
cluster labels z and observations x (complete data)

@ (center) samples from the marginal distribution p(x) (incomplete
data)

o (right) responsibilities of the data points, computed using known
parameters 7 = (71,..., 7Tk), 4 = H1,---, UK, = = (Z1,...,Zk).
@ Problem: in practice 7t, y, and X are usually unknown.
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Important points

@ In classification, no closed form solution is available for logistic
regression and approximations, e.g., the Laplace approximation, are
needed.

@ Hyperparameters can be set by maximizing the marginal likelihood
(either exact or approximate).

@ Definition of the Gaussian mixture model.

@ Representing the GMM using discrete latent variables, which specify
the components (or clusters) of the observations.
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