Advanced probabilistic methods Lecture 4: ML-II, Laplace approximation, and Gaussian mixtures

Pekka Marttinen

Aalto University

February, 2021

Pekka Marttinen (Aalto University)

Advanced probabilistic methods

February, 2021 1 / 29

Lecture 4 overview

• Bayesian Linear Parameter Models (LPMs), continued

- Lecture 3: Posterior computation given fixed hyperparameters
- ML-II: Determining hyperparameters
- Example using radial basis functions
- Logistic regression for classification
 - Laplace approximation
- Gaussian mixture models (GMMs)
- Suggested reading:
 - Barber, Ch. 18
 - Bishop, *Pattern Recognition and Machine Learning*, p. 110-113 (2.3.9): Mixtures of Gaussians

Recap: Bayesian linear regression

Data: D = {(x_i, y_i), i = 1, ..., N}
Model:

$$y_i = \mathbf{w}^T \mathbf{x}_i + \eta_i, \quad i = 1, \dots, N$$

$$\eta_i \sim N(0, \beta^{-1}), \quad \mathbf{w} \sim N(\mathbf{0}, \alpha^{-1} \mathbf{I})$$

- Parameters: w called weights or regression coefficients
- Hyperparameters: $\Gamma = (\alpha, \beta)$

Non-linear transformation of the inputs

- Assume model $y_i = \mathbf{w}^T \phi(\mathbf{x}_i) + \eta_i$
- $\phi(\mathbf{x}_i)$ represent some transformation of \mathbf{x}_i and are called *basis functions*
- Example
 - weights drawn from $N(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$; β is the noise precision.
 - $\mathbf{w} = (-0.7, 1.1, -0.8, -1.1, -0.8, -0.6, -0.6, 0.2, -0.2, 0.6, -0.9)$ for radial basis functions ordered from left to right (left panel)

Pekka Marttinen (Aalto University)

February, 2021 4 / 29

Importance of learning hyperparameters

- (a): raw data and 15 radial basis functions $\phi_i(x) = \exp\left(-0.5(x-c_i)^2/\lambda^2\right)$ with $\lambda = 0.03^2$ and c_i spread evenly over the input space
- (b): predictions with $\beta = 100$ and $\alpha = 1$ (severe overfitting)
- (c): predictions with ML-II fitted hyperparameter values

• The hyperparameter posterior distribution is

 $p(\Gamma | \mathcal{D}) \propto p(\mathcal{D} | \Gamma) p(\Gamma)$

• If $p(\Gamma) \approx const$ the optimal hyperparameter Γ^* is given by

$$\Gamma^* = rg\max_{\Gamma} p(\mathcal{D}|\Gamma)$$
 ,

where the marginal likelihood

$$p(\mathcal{D}|\Gamma) = \int p(\mathcal{D}|\Gamma, \mathbf{w}) p(\mathbf{w}|\Gamma) d\mathbf{w}$$

• Selecting hyperparameters that maximize the marginal likelihood is called *ML-II* (a.k.a. *evidence maximization, empirical Bayes, maximum marginal likelihood*)

• In **maximum likelihood**, we select parameter values **w** that maximize the log-likelihood

$$\log p(y|\mathbf{w}, \mathbf{x}) = \sum_{i=1}^{N} \log N(y_i | \mathbf{w}^T \phi(\mathbf{x}_i), \beta^{-1})$$
$$\widehat{\mathbf{w}} = \arg \max_{\mathbf{w}} \{ \log p(y|\mathbf{w}, \mathbf{x}) \} \quad (\text{does not depend on } \beta)$$

 In ML-II, we select hyperparameter values α and β that maximize the (log-)marginal likelihood (parameters w integrated out)

$$\begin{split} p(y|\Gamma, \mathbf{x}) &= \int p(y|\Gamma, \mathbf{w}, \mathbf{x}) p(\mathbf{w}|\Gamma) d\mathbf{w} \\ \Gamma^* &= \arg\max_{\Gamma} \{\log p(y|\Gamma, x)\} \end{split}$$

- EM-algorithm
- using the gradient
- compute log-marginal likelihood over a grid of values and choose the best value
- use some standard optimization routine

• Set the hyperparameters Γ to the value that minimizes the prediction error in the validation data

$$\{\mathcal{X}_{val}, \mathcal{Y}_{val}\} = \left\{ (\mathbf{x}_j^{val}, y_j^{val}), j = 1, \dots, M \right\}.$$

• Mean squared error (MSE)

$$\mathsf{MSE}(\Gamma) = rac{1}{M}\sum_{j=1}^{M}(y_{j}^{\mathit{val}}-\widetilde{y}_{j}^{\mathit{val}})^{2}$$
,

where

$$\widetilde{y}_{j}^{\textit{val}} = \mathbf{m}^{\mathsf{T}} \phi(\mathbf{x}_{j}^{\textit{val}}), \qquad \mathbf{m} = \mathsf{E}(\mathbf{w} | \Gamma, \mathcal{X}_{\textit{train}}, \mathcal{Y}_{\textit{train}})$$

• Or by maximizing the validation data marginal likelihood

$$p(\mathcal{Y}_{\mathsf{val}}|\Gamma, \mathcal{D}_{\mathsf{train}}, \mathcal{X}_{\mathsf{val}}) = \int_{\mathbf{w}} p(\mathcal{Y}_{\mathsf{val}}|\mathbf{w}, \mathcal{X}_{\mathsf{val}}, \Gamma) p(\mathbf{w}|\Gamma, \mathcal{X}_{\mathsf{train}}, \mathcal{Y}_{\mathsf{train}}) d\mathbf{w}$$

• Possible extension: cross-validation

Learning radial basis function width (1/2)

A set of 10 evenly spaced radial basis functions is used φ_i(x) = exp (-0.5(x - c_i)²/λ²)
 Γ = (α, β) optimized for different width parameters λ

Pekka Marttinen (Aalto University)

Advanced probabilistic methods

February, 2021 11 / 29

Learning radial basis function width (2/2)

• The log marginal likelihood

$$\log p(\mathcal{D}|\lambda, \alpha^*(\lambda), \beta^*(\lambda))$$

having optimized α and β using ML-II. These values depend on λ .

• The best model corresponds to $\lambda = 0.37$.

Logistic regression for classification

- Binary classification problem: D ={(x_i, c_i), i = 1,..., N}, where the output c ∈ {0, 1}.
- Let p denote the probability that $p(c=1|\mathbf{x})$
- Logistic (linear) regression

$$\log \frac{p}{1-p} = \mathbf{w}^T \mathbf{x}$$

Or, equivalently

$$p(c = 1 | \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}),$$

where $\sigma(\cdot)$ is the so-called *logistic sigmoid*

$$\sigma(x) = \frac{e^x}{1+e^x} = \frac{1}{1+e^{-x}}$$

• When used for classification, the decision boundary is defined by $p(c = 1|\mathbf{x}) = p(c = 0|\mathbf{x}) = 0.5$. This corresponds to a hyperplane

$$\mathbf{w}^T \mathbf{x} = \mathbf{0}.$$

Classification rule

$$\mathbf{w}^T \mathbf{x} > 0 \rightarrow c = 1$$

 $\mathbf{w}^T \mathbf{x} < 0 \rightarrow c = 0$

• Note: **x** can include a constant term, **x** = (1, x₁, ..., x_D), such that the *intercept* is automatically included

$$\mathbf{w}^T \mathbf{x} = w_0 + w_1 x_1 + \ldots + w_D x_D$$

Logistic regression, interpretation of parameters*

$$\log\left(\frac{p}{1-p}\right) = w_0 + w_1 x$$

$$\Leftrightarrow \frac{p}{1-p} = \exp(w_0 + w_1 x)$$

- Interpretation: when x increases by one unit, the odds p/(1-p) of belonging in class 1 increases by a factor equal to e^{w1}.
- If x is binary itself, $x \in \{0, 1\}$, then e^{w_1} is the **odds ratio** between classes x = 1 and x = 0.

• a common term in medical literature, e.g., X = 'smoking', C = 'cancer'.

Gaussian prior

$$p(\mathbf{w}|\alpha) = N_D(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \alpha^{\frac{D}{2}}(2\pi)^{-\frac{D}{2}}e^{-\frac{\alpha}{2}\mathbf{w}^T\mathbf{w}}$$

where α is the precision.

• Given $\mathcal{D} = \{(\mathbf{x}_i, c_i), i = 1, \dots, N\}$ the posterior equals

$$p(\mathbf{w}|\alpha, \mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{w}, \alpha)p(\mathbf{w}|\alpha)}{p(\mathcal{D}|\alpha)} = \frac{1}{p(\mathcal{D}|\alpha)}p(\mathbf{w}|\alpha)\prod_{i=1}^{N}p(c_{i}|\mathbf{x}_{i}, \mathbf{w})$$

(not of standard form, Laplace approximation is feasible to compute).

Laplace approximation

• Gaussian approximation at the mode

Laplace approximation of posterior distribution

- In general, for any posterior $p(\mathbf{w}|\alpha, D)$ it holds that $p(\mathbf{w}|\alpha, D) \propto \exp(-E(\mathbf{w})), \quad E(\mathbf{w}) = -\log p(\mathbf{w}|\alpha, D).$
- Approximate E(w) by a 2nd order Taylor polynomial Ẽ(w) at the minimum w

$$\widetilde{E}(\mathbf{w}) = E(\overline{\mathbf{w}}) + \frac{1}{2}(\mathbf{w} - \overline{\mathbf{w}})^T H_{\overline{\mathbf{w}}}(\mathbf{w} - \overline{\mathbf{w}})$$

(Note, this is quadratic in **w**.)

2 Obtain a Gaussian approximation $q(\mathbf{w}|\alpha, D)$:

$$p(\mathbf{w}|\alpha, D) \approx q(\mathbf{w}|\alpha, D) \propto \exp(-\widetilde{E}(\mathbf{w}))$$

For logistic regression,

$$E(\mathbf{w}) = \frac{\alpha}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^N \log \sigma(\mathbf{w}^T \mathbf{h}_i), \quad \mathbf{h}_i \equiv (2c_i - 1)\mathbf{x}_i.$$

Laplace approximation in practice

- In practice:
 - Find the minimum $\overline{\mathbf{w}}$ of $E(\mathbf{w})$ analytically (root of the derivative) or by numerical optimization, e.g. Newton's method:

$$\mathbf{w}^{new} = \mathbf{w} - \mathbf{H}_w^{-1} \nabla E$$

- When converged, compute the Hessian $H_{\overline{\mathbf{w}}}$ of $E(\mathbf{w})$ at $\overline{\mathbf{w}}$.
- The posterior approximation is

$$q(\mathbf{w}|\alpha, \mathcal{D}) = N(\mathbf{w}|\mathbf{m}, \mathbf{S}), \quad \mathbf{m} = \overline{\mathbf{w}}, \quad \mathbf{S} = \mathbf{H}_{\overline{\mathbf{w}}}^{-1}.$$

• Reminder: if $f \equiv f(x_1, \ldots, x_n)$

$$H_f = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

Laplace approximation for a univariate posterior distribution

- For some univariate parameter θ , you are given a prior $p(\theta)$ and the likelihood $p(\mathbf{x}|\theta)$.
- How do you calculate the Laplace approximation $q(\theta|\mathbf{x})$ of the posterior $p(\theta|\mathbf{x})$?

Laplace approximation for logistic regression

- Bayesian logistic regression with RBF functions $\phi_i(\mathbf{x}) = \exp(-\lambda(\mathbf{x} \mathbf{m}_i)^2).$
- \mathbf{m}_i placed on a subset of training points, λ set to 2
- Hyperparameter α optimized as with the Bayesian linear regression by maximizing the approximated marginal likelihood ($\rightarrow \alpha = 0.45$).

- Curse of dimensionality limits the use of RBFs to low-dimensional cases
 - Number of required basis functions grows exponentially w.r.t. the dimension ${\cal D}$
 - Possible remedy: place basis functions on observations
 - Alternatives: kernel methods, Gaussian processes
- With sparse priors, standard linear models can be used with very large D

•
$$y = \sum_{i=1}^{D} w_i x_i + \epsilon$$

- Standard Gaussian model (left) gives bad fit to data with clusters
- Combination of two Gaussians (right) is much better

Gaussian mixture models

• Gaussian mixture model with K components has density

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k N(\mathbf{x} | \mu_k, \Sigma_k).$$

- $N(x|\mu_k, \Sigma_k)$ is a **component** with its own mean μ_k and covariance Σ_k .
- π_k are the **mixing coefficients**, which satisfy $\sum_k \pi_k = 1$, $0 \le \pi_k \le 1$.

GMMs, latent variable representation (1/2)

- Equivalent formulation is obtained by defining **latent variables** $\mathbf{z}_n = (z_{n1}, \dots, z_{nK})$ which tell the component for observation \mathbf{x}_n
- In detail z_n is a vector with exactly one element equal to 1 and other elements equal to 0. z_{nk} = 1 means that the observation x_n belongs to component k.

$$\mathbf{z}_n = (\mathbf{0}, \dots, \mathbf{0}, \underbrace{1}_{k^{th} \text{ elem.}}, \mathbf{0}, \dots, \mathbf{0})^T$$

GMMs, latent variable representation (2/2)

• Define

$$p(z_{nk}=1)=\pi_k$$
 and $p(\mathbf{x}_n|z_{nk}=1)=N(\mathbf{x}_n|\mu_k,\Sigma_k),$ or equivalently

$$p(\mathbf{z}_n) = \prod_{k=1}^{K} \pi_k^{z_{nk}}$$
 and $p(\mathbf{x}_n | \mathbf{z}_n) = \prod_{k=1}^{K} N(\mathbf{x}_n | \mu_k, \Sigma_k)^{z_{nk}}$

Then

$$p(\mathbf{x}_n) = \sum_{\mathbf{z}_n} p(\mathbf{z}_n) p(\mathbf{x}_n | \mathbf{z}_n) = \sum_k \pi_k N(\mathbf{x}_n | \mu_k, \Sigma_k)$$

 $\rightarrow \mathbf{x}_n$ has marginally the Gaussian mixture model distribution.

 Posterior probability p(z_{nk} = 1|x_n) that observation x_n was generated by component k

$$\begin{split} \gamma(z_{nk}) &\equiv p(z_{nk} = 1 | \mathbf{x}_n) = \frac{p(z_{nk} = 1)p(\mathbf{x}_n | z_{nk} = 1)}{\sum_{j=1}^{K} p(z_{nj} = 1)p(\mathbf{x}_n | z_{nj} = 1)} \\ &= \frac{\pi_k N(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{j=1}^{K} \pi_j N(\mathbf{x}_n | \mu_j, \Sigma_j)} \end{split}$$

 γ(z_{nk}) can be viewed as the responsibility that component k takes
 for explaining the observation x_n

GMM: responsibilities (2/2)

- (left) samples from a joint distribution p(z)p(x|z), showing both cluster labels z and observations x (complete data)
- (center) samples from the marginal distribution $p(\mathbf{x})$ (incomplete data)
- (right) responsibilities of the data points, computed using *known* parameters $\pi = (\pi_1, \ldots, \pi_K)$, $\mu = \mu_1, \ldots, \mu_K$, $\Sigma = (\Sigma_1, \ldots, \Sigma_K)$.
- Problem: in practice π , μ , and Σ are usually *unknown*.

- In classification, no closed form solution is available for logistic regression and approximations, e.g., the Laplace approximation, are needed.
- Hyperparameters can be set by maximizing the marginal likelihood (either exact or approximate).
- Definition of the Gaussian mixture model.
- Representing the GMM using discrete latent variables, which specify the components (or clusters) of the observations.