Advanced probabilistic methods
 Lecture 8: Factor analysis

Pekka Marttinen

Aalto University

March, 2021

Lecture 8 overview

- Factor analysis (FA)
- Probabilistic description of the model
- Some examples
- An extension: Group Factor Analysis
- Suggested reading: Ch. 21 of Barber

Two different views on classical multivariate analysis ${ }^{1}$

Given an $N \times D$ data matrix, we may be interested in comparing
(1) rows of the data matrix (individuals)

- starting point: similarities between individuals
- techniques: clustering, multidimensional scaling, discriminant analysis
(2) columns of the data matrix (variables)
- starting point: correlation/covariance matrix between variables
- techniques: factor analysis, principal component analysis, canonical correlation analysis

[^0]
Factor analysis - intuition

- Factor analysis attempts to explain correlation between a large set of visible variables (\mathbf{v}) using a small number of hidden factors (\mathbf{h}).
- It is not possible to observe the factors directly. The visible variables depend on the factors but are also subject to random error.
- A central tool in statistics, a simple example of representation learning, and a building block for more complex (deep) models.

Factor analysis, probabilistic description

- FA model generates a D-dimensional observation \mathbf{v} from the H-dimensional vector \mathbf{h} according to

$$
\mathbf{v}=F \mathbf{h}+\mathbf{c}+\epsilon
$$

where

$$
\epsilon \sim N(0, \Psi), \quad \Psi=\operatorname{diag}\left(\psi_{1}, \ldots, \psi_{D}\right)
$$

- The $D \times H$ factor loading matrix F tells how the factors affect the observations: $f_{i j}$ is the effect of factor h_{j} on variable v_{i}.

Factor analysis (example) (1/3)

- Data matrix contains results of 5 exams for 120 students (see factorandemo in Matlab)
- Exams 1 and 2 are about mathematics, exams 3 and 4 about literature, and exam 5 is comprehensive.
- Goal of analysis: to investigate if the results could be understood using a smaller number of characteristics (or, factors) of students, e.g., 'quantitative' and 'qualitative' skills.

$$
\text { Data }=\left[\begin{array}{ccccc}
65 & 77 & 69 & 75 & 69 \\
61 & 74 & 70 & 66 & 68 \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

- The $n^{\text {th }}$ row of the data matrix is $v_{n}^{T}=\left(v_{n 1}, \ldots, v_{n 5}\right)$

Factor analysis (example) (2/3)

- Underlying model in detail

$$
\begin{aligned}
& {\left[\begin{array}{l}
v_{n 1} \\
v_{n 2} \\
v_{n 3} \\
v_{n 4} \\
v_{n 5}
\end{array}\right]=\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22} \\
f_{31} & f_{32} \\
f_{41} & f_{42} \\
f_{51} & f_{52}
\end{array}\right] \times\left[\begin{array}{l}
h_{n 1} \\
h_{n 2}
\end{array}\right]+\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5}
\end{array}\right]+\epsilon_{n}} \\
& \epsilon_{n} \sim N_{5}(0, \Psi), \Psi=\left[\begin{array}{ccccc}
\psi_{1} & 0 & 0 & 0 & 0 \\
0 & \psi_{2} & 0 & 0 & 0 \\
0 & 0 & \psi_{3} & 0 & 0 \\
0 & 0 & 0 & \psi_{4} & 0 \\
0 & 0 & 0 & 0 & \psi_{5}
\end{array}\right]
\end{aligned}
$$

Factor analysis (example) (3/3)

- Results

Equivalent model without latent factors

- Given

$$
p(\mathbf{v} \mid \mathbf{h})=N_{D}(\mathbf{v} \mid F \mathbf{h}+\mathbf{c}, \Psi)
$$

and assuming a prior on \mathbf{h} :

$$
p(\mathbf{h})=N_{H}(\mathbf{h} \mid 0, l)
$$

integrating out \mathbf{h} yields

$$
p(\mathbf{v})=\int p(\mathbf{v} \mid \mathbf{h}) p(\mathbf{h}) d \mathbf{h}=N\left(\mathbf{v} \mid \mathbf{c}, F F^{T}+\Psi\right)
$$

- The result follows from the Linear transformation of a Gaussian (see Lecture 3).

Rotation invariance

- The likelihood is unchanged if we rotate F using $F R$, with $R R^{T}=I$:

$$
F R(F R)^{T}+\Psi=F R R^{T} F^{T}+\Psi=F F^{T}+\Psi
$$

- R is often selected to produce interpretable factors. Varimax rotation makes each column of F to have only a small number of large values.
- Note: rotation invariance does not matter if the goal is to fit the model in order to use it for prediction. For interpreting the factors, it does.

Probabilistic principal component analysis

- Probabilistic PCA has almost same the model as FA

$$
\begin{gathered}
\mathbf{v}=F \mathbf{h}+\mathbf{c}+\epsilon, \\
\epsilon \sim N(0, \Psi), \quad \Psi=\sigma^{2} l .
\end{gathered}
$$

- In FA

$$
\Psi=\operatorname{diag}\left(\psi_{1}, \ldots, \psi_{D}\right)
$$

Example PPCA and FA, digit modeling

- Samples drawn from FA and PPCA models trained for digit 7.
- FA has different noise parameters for each pixel \rightarrow reduced noise in boundary regions.

FA vs. GMM

- How are FA and GMM similar? How are they different?

Bayesian PCA (Bishop, Fig. 12.13)

GMM (Bishop, Fig. 9.6)

FA, geometric intuition (1/2)

- FA assumes that the data lies close to a low-dimensional linear manifold
- For example, if $H=1$ and $D=2$:

Figure: 12.1 in Murphy

FA, geometric intuition (2/2)

- If $H=2$ and $D=3$, the data points form a 'pancake'

Figure: 21.2 in Barber

- Left: latent 2D points \mathbf{h}_{n} sampled from $N(\mathbf{h} \mid \mathbf{0}, \mathbf{I})$ and mapped to the 3 D plane by $\mathbf{v}_{n}^{0}=F \mathbf{h}_{n}+\mathbf{c}$.
- Right: data points \mathbf{v}_{n} are obtained by adding noise $\mathbf{v}_{n}=\mathbf{v}_{n}^{0}+\epsilon_{n}$, where $\epsilon_{n} \sim N(\mathbf{0}, \Psi)$

Mixture of factor analysers

Figure: 12.3 in Murphy
Left: $K=1$, right, $K=10$:

Figure: 12.4 in Murphy

Fitting the FA model

- EM algorithm
- Mean-field VB straightforward with conjugate priors (left as an exercise)
- Stochastic variational inference (next week)
- MCMC
- etc.

Determining the number of factors

- Same techniques as for determining the number of clusters in GMMs
- Bayesian model selection
- Cross-validation
- ...
- Automated relevance determination (ARD)
- shrink unneeded aspects of the model, such that they have no impact
- empty clusters in GMM (corresponding to mixture weights driven to zero)
- factors that don't have any effect (achieved by a shrinkate prior on the columns of the factor loading matrix, see below)
- Nonparameteric methods
- Assume infinite number of dimensions with diminishing importance
- Avoids the selection of any fixed dimension (in principle)
- Dirichlet process prior for clustering, Beta process prior for factor analysis

Research at Aalto: Group factor analysis (GFA) (1/4)

In standard factor analysis the observed variables are modeled using unobserved latent factors

GFA (2/4)

- Group factor analysis (GFA) $=$ FA + specific sparsity structure in the model

Virtanen et al., AISTATS 2012; Klami et al., JMLR 2013

GFA (3/4)

- Group factor analysis (GFA) $=$ FA + specific sparsity structure in the model

- Efficient variational approximation with group-sparsity prior

$$
\alpha_{m k} \sim \operatorname{Gamma}\left(\alpha_{0}, \beta_{0}\right) \quad w_{m k} \sim N\left(0, \alpha_{m k}^{-1} I\right)
$$

GFA (4/4)

- Summary of GFA
- extends FA to model dependencies between groups of variables (as opposed to between individual variables)
- Efficient inference of group-wise sparsity structure (important for modeling high-dimensional data)
- basic modeling tool for unsupervised data integration of multiple data sources
- http://research.ics.aalto.fi/mi/software/CCAGFA

GFA example (1/2)

Figure: Khan et al., Bioinformatics (2014)

- GFA for studying associations between drug characteristics and cellular responses

GFA example (2/2)

- GFA for studying associations between drug characteristics and cellular responses

Remark

- FA-model is based on the Gaussian distribution, but often used with other data types as well.
- Pragmatic justification that FA often works well with other data types.
- Performance may not be good with highly non-Gaussian variables, for example binary 0-1 variables with a very small number of individuals with value 1 .

Important points

- Factor analysis model explains correlations between variables using latent variables (the factors) that affect several observed variables simultaneously, thus explaining the observed correlations
- FA model can be represented both with and without latent variables
- Factor loading matrix can be rotated without changing the likelihood - this must be kept in mind when interpreting the factors, but does not matter for prediction.
- FA model can be extended in many ways, for example to model dependencies between groups of variables.

[^0]: ${ }^{1}$ From Mardia, K.V. (1980). Multivariate Analysis

