Advanced probabilistic methods

Lecture 9: Variational Bayes by backpropagation

Pekka Marttinen

Aalto University

March, 2021

Pekka Marttinen (Aalto University) Advanced probabilistic methods March, 2021 1/25



Lecture 9 overview

Recap and caveats of VB

Idea of variational Bayes by backpropagation
Gradient of the ELBO

e Monte Carlo sampling and backpropagation

Computation using a mini-batch

Lecture based on:

o Blundell et al. (2015). Weight uncertainty in neural networks. /CML.
https://arxiv.org/pdf/1505.05424.pdf

@ Also relevant, for example:

o Hoffman et al. (2013). Stochastic Variational Inference.

o Kingma, Welling (2014). Auto-encoding variational Bayes.

o Wilson, lzmailov (2020). Bayesian Deep Learning and a Probabilistic
Perspective of Generalization
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Motivation: Bayesian Neural Networks (BNNs)

Classical neural network: each Bayesian neural network: each
weight has a fixed value. weight is assigned a probability
(Blundell, Fig. 1) distribution.
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Benefits of being Bayesian (1/2)
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Classical NN severely Bayesian NN captures
underestimates uncertainty in uncertainty better. (Blundell,
out-of-data regions. Fig. 5)
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Benefits of being Bayesian (2/2)

@ Uncertainty properly quantified

e Important in decision making
o Critical in: medical applications, autonomous driving, ...
o Active learning, reinforcement learning, ...

@ Improved generalization (prediction accuracy)

o Cheap model averaging over the posterior uncertainty
e Automated complexity cost: regularization, robustness to small
perturbations
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o Model:

y,-:f(x,-,w)—{—e,-, 6,’NN(0,0'/2>, i=1,..., N.

The log-likelihood:
N N ,
log p(Dlw) = Y log p(yi|xj, w) = ) log N (yi| f (x;, w), 07)
i=1 i=1

Prior: w ~ N(0,a?/)
Hyperparameters a° and (7,2 are assumed known constants.

@ f can be a NN or linear regression (exercise)
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Predictive uncertainty

@ Classical NN:

p(y*|x*, D) = N(y*|f(x*, WMLE), 0,2), where

wMtE — arg max log p(Dw).
w

@ Bayesian NN:

p(y" X", D) = [ ply*|x", w)p(w|D)dw

ST~

N (y|f(x", w),07)p(w|D)dw

@ Both models include noise uncertainty 0,2, but only the BNN accounts
for the uncertainty in w.
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Classical way of training neural networks

@ ML-estimate

wMbE = arg max log p(D|w)
w

= argmin — log p(D|w)
Wo———
Loss (MSE)

o (Stochastic) gradient descent:

o Calculate loss (for a mini-batch m): — log p(Dpm,|w)

o Backpropagate to get the gradient: —V log p(Dm|w)
o Update w «— w — 7V log p(Dp |w)

o Repeat

@ Very simple compared to the lengthy VB derivations!
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Simple example: VB for linear regression

@ Set f(x,w) = wyx + wp such that
Vi = W + w1 X; + €;, €,‘NN(0,0'/2), i=1,..., N,

where w = (wp, wy).

@ Mean field assumption:

p(wo, w1|D) ~ q(wo)q(w1),

where

a(wo) = N (wolpo, 03),
q(w) = N (wilpz, 07).

o Parameters A = {jo, 09, p1,01} are the variational parameters.
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VB for linear regression

@ The goal of VB is to learn the values of A = {g, 00, pt1,01}.

@ Previously, we derived factor updates using formulas:

log " (wo) = Eq(u,) [log p(x,y, wo, w1 )] + const.
log " (w1) = Eg(u,) [log p(x,y, wo, wi)] + const.

@ And: exponentiate, normalize, figure out the values of the respective
variational parameters.
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Problems in VB

@ Problem 1: Closed form update for:

log 4" (wo) = Eg(u,) [log p(x,y, wo, w1)]

available only when conjugate priors are assumed.

@ Problem 2: Computing a single update slow when N large:

log " (wo) = Eq(m,) [25":1 log p(yilxi, wo, m)} + log p(wo).

.

O(N)

@ Problem 3: Lengthy model-specific derivations needed — developing
models slow.
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VB by backpropagation, ideas

o Idea 1: Use Monte Carlo integration to calculate the required
expectations.

e No need for conjugate priors.
o ldea 2: Calculate updates using a minibatch.
e Speed-up when N large.

o Idea 3: Use SGD and backpropagation to calculate the gradient of
the ELBO

e Avoids lengthy manual model-specific derivations.
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Terminology

@ Many methods have been introduced for VB which use SGD to
optimize the ELBO.

Stochastic variational inference
Black-box variational inference
Stochastic gradient variational Bayes
Doubly-stochastic variational inference
Bayes by backprop

@ Details of these methods may differ.

@ The method presented here is called Bayes by backprop in Blundell et
al. (2015).
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A closer look at the variational objective (1/2)

@ The ELBO for the linear regression model:

_ p(x,y, w)
L(A) —/q(w|)\) log de

which can be written as

L(A) =Eg(wz) [log p(y[x, w)] — KL(q(w[A)||p(w)) + const
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A closer look at the variational objective (2/2)

@ Instead of maximizing the ELBO, in SGD we minimize the negative
ELBO:

Loss(A) = —=L(A) =Egw) [~ log p(y[x, w)] + KL(q(w|A)||p(w))

Likelihood cost Complexity cost

@ Gradient of the loss:
Viloss(A) = VAE (wa) [~ log p(y[x, w)] + VAKL(q(w|A)|[p(w))

@ In general both the loss and its gradient are intractable.
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Gradient of the complexity cost

@ In the special case considered here (q factorized, distributions
Gaussian), KL(g(w|A)||p(w)) has a closed form.

o Can be relaxed (details skipped).

o Hence, KL(g(w|A)||p(w)) is a deterministic function of A and can be
computed in a forward pass.

@ The gradient VyKL(g(w|A)||p(w)) can be calculated simply by
using backpropagation with the chain rule.
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Gradient of the likelihood cost (1/3)

@ In principle, any expectation w.r.t. g(w|A) could be approximated
using Monte Carlo sampling, e.g.,

13 .
Eqgwit) [ log p(y[x, w)] ~ — gl log p(y|x, w'*)),

»|

where w(s) ~ g(w]A).

@ However, this can't be applied to compute the gradient because:

VAE gw|a) [— log p(y|x, w)] = —VA/q(w|A) log p(y|x, w)dw
= _/|08P(Y|X'W)VAQ(W|A)G'W

is not an expectation w.r.t. g(w|A).

1Exchanging gradient and integration is ok if the variable w.r.t. which we integrate is
different from the variable w.r.t. which we differentiate (assuming regularity conditions):
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Gradient of the likelihood cost (2/3)

o Reparameterization trick: instead of sampling w(®) ~ g(w|A) directly,
do as follows:
@ Sample e ~ N(0, ).
@ Transform w(s) = g, (e).
@ To sample from w; ~ g(w;|A;) = N(W,-|],t,-,(7,-2), where A; = (p;, 0y),
we need to select
g, (€)= pi 4+ eo;.

e Then, if () ~ N(0,1), WI-(S) has the correct distribution:

Wi(S) — gA;(e(S)) = ],[,‘ —+ e(s)(Ti ~ N(l’li' 0—12)
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Gradient of the likelihood cost (3/3)

o After reparameterization, the gradient can be approximated using
Monte Carlo sampling:

VAEgwjr) [~ log p(y|x, w)] = Vg e) [~ log p(y|x,g1(e))]
= —Eq() [Valog p(y[x.g1(e))]

1 S
R Y. Valogp(y|x.gr(e)),
s=1

where e(s) ~ N, I),s=1,..., S.
@ In practice it's common to use S = 1.

o The gradient V, log p(y|x,g1(e(*))) can be obtained by
backpropagation.
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Using minibatches

@ Suppose data D is divided into M minibatches: Dy, ..., Dy,;.
@ Objective with the full data:

—L(A) = Equ|r) [~ log p(y[x, w)] + KL(g(w|A)[|p(w))

@ Objective for a mini-batch:

~Ln(A) = Equny [~ 08 Pyl w)] + 15 KL(a(w|) p(w))

Or, averaged per individual:

1 1
i) [Lien,, log p(yilxi, w)] + KL(allp)

—Ln(A) = _|D7m

Scaling the two terms to correspond to the same number of
individuals ensures that the expectation of the stochastic gradient for
the mini-batch is aligned with the gradient of the full cost.
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Putting it all together

@ One iteration of the Bayes-by-backprop for linear regression and
mini-batch D,

@ Sample e®) ~ N(0, /)

@ Transform w,.( ) = Ui + e,.(s)a,- for i = 0,1, where A = (ug, 00, pi1,01)"

© Forward pass to calculate the noisy objective:

1

Loss(A) = D]

e, 108 p(yil.w®)) + L KL(g(wlA)]lp(w))

@ Backward pass to get the stochastic gradient: V,Loss(A).
© Update the variational parameters

A — A —nV,Loss(A).

1The exercise uses a slightly different parameterization to ensure std stays positive:
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@ Mean-field VB can be seen as an optimization problem: the
variational parameters for each factor are updated in turn to
maximize the ELBO L(q).

@ In stochastic variational inference the negative ELBO is minimized
directly using SGD.
@ Stochastic gradient of the ELBO is obtained by

e Monte Carlo sampling to approximate the loss during the forward pass.

o Samples from w(®) ~ g(w]|A) are obtained using the
reparameterization.

o Backpropagation to calculate the gradient.

@ Scaling up to massive data sets can be achieved using a mini-batch.
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Reminder: gradient ascent algorithm*

e Gradient ascent algorithm maximizes a given function f by taking
steps of length p to the direction of the gradient Vf.

of of
(t+1) — A (D) (1) = (2 I
A A —I—pV;Lf(A ) where V) f (8}\1 ..... I )

A, Maximum of f(\)

o AtHD) = A() — p¥, F(A()) gives gradient descent.

Pekka Marttinen (Aalto University) Advanced probabilistic methods March, 2021 23 /25



Reminder: stochastic gradient ascent*

@ Stochastic gradient ascent takes random steps, that are on average
to the correct direction:

AR = A 1 pp, (A1),
@ b:(A) is a random variable s.t. E(b:(A)) = VAf(A).

[l | [cooen i
i

Ay Maximum of f(\)

'S WITHIN WALKING DISTANCE F YOU HAVE THE
TMESRI

cartoonstock.com
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Reminder: SGA with a mini-batch*

o To find a maximum likelihood estimate A,
N N
Z log p(xs|A), and V,f(A Z Vi log p(xa|A)

and we have to differentiate log p(x,|A) for all n.

@ It is cheaper to sample a minibatch of S data points x; and compute
a noisy gradient

b(\) = ¢ X, Vi log p(xlA)

which points approximately to the direction of Vf(A).
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