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Lecture 9 overview

Recap and caveats of VB

Idea of variational Bayes by backpropagation

Gradient of the ELBO

Monte Carlo sampling and backpropagation

Computation using a mini-batch

Lecture based on:

Blundell et al. (2015). Weight uncertainty in neural networks. ICML.
https://arxiv.org/pdf/1505.05424.pdf

Also relevant, for example:

Hoffman et al. (2013). Stochastic Variational Inference.
Kingma, Welling (2014). Auto-encoding variational Bayes.
Wilson, Izmailov (2020). Bayesian Deep Learning and a Probabilistic
Perspective of Generalization
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Motivation: Bayesian Neural Networks (BNNs)

Classical neural network: each
weight has a fixed value.
(Blundell, Fig. 1)

Bayesian neural network: each
weight is assigned a probability

distribution.
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Benefits of being Bayesian (1/2)

Classical NN severely
underestimates uncertainty in

out-of-data regions.

Bayesian NN captures
uncertainty better. (Blundell,

Fig. 5)
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Benefits of being Bayesian (2/2)

Uncertainty properly quantified

Important in decision making
Critical in: medical applications, autonomous driving, ...
Active learning, reinforcement learning, ...

Improved generalization (prediction accuracy)

Cheap model averaging over the posterior uncertainty
Automated complexity cost: regularization, robustness to small
perturbations

Pekka Marttinen (Aalto University) Advanced probabilistic methods March, 2021 5 / 25



Notation

Model:

yi = f (xi ,w) + εi , εi ∼ N (0, σ2l ), i = 1, . . . ,N.

The log-likelihood:

log p(D|w) =
N

∑
i=1
log p(yi |xi ,w) =

N

∑
i=1
logN (yi |f (xi ,w), σ2l )

Prior: w ∼ N (0, α2I )
Hyperparameters α2 and σ2l are assumed known constants.

f can be a NN or linear regression (exercise)

Pekka Marttinen (Aalto University) Advanced probabilistic methods March, 2021 6 / 25



Predictive uncertainty

Classical NN:

p(y ∗|x∗,D) = N (y ∗|f (x∗,wMLE), σ2l ), where
wMLE = argmax

w
log p(D|w).

Bayesian NN:

p(y ∗|x∗,D) =
∫
w
p(y ∗|x∗,w)p(w|D)dw

=
∫
w
N (y ∗|f (x∗,w), σ2l )p(w|D)dw

Both models include noise uncertainty σ2l , but only the BNN accounts
for the uncertainty in w.
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Classical way of training neural networks

ML-estimate

wMLE = argmax
w
log p(D|w)

= argmin
w
− log p(D|w)︸ ︷︷ ︸
Loss (MSE)

(Stochastic) gradient descent:

Calculate loss (for a mini-batch m): − log p(Dm |w)
Backpropagate to get the gradient: −∇w log p(Dm |w)
Update w← w− η∇w log p(Dm |w)
Repeat

Very simple compared to the lengthy VB derivations!
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Simple example: VB for linear regression

Set f (x ,w) = w1x + w0 such that

yi = w0 + w1xi + εi , εi ∼ N (0, σ2l ), i = 1, . . . ,N,

where w = (w0,w1).
Mean field assumption:

p(w0,w1|D) ≈ q(w0)q(w1),

where

q(w0) = N (w0|µ0, σ20 ),
q(w1) = N (w1|µ1, σ21 ).

Parameters λ = {µ0, σ0, µ1, σ1} are the variational parameters.
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VB for linear regression

The goal of VB is to learn the values of λ = {µ0, σ0, µ1, σ1}.
Previously, we derived factor updates using formulas:

log q∗(w0) = Eq(w1) [log p(x, y,w0,w1)] + const.

log q∗(w1) = Eq(w0) [log p(x, y,w0,w1)] + const.

And: exponentiate, normalize, figure out the values of the respective
variational parameters.
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Problems in VB

Problem 1: Closed form update for:

log q∗(w0) = Eq(w1) [log p(x, y,w0,w1)]

available only when conjugate priors are assumed.

Problem 2: Computing a single update slow when N large:

log q∗(w0) = Eq(w1)

[
∑N
i=1 log p(yi |xi ,w0,w1)

]
︸ ︷︷ ︸

O (N )

+ log p(w0).

Problem 3: Lengthy model-specific derivations needed → developing
models slow.
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VB by backpropagation, ideas

Idea 1: Use Monte Carlo integration to calculate the required
expectations.

No need for conjugate priors.

Idea 2: Calculate updates using a minibatch.

Speed-up when N large.

Idea 3: Use SGD and backpropagation to calculate the gradient of
the ELBO

Avoids lengthy manual model-specific derivations.
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Terminology

Many methods have been introduced for VB which use SGD to
optimize the ELBO.

Stochastic variational inference
Black-box variational inference
Stochastic gradient variational Bayes
Doubly-stochastic variational inference
Bayes by backprop

Details of these methods may differ.

The method presented here is called Bayes by backprop in Blundell et
al. (2015).
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A closer look at the variational objective (1/2)

The ELBO for the linear regression model:

L(λ) =
∫
q(w|λ) log p(x, y,w)

q(w|λ) dw,

which can be written as

L(λ) =Eq(w|λ) [log p(y|x,w)]−KL(q(w|λ)||p(w)) + const
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A closer look at the variational objective (2/2)

Instead of maximizing the ELBO, in SGD we minimize the negative
ELBO:

Loss(λ) = −L(λ) =Eq(w|λ) [− log p(y|x,w)]︸ ︷︷ ︸
Likelihood cost

+KL(q(w|λ)||p(w))︸ ︷︷ ︸
Complexity cost

Gradient of the loss:

∇λLoss(λ) = ∇λEq(w|λ) [− log p(y|x,w)] +∇λKL(q(w|λ)||p(w))

In general both the loss and its gradient are intractable.
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Gradient of the complexity cost

In the special case considered here (q factorized, distributions
Gaussian), KL(q(w|λ)||p(w)) has a closed form.

Can be relaxed (details skipped).

Hence, KL(q(w|λ)||p(w)) is a deterministic function of λ and can be
computed in a forward pass.

The gradient ∇λKL(q(w|λ)||p(w)) can be calculated simply by
using backpropagation with the chain rule.
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Gradient of the likelihood cost (1/3)

In principle, any expectation w.r.t. q(w|λ) could be approximated
using Monte Carlo sampling, e.g.,

Eq(w|λ) [− log p(y|x,w)] ≈ −
1
S

S

∑
s=1

log p(y|x,w(s)),

where w(s) ∼ q(w|λ).
However, this can’t be applied to compute the gradient because:

∇λEq(w|λ) [− log p(y|x,w)] = −∇λ

∫
q(w|λ) log p(y|x,w)dw

1
= −

∫
log p(y|x,w)∇λq(w|λ)dw

is not an expectation w.r.t. q(w|λ).
1Exchanging gradient and integration is ok if the variable w.r.t. which we integrate is

different from the variable w.r.t. which we differentiate (assuming regularity conditions).
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Gradient of the likelihood cost (2/3)

Reparameterization trick: instead of sampling w(s) ∼ q(w|λ) directly,
do as follows:

1 Sample e(s) ∼ N(0, I ).
2 Transform w(s) = gλ(e).

To sample from wi ∼ q(wi |λi ) = N(wi |µi , σ2i ), where λi = (µi , σi ),
we need to select

gλi (e
(s)) = µi + e(s)σi .

Then, if e(s) ∼ N(0, 1), w (s)i has the correct distribution:

w (s)i = gλi (e
(s)) = µi + e(s)σi ∼ N(µi , σ2i ).
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Gradient of the likelihood cost (3/3)

After reparameterization, the gradient can be approximated using
Monte Carlo sampling:

∇λEq(w|λ) [− log p(y|x,w)] = ∇λEq(e) [− log p(y|x,gλ(e))]

= −Eq(e) [∇λ log p(y|x,gλ(e))]

≈ − 1
S

S

∑
s=1
∇λ log p(y|x,gλ(e(s))),

where e(s) ∼ N(0, I ), s = 1, . . . , S .
In practice it’s common to use S = 1.

The gradient ∇λ log p(y|x,gλ(e(s))) can be obtained by
backpropagation.
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Using minibatches

Suppose data D is divided into M minibatches: D1, . . . ,DM .
Objective with the full data:

−L(λ) = Eq(w|λ) [− log p(y|x,w)] +KL(q(w|λ)||p(w))

Objective for a mini-batch:

−Lm(λ) = Eq(w|λ) [− log p(ym |xm ,w)] +
1
M
KL(q(w|λ)||p(w))

Or, averaged per individual:

−Lm(λ) = −
1
|Dm |

Eq(w|λ)
[
∑i∈Dm log p(yi |xi ,w)

]
+
1
N
KL(q||p)

Scaling the two terms to correspond to the same number of
individuals ensures that the expectation of the stochastic gradient for
the mini-batch is aligned with the gradient of the full cost.
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Putting it all together

One iteration of the Bayes-by-backprop for linear regression and
mini-batch Dm

1 Sample e(s) ∼ N(0, I )
2 Transform w (s)i = µi + e

(s)
i σi for i = 0, 1, where λ = (µ0, σ0, µ1, σ1)

1

3 Forward pass to calculate the noisy objective:

Loss(λ) = − 1
|Dm |

∑i∈Dm log p(yi |xi ,w
(s)) +

1
N
KL(q(w|λ)||p(w))

4 Backward pass to get the stochastic gradient: ∇λLoss(λ).
5 Update the variational parameters

λ← λ− η∇λLoss(λ).

1The exercise uses a slightly different parameterization to ensure std stays positive.
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Summary

Mean-field VB can be seen as an optimization problem: the
variational parameters for each factor are updated in turn to
maximize the ELBO L(q).
In stochastic variational inference the negative ELBO is minimized
directly using SGD.

Stochastic gradient of the ELBO is obtained by

Monte Carlo sampling to approximate the loss during the forward pass.
Samples from w(s) ∼ q(w|λ) are obtained using the
reparameterization.
Backpropagation to calculate the gradient.

Scaling up to massive data sets can be achieved using a mini-batch.
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Reminder: gradient ascent algorithm*

Gradient ascent algorithm maximizes a given function f by taking
steps of length ρ to the direction of the gradient ∇f .

λ(t+1) = λ(t) + ρ∇λf (λ
(t)), where ∇λf =

(
∂f

∂λ1
, . . . ,

∂f
∂λD

)

λ(t+1) = λ(t) − ρ∇λf (λ(t)) gives gradient descent.
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Reminder: stochastic gradient ascent*

Stochastic gradient ascent takes random steps, that are on average
to the correct direction:

λ(t+1) = λ(t) + ρbt (λ(t)),

bt (λ) is a random variable s.t. E (bt (λ)) = ∇λf (λ).

cartoonstock.com
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Reminder: SGA with a mini-batch*

To find a maximum likelihood estimate λ̂,

f (λ) =
1
N

N

∑
n=1

log p(xn |λ), and ∇λf (λ) =
1
N

N

∑
n=1
∇λ log p(xn |λ)

and we have to differentiate log p(xn |λ) for all n.
It is cheaper to sample a minibatch of S data points xs and compute
a noisy gradient

b(λ) =
1
S ∑s ∇λ log p(xs |λ),

which points approximately to the direction of ∇λf (λ).
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