Advanced probabilistic methods

Lecture 10: Concluding remarks

Pekka Marttinen

Aalto University

March, 2021

Lecture 10 overview

- A brief summary of the course
- Some suggestions

Course contents

- Ingredients of probabilistic modeling
 - Models: Bayesian networks, Sparse Bayesian linear regression, Gaussian mixture models, latent linear models
 - Methods for inference: maximum likelihood, maximum a posteriori (MAP), Laplace approximation, expectation maximization (EM), Variational Bayes (VB), Stochastic variational inference (SVI)
 - Ways to select between models: Bayesian model selection, AIC, BIC, ...

3 / 8

Which model to use?

- Incremental approach
 - start with a simple model
 - assess fit (inspect residuals, compare model prediction with real data,...)
 - improve model if needed
 - See Philosophy and practice of Bayesian statistics (2012) by Gelman and Shalizi
- "Let the data speak"
 - start with a flexible model that can adapt to different kinds of data
 - often used in machine learning
- Construct alternative models based on understanding of the problem
 - Continue with model comparison (checking the fit still needed)

Which inference to use? (1/2)

- If the model is good, the results are often ok with any sensible model fitting technique.
- Bayesian approaches avoids some pitfalls of maximum likelihood (e.g. singularities in GMM) and yield uncertainty estimates and regularization
- Ready-made software, e.g. Stan for MCMC, Pyro (PyTorch) for VB, may be considered the first thing to try, if analytical integration is not possible.

 $y = f_2(x)$

- Easy and fast if they work
- Difficult to debug if they don't

 $y = \hat{f}_1(x)$

 $y = \hat{f}_{10}(x)$

Which inference to use? (2/2)

MCMC:

- pros: asymptotically you get correct probabilities
- cons: assessing convergence, computation time
- Recommended usage¹: any 'conventional' statistical analysis where
 it's important to get the probabilities correct and computation time is
 not an issue

Variational inference:

- pros: faster, may be more stable than MCMC
- cons: underestimates uncertainty
- Recommended usage: 'machine learning' type models, where the goal is more on prediction and exact probabilities are not needed (e.g. deep learning models)

¹Based on the present understanding of the lecturer. Other views may also be justified, therefore: think what is suitable in your case and try different options.

Reminders

- Details about the exam will be posted in MyCourses
 - You can ask more details in Slack.
 - Take advantage of the remaining exercise sessions to get clarifications.
- Please give feedback, this will be used when developing the course further next year.
 - An extra exercise point granted for providing feedback.

Thank you!

- Thanks and good luck!
- If you have any questions, you can post those to Slack.