

Statistical language model (SLM)

 Content today:
 SLM methods
 SLM applications
 Introduction to Neural LMs

 Presented by Mikko Kurimo
 Pics from Sami Virpioja, Kalle Palomäki, Bryan Pellom, Steve

Renals, Dan Jurafsky and Tomas Mikolov – thanks!

Mikko Kurimo Statistical natural language processing 2/58

Contents

 statistical language models and their applications
 maximum likelihood estimation of n-grams
 class-based n-grams
 the main smoothing methods for n-grams
 introduction to other statistical and neural language

models

Mikko Kurimo Statistical natural language processing 3/58

Goals of today

1.Learn how to model language by statistical methods

2.Learn basic idea of neural language modeling

3.Know some typical SLM methods and applications

Mikko Kurimo Statistical natural language processing 4/58

Statistical Language Model

 Model of a natural language that predicts the
probability distribution of words and sentences in a
text

 Often used to determine which is the most probable
word or sentence in given conditions or context

 Estimated by counting word frequencies and
dependencies in large text corpora

 Has to deal with: big data, noisy data, sparse data,
computational efficiency

Mikko Kurimo Statistical natural language processing 5/58

Some historical landmarks of SLMs

 Markov chains (Markov, 1913)

 N-grams (Shannon, 1948)

 Predicting unseen events (Good, 1953)

 Landmarks at Aalto University (Helsinki Univ. of Technology)

 Dynamically expanding context (Kohonen, 1986)

 Self-organizing semantic maps (Ritter and Kohonen, 1989)

 WEBSOM for organizing text collections (Kohonen, 1996)

 Morfessor for unsupervised analysis of words (Lagus. 2002)

 Varigram LM for sequencies of words (Siivola, 2005)

 Unlimited vocabulary LMs for speech recognition (Hirsimäki, 2006)

 Class n-gram models for very large vocabulary speech recognition of
Finnish and Estonian (Varjokallio, 2016)

 An Extensible Toolkit for Neural Network LMs (Enarvi, 2016)

Mikko Kurimo Statistical natural language processing 6/58

A simple statistical language model

 Limited domain models, constructed by hand
 Transition probabilities can be estimated statistically
 Only a very limited set of sentences are recognized

Picture by S.Renals

Mikko Kurimo Statistical natural language processing 7/58

http://www.cis.hut.fi/projects/speech/

N-gram language model

Stochastic model of the relations between words
Which words often occur close to each other?

The model predicts the probability distribution of the
next word given the previous ones
A conditional probability of word given its context
Estimated from a large text corpus (count the contexts!)
Smoothing and pruning required to learn compact long-span
models from sparse training data

Mikko Kurimo Statistical natural language processing 8/58

N-gram models

 E.g. trigram = 3-gram:
 Word occurrence

depends only on its
immediate short context

 A conditional probability
of word given its context

 Estimated from a large
text corpus (count the
contexts!)

Picture by B.Pellom

Mikko Kurimo Statistical natural language processing 9/58

Estimation of N-gram model

Picture by B.Pellom

 Bigram example:
 Start from a maximum likelihood estimate
 probability of P(“stew” | “eggplant”) is computed

from counts of “eggplant stew” and “eggplant”

c(“eggplant stew”)

c(“eggplant”)

10

 I want to eat Chinese food lunch
I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

I 3437
want 1215
to 3256
eat 938
Chinese 213

food 1506
lunch 459

 I want to eat Chinese food lunch
I .0023 X 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 X
to .00092 0 .0031 .26 X 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 0 0 0 .056 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Calculate missing bi-gram probabilities

 Data from Berkeley restaurant corpus (Jurafsky & Martin, 2000
“Speech and language processing”).

Uni-gram counts

11

 I want to eat Chinese food lunch
I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

I 3437
want 1215
to 3256
eat 938
Chinese 213

food 1506
lunch 459

 I want to eat Chinese food lunch
I .0023 .32 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 X
to .00092 0 .0031 .26 X 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 0 0 0 .056 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Calculate missing bi-gram probabilities

 Data from Berkeley restaurant corpus (Jurafsky & Martin, 2000
“Speech and language processing”).

Uni-gram counts

1087 / 3437=.32

12

 I want to eat Chinese food lunch
I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

I 3437
want 1215
to 3256
eat 938
Chinese 213

food 1506
lunch 459

 I want to eat Chinese food lunch
I .0023 .32 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 X
to .00092 0 .0031 .26 .00092 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 0 0 0 .056 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Calculate missing bi-gram probabilities

 Data from Berkeley restaurant corpus (Jurafsky & Martin, 2000
“Speech and language processing”).

Uni-gram counts

1087 / 3437=.32

3 / 3256 = .00092

13

 I want to eat Chinese food lunch
I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

I 3437
want 1215
to 3256
eat 938
Chinese 213

food 1506
lunch 459

 I want to eat Chinese food lunch
I .0023 .32 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 .0049
to .00092 0 .0031 .26 .00092 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 0 0 0 .056 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Calculate missing bi-gram probabilities

 Data from Berkeley restaurant corpus (Jurafsky & Martin, 2000
“Speech and language processing”).

Uni-gram counts

1087 / 3437=.32

3 / 3256 = .00092 6 / 1215 = .0049

Mikko Kurimo Statistical natural language processing 14/58

Estimation of N-gram model

Picture by B.Pellom

 Bigram example:
 Start from a maximum likelihood estimate
 probability of P(“stew” | “eggplant”) is computed

from counts of “eggplant stew” and “eggplant”
 works well for frequent bigrams
 why not for rare bigrams?

c(“eggplant stew”)

c(“eggplant”)

P(“Chinese”|”to”) = 3 / 3256 = 0.00092

P(“want”|”I”) = 1087 / 3437 = 0.32

Mikko Kurimo Statistical natural language processing 15/58

Exercise 2A: Where to use language models?

 Go in breakout rooms and discuss this topic
 Submit notes from your discussion in MyCourses > Lectures >

Lecture 2A exercise return box:
 List as many potential applications for statistical language

models as you can!
 Typically these are tasks where you need the probability or

to find the most probable word or sentence given some
background information

Mikko Kurimo Statistical natural language processing 16/58

Some applications of SLMs

1.Spelling correction, text input

2.Optical character recognition, e.g. scanning old books

3.Automatic speech recognition

4.Statistical machine translation

5.Text-to-speech

6.Automatic question answering

7.Chatbots

Mikko Kurimo Statistical natural language processing 17/58

Data sparsity

 Words and many other linguistic units follow a power-law
distribution:
 Zipf’s law: kth frequent word occurs 1/k∝
 “Long tail”: few frequent words, lots of very rare words

 E.g. within the first 1.5 million words 23% subsequent trigrams
were previously unseen (IBM laser patent text corpus)

 Maximum likelihood estimate overestimates frequencies of n-
gram that occurred rarely, and underestimates those that did
not occur at all. (why?)

 One needs a systematic approach to assign some non-zero
probability to unseen words and sequences. This is called
smoothing.

Mikko Kurimo Statistical natural language processing 18/58

Zero probability problem

 If an N-gram is not seen in the corpus, it will get probability = 0
 The higher N, the sparser data, and the more zero counts there

will be
 20K words => 400M 2-grams => 8000G 3-grams, so even

the largest corpora have MANY zero counts!

Solutions:
 Equivalence classes: Cluster several similar n-grams together

to reach higher counts
 Smoothing: Redistribute some probability mass from seen N-

grams to unseen ones

Mikko Kurimo Statistical natural language processing 19/58

Equivalence classes

 Divide features (e.g. words) into equivalence classes a.k.a.
bins

 Assume equal statistical properties within a bin
 Estimate a SLM for the bin as a whole
 The more bins, the more data is needed for model estimation
 The fewer bins, the lower prediction accuracy, because the

model becomes too general

Mikko Kurimo Statistical natural language processing 20/58

Ways to form classes

 Transforming inflected word forms into the baseform:
’saunan’, ’saunalle’, ’saunojemme’, etc. → ’sauna’

 Grouping by part-of-speech tags (the same syntactic role:
noun, verb, etc)

 Grouping by semantics (a similar meaning)

Important is that the words in a bin should really behave
similarly! E.g. february, may, august

Mikko Kurimo Statistical natural language processing 21/58

Ways to use classes

 using equivalence classes only for previous words
(Virpioja and Kurimo, 2006):

p(wi | wi−2 , wi−1) = p(wi | t(wi−2 , wi−1))
 using class-based n-gram models:

p(wi | wi−2 , wi−1) = p(t(wi) | t(wi−2 , wi−1))

 × p(wi | t(wi), . . .)

researchresearch

Red text is

Mikko Kurimo Statistical natural language processing 22/58

Combining estimators

 So far, the probability was estimated for all n-grams of a
particular length

 How about improving the estimate using shorter sequences that
are more frequent?

 The motivation is further smoothing of the estimates by
combining different information sources.

 The additional models could also be other n-grams trained on
different data, e.g. background models vs topical models

 determine bin-specific interpolation weights for model
combination (Broman and Kurimo, 2005)

researchresearch

Red text is

Mikko Kurimo Statistical natural language processing 23/58

Backing-off

 In principle: Look for the most specific model that
gives sufficient information from the current context

 In practice: Back off from using (too) long contexts to
shorter ones that have more samples in the corpus.

Mikko Kurimo Statistical natural language processing 24/58

Smoothing methods

1. Add-one: Add 1 to each count and normalize => gives too
much probability to unseen N-grams

2. (Absolute) discounting: Subtract a constant from all counts
and redistribute this to unseen ones using N-1 gram probs and
back-off (normalization) weights

3. Witten-Bell smoothing: Use the count of things seen once to
help to estimate the count of unseen things

4. Good Turing smoothing: Estimate the rare n-grams based on
counts of more frequent counts

5. Best: Kneser-Ney smoothing: Instead of the number of
occurrences, weigh the back-offs by the number of contexts
the word appears in

6. Instead of only back-off cases, interpolate all N-gram counts
with N-1 counts

Mikko Kurimo Statistical natural language processing 25/58

Ci*: new count

Ci: original count

N : Num of tokens

V : Total vocab size

Probability p = c / N :

Add-1 smoothing

Mikko Kurimo Statistical natural language processing 26/58

N : Num of tokens

T : Num of types (seen)

Z : Num of types (unseen)

V : Total vocab size

Probability p = c / N :

Mikko Kurimo Statistical natural language processing 27/58

Good-Turing smoothing

 How to compute the probability of an unseen event, e.g. an
out-of-vocabulary word?

 Idea invented by Alan Turing during World War 2 when he was
working to break German cipher

 Published later by his student (Good, 1953)
 Set:

 N = Num of words
 N_c = Num of words that occur c-times (freq. of freq.)

 Estimate prob of unseen things = N_1/N
 Estimate count of things seen once = (c+1)*N_2/N_1
 Smoothed count c* for all c:

Mikko Kurimo Statistical natural language processing 28/58

Exercise 2B: Good-Turing smoothing

 Watch a video where Prof. Jurafsky (Stanford) explains Good-
Turing smoothing (between 02:00 – 08:45)
 Click: http://www.youtube.com/watch?v=GwP8gKa-ij8
 Or search:”Good Turing video Jurafsky”

 Go in breakout rooms and submit answers for 3 questions in
MyCourses > Lectures > Lecture 2B exercise return box:

1. Estimate the prob. of catching next any new fish species, if you already got:
5 perch, 2 pike, 1 trout, 1 zander and 1 salmon?

2. Estimate the prob. of catching next a salmon?

3. What may cause practical problems when applying Good-Turing smoothing
for rare words in large text corpora?

http://www.youtube.com/watch?v=GwP8gKa-ij8

Mikko Kurimo Statistical natural language processing 29/58

Hints for solving the exercise

1.Estimate the prob of unseen things using the prob of
things seen only once N_1/N

2.The counts must be smoothed. The new count for
things seen once is (c+1)*N_2/N_1

3.What if N_c = 0 for some c?

Mikko Kurimo Statistical natural language processing 30/58

Estimation of N-gram model

Picture by B.Pellom

 Bigram example:
 Start from a maximum likelihood estimate
 probability of P(“stew” | “eggplant”) is computed

from counts of “eggplant stew” and “eggplant”
 works well for frequent bigrams

c(“eggplant stew”)

c(“eggplant”)

Mikko Kurimo Statistical natural language processing 31/58

Backing off

 Divide the room of rare bigrams, e.g. “eggplant
francisco”, in proportion to the unigram P(“francisco”)

 The sum of all these rare bigrams “eggplant [word j]” is
b(“eggplant”) which is called the back-off weight

Picture by B.Pellom

Mikko Kurimo Statistical natural language processing 32/58

Absolute discounting and backing off

 If bigram is common: Subtract constant D from the count
 If not: Back off to the unigram probability normalized by

the back-off weight
 Similarly back off all rare N-grams to N-1 grams

Picture by B.Pellom

Mikko Kurimo Statistical natural language processing 33/58

Kneser-Ney smoothing

 Instead of the number of occurrences, weigh the back-offs by
the number of contexts V(word) the word appears in:
 In this case the context is the previous word, thus, how

many different previous words the corpus has for that word
 E.g. P(Stew | EggPlant) is high, because stew occurs in

many contexts

 But P(Francisco | EggPlant) is low, because Francisco is
common, but only in “San Francisco”

V

Picture by B.Pellom

Mikko Kurimo Statistical natural language processing 34/58

Smoothing by interpolation

 Like backing off, but always compute the probability as
a linear combination (weighted average) with lower
order (N-1)gram probabilities

 Improves the probabilities of rare N-grams
 Discounts (D) (and interpolation weights) can be

separately optimized for each N using a held-out data

+

2015 Mikko Kurimo Speech recognition 35/58

N-gram example

D=0.50
(eggplant X) 1G freq 1G prob 2G freq 2G prob discount Abs back-off normalize

X = stew 10 0.1 0 0 0.1 0.06
sue 20 0.2 0 0 0.2 0.11
san 40 0.4 0 0 0.4 0.22

francisco 30 0.3 0 0 0.3 0.17

SUM 100 1 0 0 0.5 1 0.56
10/100

2015 Mikko Kurimo Speech recognition 36/58

Absolute discounting

D=0.50
(eggplant X) 1G freq 1G prob 2G freq 2G prob discount Abs back-off normalize

X = stew 10 0.1 0 0 0.1 0.05
sue 20 0.2 0 0 0.2 0.1
san 40 0.4 0 0 0.4 0.2

francisco 30 0.3 0 0 0.3 0.15

SUM 100 1 0 0 0.5 1 0.5

(c=0, D=0.5 selected)

2015 Mikko Kurimo Speech recognition 37/58

D=0.50
(eggplant X) 1G freq 1G prob 2G freq 2G prob discount Abs back-off normalize

X = stew 10 0.1 0 0 0.1 0.05
sue 20 0.2 0 0 0.2 0.1
san 40 0.4 0 0 0.4 0.2

francisco 30 0.3 0 0 0.3 0.15

SUM 100 1 0 0 0.5 1 0.5

Back-off

2015 Mikko Kurimo Speech recognition 38/58

D=0.50
(eggplant X) 1G freq 1G prob 2G freq 2G prob discount Abs back-off normalize

X = stew 10 0.1 0 0 0.1 0.05
sue 20 0.2 0 0 0.2 0.1
san 40 0.4 0 0 0.4 0.2

francisco 30 0.3 0 0 0.3 0.15

SUM 100 1 0 0 0.5 1 0.5

Back-off

0.1/1.0*0.5

2015 Mikko Kurimo Speech recognition 39/58

Absolute discounting and back-off

(eggplant X) 1G freq 2G freq Abs back-off normalize
X = stew 10 0 0.1 0

sue 20 0 0.2 0
san 40 0 0.4 0

francisco 30 0 0.3 0

SUM 100 0 1 0

(c=0, D=0.5 selected)

2015 Mikko Kurimo Speech recognition 40/58

Kneser-Ney smoothing

V

(eggplant X) 1G freq 2G freq Abs back-off normalize #contexts
X = stew 10 0 0.1 0 10

sue 20 0 0.2 0 5
san 40 0 0.4 0 3

francisco 30 0 0.3 0 1

SUM 100 0 1 0 19

(c=0, D=0.5 selected)

2015 Mikko Kurimo Speech recognition 41/58

Kneser-Ney smoothing

V 10/19*0.5

(eggplant X) 1G freq 2G freq Abs back-off normalize #contexts KN back-off
X = stew 10 0 0.1 0.05 10 0.26

sue 20 0 0.2 0.1 5 0.13
san 40 0 0.4 0.2 3 0.08

francisco 30 0 0.3 0.15 1 0.03

SUM 100 0 1 0.5 19 0.5

(c=0, D=0.5 selected)

Mikko Kurimo Statistical natural language processing 42/58

Weaknesses of N-grams

 Skips long-span dependencies:
 “The girl that I met in the train was ...”

 Too dependent on word order:
 “dog chased cat”: “koira jahtasi kissaa” ~ “kissaa koira

jahtasi”
 Dependencies directly between words, instead of latent

variables, e.g. word categories

Mikko Kurimo Statistical natural language processing 43/58

Some model variants

 Variable-length n-gram, aka. Varigram:
 Span depends on particular context, optimized for the data,

e.g. [Siivola, 2007]
 Especially useful for short units (letters, morphemes)

 Class-based n-gram, e.g. [Brown, 1992]:
 Cluster words into classes, find class sequences
 Reduces sparsity, model size, and accuracy

 Bayesian n-gram:
 Computationally demanding
 Kneser-Ney smoothing approximates hierarchical Pitman-

Yor process model [Goldwater, 2006; Teh, 2006]

researchresearch

Red text is

Mikko Kurimo Statistical natural language processing 44/58

Sources and further reading

 Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural
Language Processing. The MIT Press. (Chapter 6)

 Jurafsky, D. and Martin, J. H. (2008). Speech and Language Processing.
Prentice Hall. 2nd edition. (Chapter 4)

 Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing
techniques for language modeling. Computer Speech and Language,
13(4):359–393.

 Goodman, J. T. (2001). A bit of progress in language modeling - extended
version. Technical Report MSR-TR-2001-72, Microsoft Research.

 Virpioja, S. (2012). Learning Constructions of Natural Language: Statistical
Models and Evaluations. Aalto University, Doctoral dissertations 158/2012.
(Sections 4.1–4.3)

 Varjokallio, M. (2020). Improving very large vocabulary language modeling
and decoding for speech recognition in morphologically rich languages.
Aalto University, Doctoral dissertations 208/2020.(Section 4.1)

Mikko Kurimo 2016 Speech recognition 45/58

Other language modeling approaches

 Maximum-entropy LM (Rosenfeld, 2007)
 Combines different knowledge sources into a single model
 Good for adaptation (Alumäe and Kurimo, 2010)

 Continuous-space LM (a.k.a. Neural Network LM (NNLM))
 Map words to continuous-valued vectors and models them

using DNN (Bengio et al, 2003; Siivola and Honkela, 2003)
 State-space models can use indefinitely long contexts, such

as in Recurrent Neural Networks (Mikolov et al, 2010)
 Cache models and Topic models

researchresearch

Red text is

Mikko Kurimo 2016 Speech recognition 46/58

Maximum entropy LMs

 Represents dependency information

by a weighted sum of features f(x,h)
 Features can be e.g. n-gram counts
 Alleviates the data sparsity problem by smoothing the feature

weights (lambda) towards zero
 The weights can be adapted in more flexible ways than n-grams

 Adapting only those weights that significantly differ from a
large background model (Alumäe and Kurimo, 2010)

 Normalization is computationally hard, but can be approximated
effectively

researchresearch

Red text is

Mikko Kurimo 2016 Speech recognition 47/58

Mapping words into continuous
space

 Map words into a continuous vector space

to learn a distributed representation known

as word embedding
 The goal is to use a vector space that keeps

similarly behaving words near each other
 Words can be clustered by context, e.g. n-gram probabilities

 word2vec (Mikolov, 2013) is one widely used option
 Other embeddings to reflect various contextual properties

 Set of words can be represented by a sum of the vectors
 N-gram can be represented by a sequence of vectors

car
horse

cat
black

run

Mikko Kurimo 2016 Speech recognition 48/58

Continuous space LMs

 Alleviates the data sparsity problem by representing words in a
distributed way

 Various algorithms can be used to learn the most efficient and
discriminative representations and classifiers

 The most popular family of algorithm is called (Deep) Neural
Networks (NN)
 can learn very complex functions by combining simple

computation units in a hierarchy of non-linear layers
 Fast in action, but training takes a lot of time and labeled

training data
 Can be seen as a non-linear multilayer generalization of the

maximum entropy model

Mikko Kurimo 2016 Speech recognition 49/58

A simple bigram NN LM

 Outputs the probability of next word y(t) given the previous word x(t)
 Input layer maps the previous word as a vector x(t)
 Hidden layer has a linear transform h(t) = Ax(t) + b to compute a

representation of linear distributional features
 Output layer maps the values by y(t) = softmax (h(t)) to range (0,1)

that add up to 1
 Resembles a bigram Maximum entropy LM

softmax

x(t) y(t)

h(t)

Ax+bSoftmax:

Mikko Kurimo 2016 Speech recognition 50/58

A non-linear bigram NN LM

 The only difference to the simple NN LM is that the hidden layer
h(t) now includes a non-linear function h(t) = U(Ax(t) + b)

 Can learn more complex feature representations
 Common examples of non-linear functions U:

U V

x(t) y(t)

h(t)

Sigmoid

U (t) = tanh (t)

U

Mikko Kurimo 2016 Speech recognition 51/58

Common NN LM extensions

 Input layer is expanded over
several previous words x(t-1),
x(t-2), .. to learn richer
representations

 Deep neural networks have
several hidden layers h1, h2, ..
to learn to represent information
at several hierarchical levels

 Can be scaled to a very large
vocabulary by training also a
class-based output layer c(t)

U1 V

x(t)

y(t)

h2(t)

x(t-1)

x(t-2)

h1(t)

U2

c(t)

Mikko Kurimo 2016 Speech recognition 52/58

NN LM training

 Supervised training minimizes the
output errors by training the weights
for V by stochastic gradient descend

 Propagate the output error to hidden
layer to train the weights for U

 In practice, a deep NN will require
more complex training procedures,
since the gradients vanish quickly

U V

x(t) y(t)

h(t)

Mikko Kurimo 2016 Speech recognition 53/58

Recurrent Neural Network (RNN) LM

 Looks like a bigram NNLM
 But, takes an additional input from

the hidden layer of the previous time
step

 Hidden layer becomes a compressed
representation of the word history

 Can learn to represent unlimited
memory, in theory

U V

x(t) y(t)

h(t)

h(t-1)

W

Mikko Kurimo 2016 Speech recognition 54/58

RNN LM training

 Minimizes the output error
by training the weights by
stochastic gradient
descend

 Propagates the output error
to all layers and time steps
(called backpropagation
through time) to train the
hidden layer

 Looks now like a very
deep neural network with
shared weights U and W

U V

x(t) y(t)

h(t)

h(t-1)

U V

x(t-1) y(t-1)

U V

x(t-2)
y(t-2)

h(t-2)

W

W

Mikko Kurimo Statistical natural language processing 55/58

References (all)

 Markov, A. A. (1913). An example of statistical investigation of the text Eugene
Onegin concerning the connection of samples in chains. (In Russian.) Bulletin of the
Imperial Academy of Sciences of St. Petersburg 7(3):153–162.

 Shannon, C. E. (1948). A mathematical theory of communication. Bell System
Technical Journal, 27:379–423, 623–656.

 Good, I.J. (1953). The population frequencies of species and the estimation of
population parameters. Biometrika 40 (3–4): 237–264

 Kohonen, T. (1986). Dynamically Expanding Context, with application to the
correction of symbol strings in the recognition of continuous speech", Proc. ICPR
1986, pp.1148-1151

 Ritter, H. and Kohonen, T. (1989). Self-organized semantic maps. Biol. Cybern. 61:
241-254

 Kohonen, Kaski, Lagus, Honkela (1996). Very large two-level SOM for the browsing
of newsgroups. Proc. ICANN96.

 Kneser, R. and Kney, H. (1995). Improved backing-off for m-gram language
modeling. IEEE Trans. ASSP, 1:181–184.

Mikko Kurimo Statistical natural language processing 56/58

References (cont'd)

 Brown, P. F., DellaPietra, V. J., deSouza, P. V., Lai, J. C., and Mercer, R. L. (1992).
Class-based n-gram models of natural language. Computational Linguistics,
18(4):467–479.

 Siivola, V., Hirsimäki, T. and Virpioja, S. (2007). On Growing and Pruning Kneser-
Ney Smoothed N-Gram Models. IEEE Trans. ASLP, 15(5):1617-1624.

 Siivola, V., Pellom, B. (2005). Growing an n-gram model, Proc. Interspeech'05, pp.
1309-1312.

 Goldwater, S., Griffiths, T., and Johnson, M. (2006). Interpolating between types and
tokens by estimating power-law generators. In Advances in NIPS 18, pp. 459–466.
MIT Press.

 Teh, Y. W. (2006). A hierarchical Bayesian language model based on Pitman-Yor
processes. Proc. ACL 2006, pp. 985–992.

 Roark, B. (2001). Probabilistic top-down parsing and language modeling.
Computational Linguistics, 27(2):249–276.

 Creutz ,M., Lagus, K. (2003). Unsupervised discovery of morphemes. Proc.
Workshop on Morphological and Phonological Learning of ACL-02,pp.21–30

 Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013). Efficient Estimation of Word
Representations in Vector Space. ArXiv:1301.3781.

Mikko Kurimo Statistical natural language processing 57/58

References (cont'd)

 Rosenfeld, R. (1996). A maximum entropy approach to adaptive statistical language
modelling. Computer Speech and Language, 10(3):187–228.

 Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic
language model. Journal of Machine Learning Research, 3:1137–1155.

 Siivola, V., Honkela, A. (2003). A State-Space Method for Language Modeling", IEEE
Workshop on Automatic Speech Recognition and Understanding, pp 548-553.

 Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., and Khudanpur, S. (2010).
Recurrent neural network based language model. Proc. Interspeech 2010, pp. 1045–
1048

 Alumäe, T., Kurimo, M. (2010) Domain adaptation of maximum entropy language
models. Proc. ACL 2010.

 Broman, S., Kurimo, M. (2005). Methods for combining language models in speech
recognition. Proc. Interspeech 2005, pp. 1317–1320.

 Virpioja, S., Kurimo, M. (2006) Compact n-gram models by incremental growing and
clustering of histories. Proc. Interspeech 2006, paper 1231-12334

 Hirsimäki, Creutz, Siivola, Kurimo, Virpioja and Pylkkönen (2006). Unlimited
vocabulary speech recognition with morph language models applied to Finnish.
Computer Speech and Language 20(4):515--541

 Speech recognition course 58/58

Feedback

Go to MyCourses > Lectures > Feedback for Lecture 2 and fill in the form.

Some of the feedback from the previous week:

+ The lecture was clear and at an appropriate pace

+ The small group thing was okey. There was some talking. Not sure if 10 min is
required for that

+ Aalto research stuff highlighting concept. First time saw this in any lecture..

- I didn't fully grasp the project work goals and practicalities

- Maybe some video presentation of available techniques would make the
lecture even more thrilling

- I think you could end the break out rooms and then announce the break

 Thanks for all the valuable feedback!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

