
 

Statistical language model (SLM)

 Content today:
 SLM methods
 SLM applications
 Introduction to Neural LMs

 Presented by Mikko Kurimo
 Pics from Sami Virpioja, Kalle Palomäki, Bryan Pellom, Steve 

Renals, Dan Jurafsky and Tomas Mikolov – thanks!
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Contents

 statistical language models and their applications
 maximum likelihood estimation of n-grams
 class-based n-grams
 the main smoothing methods for n-grams
 introduction to other statistical and neural language 

models
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Goals of today

1.Learn how to model language by statistical methods

2.Learn basic idea of neural language modeling

3.Know some typical SLM methods and applications 
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Statistical Language Model

 Model of a natural language that predicts the 
probability distribution of words and sentences in a 
text

 Often used to determine which is the most probable 
word or sentence in given conditions or context

 Estimated by counting word frequencies and 
dependencies in large text corpora

 Has to deal with: big data, noisy data, sparse data, 
computational efficiency
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Some historical landmarks of SLMs

 Markov chains (Markov, 1913)

 N-grams (Shannon, 1948)

 Predicting unseen events (Good, 1953)

 Landmarks at Aalto University (Helsinki Univ. of Technology)

 Dynamically expanding context (Kohonen, 1986)

 Self-organizing semantic maps (Ritter and Kohonen, 1989)

 WEBSOM for organizing text collections (Kohonen, 1996)

 Morfessor for unsupervised analysis of words (Lagus. 2002)

 Varigram LM for sequencies of words (Siivola, 2005)

 Unlimited vocabulary LMs for speech recognition (Hirsimäki, 2006)

 Class n-gram models for very large vocabulary speech recognition of 
Finnish and Estonian (Varjokallio, 2016)

 An Extensible Toolkit for Neural Network LMs (Enarvi, 2016)
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A simple statistical language model

 Limited domain models, constructed by hand
 Transition probabilities can be estimated statistically
 Only a very limited set of sentences are recognized

Picture by S.Renals
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http://www.cis.hut.fi/projects/speech/

N-gram language model

Stochastic model of the relations between words 
Which words often occur close to each other? 

The model predicts the probability distribution of the 
next word given the previous ones
A conditional probability of word given its context
Estimated from a large text corpus (count the contexts!)
Smoothing and pruning required to learn compact long-span 
models from sparse training data
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N-gram models

 E.g. trigram = 3-gram:
 Word occurrence 

depends only on its 
immediate short context

 A conditional probability 
of word given its context

 Estimated from a large 
text corpus (count the 
contexts!)

Picture by B.Pellom
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Estimation of N-gram model

Picture by B.Pellom

 Bigram example: 
 Start from a maximum likelihood estimate
 probability of P(“stew” | “eggplant”) is computed 

from counts of “eggplant stew” and “eggplant” 

c(“eggplant stew”)

c(“eggplant”)



10

  I want to eat Chinese food lunch
I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

I 3437
want 1215
to 3256
eat 938
Chinese 213

food 1506
lunch 459

  I want to eat Chinese food lunch
I .0023 X 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 X
to .00092 0 .0031 .26 X 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 0 0 0 .056 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Calculate missing bi-gram probabilities

 Data from Berkeley restaurant corpus (Jurafsky & Martin, 2000 
“Speech and language processing”).

Uni-gram counts
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  I want to eat Chinese food lunch
I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

I 3437
want 1215
to 3256
eat 938
Chinese 213

food 1506
lunch 459

  I want to eat Chinese food lunch
I .0023 .32 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 X
to .00092 0 .0031 .26 X 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 0 0 0 .056 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Calculate missing bi-gram probabilities

 Data from Berkeley restaurant corpus (Jurafsky & Martin, 2000 
“Speech and language processing”).

Uni-gram counts

1087 / 3437=.32
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  I want to eat Chinese food lunch
I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

I 3437
want 1215
to 3256
eat 938
Chinese 213

food 1506
lunch 459

  I want to eat Chinese food lunch
I .0023 .32 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 X
to .00092 0 .0031 .26 .00092 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 0 0 0 .056 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Calculate missing bi-gram probabilities

 Data from Berkeley restaurant corpus (Jurafsky & Martin, 2000 
“Speech and language processing”).

Uni-gram counts

1087 / 3437=.32

3 / 3256 = .00092



13

  I want to eat Chinese food lunch
I 8 1087 0 13 0 0 0
want 3 0 786 0 6 8 6
to 3 0 10 860 3 0 12
eat 0 0 2 0 19 2 52
Chinese 2 0 0 0 0 120 1
food 19 0 17 0 0 0 0
lunch 4 0 0 0 0 1 0

I 3437
want 1215
to 3256
eat 938
Chinese 213

food 1506
lunch 459

  I want to eat Chinese food lunch
I .0023 .32 0 .0038 0 0 0
want .0025 0 .65 0 .0049 .0066 .0049
to .00092 0 .0031 .26 .00092 0 .0037
eat 0 0 .0021 0 .020 .0021 .055
Chinese .0094 0 0 0 0 .056 .0047
food .013 0 .011 0 0 0 0
lunch .0087 0 0 0 0 .0022 0

Calculate missing bi-gram probabilities

 Data from Berkeley restaurant corpus (Jurafsky & Martin, 2000 
“Speech and language processing”).

Uni-gram counts

1087 / 3437=.32

3 / 3256 = .00092 6 / 1215 = .0049
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Estimation of N-gram model

Picture by B.Pellom

 Bigram example: 
 Start from a maximum likelihood estimate
 probability of P(“stew” | “eggplant”) is computed 

from counts of “eggplant stew” and “eggplant” 
 works well for frequent bigrams
 why not for rare bigrams?

c(“eggplant stew”)

c(“eggplant”)

P(“Chinese”|”to”) = 3 / 3256 = 0.00092

P(“want”|”I”) = 1087 / 3437 = 0.32
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Exercise 2A: Where to use language models?

 Go in breakout rooms and discuss this topic
 Submit notes from your discussion in MyCourses > Lectures > 

Lecture 2A exercise return box:
 List as many potential applications for statistical language 

models as you can!
 Typically these are tasks where you need the probability or 

to find the most probable word or sentence given some 
background information
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Some applications of SLMs

1.Spelling correction, text input

2.Optical character recognition, e.g. scanning old books

3.Automatic speech recognition

4.Statistical machine translation

5.Text-to-speech

6.Automatic question answering

7.Chatbots  
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Data sparsity

 Words and many other linguistic units follow a power-law 
distribution:
 Zipf’s law: kth frequent word occurs  1/k∝
 “Long tail”: few frequent words, lots of very rare words

 E.g. within the first 1.5 million words 23% subsequent trigrams 
were previously unseen (IBM laser patent text corpus)

 Maximum likelihood estimate overestimates frequencies of n-
gram that occurred rarely, and underestimates those that did 
not occur at all. (why?)

 One needs a systematic approach to assign some non-zero 
probability to unseen words and sequences. This is called 
smoothing.
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Zero probability problem

 If an N-gram is not seen in the corpus, it will get probability = 0
 The higher N, the sparser data, and the more zero counts there 

will be
 20K words   =>  400M 2-grams  =>  8000G 3-grams, so even 

the largest corpora have MANY zero counts!

Solutions:
 Equivalence classes: Cluster several similar n-grams together 

to reach higher counts
 Smoothing: Redistribute some probability mass from seen N-

grams to unseen ones
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Equivalence classes

 Divide features (e.g. words) into equivalence classes a.k.a. 
bins

 Assume equal statistical properties within a bin
 Estimate a SLM for the bin as a whole
 The more bins, the more data is needed for model estimation
 The fewer bins, the lower prediction accuracy, because the 

model becomes too general
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Ways to form classes

 Transforming inflected word forms into the baseform: 
’saunan’, ’saunalle’, ’saunojemme’, etc. → ’sauna’

 Grouping by part-of-speech tags (the same syntactic role: 
noun, verb, etc)

 Grouping by semantics (a similar meaning)

Important is that the words in a bin should really behave 
similarly!  E.g. february, may, august
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Ways to use classes

 using equivalence classes only for previous words 
(Virpioja and Kurimo, 2006):

p(wi | wi−2 , wi−1 ) = p(wi | t(wi−2 , wi−1 ))
 using class-based n-gram models:

p(wi | wi−2 , wi−1 ) = p(t(wi ) | t(wi−2 , wi−1 ))

                                  × p(wi | t(wi ), . . .)

researchresearch

Red text is
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Combining estimators

 So far, the probability was estimated for all n-grams of a 
particular length

 How about improving the estimate using shorter sequences that 
are more frequent?

 The motivation is further smoothing of the estimates by 
combining different information sources.

 The additional models could also be other n-grams trained on 
different data, e.g. background models vs topical models

 determine bin-specific interpolation weights for model 
combination (Broman and Kurimo, 2005)

researchresearch

Red text is
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Backing-off

 In principle: Look for the most specific model that 
gives sufficient information from the current context

 In practice: Back off from using (too) long contexts to 
shorter ones that have more samples in the corpus.
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Smoothing methods

1. Add-one: Add 1 to each count and normalize => gives too 
much probability to unseen N-grams

2. (Absolute) discounting: Subtract a constant from all counts 
and redistribute this to unseen ones using N-1 gram probs and 
back-off (normalization) weights

3. Witten-Bell smoothing: Use the count of things seen once to 
help to estimate the count of unseen things

4. Good Turing smoothing: Estimate the rare n-grams based on 
counts of more frequent counts

5. Best: Kneser-Ney smoothing: Instead of the number of 
occurrences, weigh the back-offs by the number of contexts 
the word appears in

6. Instead of only back-off cases, interpolate all N-gram counts 
with N-1 counts  
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Ci*: new count

Ci: original count 

N : Num of tokens

V : Total vocab size

Probability p = c / N :

Add-1 smoothing
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N : Num of tokens

T : Num of types (seen)

Z : Num of types (unseen)

V : Total vocab size

Probability p = c / N :
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Good-Turing smoothing

 How to compute the probability of an unseen event, e.g. an 
out-of-vocabulary word?

 Idea invented by Alan Turing during World War 2 when he was 
working to break German cipher

 Published later by his student (Good, 1953)
 Set:

 N = Num of words
 N_c = Num of words that occur c-times (freq. of freq.)

 Estimate prob of unseen things = N_1/N
 Estimate count of things seen once = (c+1)*N_2/N_1
 Smoothed count c* for all c:
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Exercise 2B: Good-Turing smoothing

 Watch a video where Prof. Jurafsky (Stanford) explains Good-
Turing smoothing (between 02:00 – 08:45)
 Click: http://www.youtube.com/watch?v=GwP8gKa-ij8 
 Or search:”Good Turing video Jurafsky”

 Go in breakout rooms and submit answers for 3 questions in 
MyCourses > Lectures > Lecture 2B exercise return box:

1. Estimate the prob. of catching next any new fish species, if you already got: 
5 perch, 2 pike, 1 trout, 1 zander and 1 salmon?

2. Estimate the prob. of catching next a salmon?

3. What may cause practical problems when applying Good-Turing smoothing 
for rare words in large text corpora?

http://www.youtube.com/watch?v=GwP8gKa-ij8
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Hints for solving the exercise

1.Estimate the prob of unseen things using the prob of 
things seen only once N_1/N

2.The counts must be smoothed. The new count for 
things seen once is (c+1)*N_2/N_1 

3.What if N_c = 0 for some c?  
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Estimation of N-gram model

Picture by B.Pellom

 Bigram example: 
 Start from a maximum likelihood estimate
 probability of P(“stew” | “eggplant”) is computed 

from counts of “eggplant stew” and “eggplant” 
 works well for frequent bigrams

c(“eggplant stew”)

c(“eggplant”)
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Backing off

 Divide the room of rare bigrams, e.g. “eggplant 
francisco”, in proportion to the unigram P(“francisco”)

 The sum of all these rare bigrams “eggplant [word j]” is 
b(“eggplant”) which is called the back-off weight

Picture by B.Pellom
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Absolute discounting and backing off

 If bigram is common: Subtract constant D from the count
 If not: Back off to the unigram probability normalized by 

the back-off weight
 Similarly back off all rare N-grams to N-1 grams 

Picture by B.Pellom
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Kneser-Ney smoothing

 Instead of the number of occurrences, weigh the back-offs by 
the number of contexts V(word) the word appears in:
 In this case the context is the previous word, thus, how 

many different previous words the corpus has for that word
 E.g. P(Stew | EggPlant) is high, because stew occurs in 

many contexts

 But P(Francisco | EggPlant) is low, because Francisco is 
common, but only in “San Francisco”

V

Picture by B.Pellom
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Smoothing by interpolation 

 Like backing off, but always compute the probability as 
a linear combination (weighted average) with lower 
order (N-1)gram probabilities

 Improves the probabilities of rare N-grams
 Discounts (D) (and interpolation weights) can be 

separately optimized for each N using a held-out data

+
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N-gram example

D=0.50
(eggplant X) 1G freq 1G prob 2G freq 2G prob discount Abs back-off normalize

X = stew 10 0.1 0 0 0.1 0.06
sue 20 0.2 0 0 0.2 0.11
san 40 0.4 0 0 0.4 0.22

francisco 30 0.3 0 0 0.3 0.17

SUM 100 1 0 0 0.5 1 0.56
10/100
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Absolute discounting

D=0.50
(eggplant X) 1G freq 1G prob 2G freq 2G prob discount Abs back-off normalize

X = stew 10 0.1 0 0 0.1 0.05
sue 20 0.2 0 0 0.2 0.1
san 40 0.4 0 0 0.4 0.2

francisco 30 0.3 0 0 0.3 0.15

SUM 100 1 0 0 0.5 1 0.5

(c=0, D=0.5 selected)
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D=0.50
(eggplant X) 1G freq 1G prob 2G freq 2G prob discount Abs back-off normalize

X = stew 10 0.1 0 0 0.1 0.05
sue 20 0.2 0 0 0.2 0.1
san 40 0.4 0 0 0.4 0.2

francisco 30 0.3 0 0 0.3 0.15

SUM 100 1 0 0 0.5 1 0.5

Back-off
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D=0.50
(eggplant X) 1G freq 1G prob 2G freq 2G prob discount Abs back-off normalize

X = stew 10 0.1 0 0 0.1 0.05
sue 20 0.2 0 0 0.2 0.1
san 40 0.4 0 0 0.4 0.2

francisco 30 0.3 0 0 0.3 0.15

SUM 100 1 0 0 0.5 1 0.5

Back-off

0.1/1.0*0.5
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Absolute discounting and back-off

(eggplant X) 1G freq 2G freq Abs back-off normalize
X = stew 10 0 0.1 0

sue 20 0 0.2 0
san 40 0 0.4 0

francisco 30 0 0.3 0

SUM 100 0 1 0

(c=0, D=0.5 selected)
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Kneser-Ney smoothing

V

(eggplant X) 1G freq 2G freq Abs back-off normalize #contexts
X = stew 10 0 0.1 0 10

sue 20 0 0.2 0 5
san 40 0 0.4 0 3

francisco 30 0 0.3 0 1

SUM 100 0 1 0 19

(c=0, D=0.5 selected)
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Kneser-Ney smoothing

V 10/19*0.5

(eggplant X) 1G freq 2G freq Abs back-off normalize #contexts KN back-off
X = stew 10 0 0.1 0.05 10 0.26

sue 20 0 0.2 0.1 5 0.13
san 40 0 0.4 0.2 3 0.08

francisco 30 0 0.3 0.15 1 0.03

SUM 100 0 1 0.5 19 0.5

(c=0, D=0.5 selected)
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Weaknesses of N-grams 

 Skips long-span dependencies:
 “The girl that I met in the train was ...”

 Too dependent on word order:
 “dog chased cat”: “koira jahtasi kissaa” ~ “kissaa koira 

jahtasi”
 Dependencies directly between words, instead of latent 

variables, e.g. word categories
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Some model variants

 Variable-length n-gram, aka. Varigram:
 Span depends on particular context, optimized for the data, 

e.g. [Siivola, 2007]
 Especially useful for short units (letters, morphemes)

 Class-based n-gram, e.g. [Brown, 1992]:
 Cluster words into classes, find class sequences
 Reduces sparsity, model size, and accuracy

 Bayesian n-gram:
 Computationally demanding
 Kneser-Ney smoothing approximates hierarchical Pitman-

Yor process model [Goldwater, 2006; Teh, 2006]

researchresearch

Red text is
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Sources and further reading

 Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural 
Language Processing. The MIT Press. (Chapter 6)

 Jurafsky, D. and Martin, J. H. (2008). Speech and Language Processing. 
Prentice Hall. 2nd edition. (Chapter 4)

 Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing 
techniques for language modeling. Computer Speech and Language, 
13(4):359–393.

 Goodman, J. T. (2001). A bit of progress in language modeling - extended 
version. Technical Report MSR-TR-2001-72, Microsoft Research.

 Virpioja, S. (2012). Learning Constructions of Natural Language: Statistical 
Models and Evaluations. Aalto University, Doctoral dissertations 158/2012.
(Sections 4.1–4.3)

 Varjokallio, M. (2020). Improving very large vocabulary language modeling 
and decoding for speech recognition in morphologically rich languages. 
Aalto University, Doctoral dissertations 208/2020.(Section 4.1) 
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Other language modeling approaches

 Maximum-entropy LM (Rosenfeld, 2007)
 Combines different knowledge sources into a single model
 Good for adaptation (Alumäe and Kurimo, 2010)

 Continuous-space LM (a.k.a. Neural Network LM (NNLM))
 Map words to continuous-valued vectors and models them 

using DNN (Bengio et al, 2003; Siivola and Honkela, 2003)
 State-space models can use indefinitely long contexts, such 

as in Recurrent Neural Networks (Mikolov et al, 2010)
 Cache models and Topic models

researchresearch

Red text is
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Maximum entropy LMs

 Represents dependency information

by a weighted sum of features f(x,h)
 Features can be e.g. n-gram counts
 Alleviates the data sparsity problem by smoothing the feature 

weights (lambda) towards zero
 The weights can be adapted in more flexible ways than n-grams

 Adapting only those weights that significantly differ from a 
large background model (Alumäe and Kurimo, 2010)

 Normalization is computationally hard, but can be approximated 
effectively

researchresearch

Red text is
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Mapping words into continuous 
space

 Map words into a continuous vector space 

to learn a distributed representation known 

as word embedding
 The goal is to use a vector space that keeps 

similarly behaving words near each other
 Words can be clustered by context, e.g. n-gram probabilities

 word2vec (Mikolov, 2013) is one widely used option
 Other embeddings to reflect various contextual properties

 Set of words can be represented by a sum of the vectors
 N-gram can be represented by a sequence of vectors

car
horse

cat
black

run
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Continuous space LMs

 Alleviates the data sparsity problem by representing words in a 
distributed way 

 Various algorithms can be used to learn the most efficient and 
discriminative representations and classifiers

 The most popular family of algorithm is called (Deep) Neural 
Networks (NN)
 can learn very complex functions by combining simple 

computation units in a hierarchy of non-linear layers
 Fast in action, but training takes a lot of time and labeled 

training data 
 Can be seen as a non-linear multilayer generalization of the 

maximum entropy model
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A simple bigram NN LM

 Outputs the probability of next word y(t) given the previous word x(t)
 Input layer maps the previous word as a vector x(t)
 Hidden layer has a linear transform h(t) = Ax(t) + b to compute a 

representation of linear distributional features
 Output layer maps the values by y(t) = softmax (h(t)) to range (0,1) 

that add up to 1
 Resembles a bigram Maximum entropy LM

softmax

x(t) y(t)

h(t)

Ax+bSoftmax:
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A non-linear bigram NN LM

 The only difference to the simple NN LM is that the hidden layer 
h(t) now includes a non-linear function  h(t) = U(Ax(t) + b)

 Can learn more complex feature representations 
 Common examples of non-linear functions U: 

U V

x(t) y(t)

h(t)

Sigmoid

U (t) = tanh (t)

U
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Common NN LM extensions

 Input layer is expanded over 
several previous words x(t-1), 
x(t-2), .. to learn richer 
representations

 Deep neural networks have 
several hidden layers h1, h2, .. 
to learn to represent information 
at several hierarchical levels

 Can be scaled to a very large 
vocabulary by training also a 
class-based output layer c(t)

U1 V

x(t)

y(t)

h2(t)

x(t-1)

x(t-2)

h1(t)

U2

c(t)
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NN LM training

 Supervised training minimizes the 
output errors by training the weights 
for V by stochastic gradient descend

 Propagate the output error to hidden 
layer to train the weights for U

 In practice, a deep NN will require 
more complex training procedures, 
since the gradients vanish quickly

U V

x(t) y(t)

h(t)
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Recurrent Neural Network (RNN) LM

 Looks like a bigram NNLM
 But, takes an additional input from 

the hidden layer of the previous time 
step

 Hidden layer becomes a compressed 
representation of the word history

 Can learn to represent unlimited 
memory, in theory

U V

x(t) y(t)

h(t)

h(t-1)

W
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RNN LM training

 Minimizes the output error 
by training the weights by 
stochastic gradient 
descend

 Propagates the output error 
to all layers and time steps 
(called  backpropagation 
through time) to train the 
hidden layer

 Looks now like a very 
deep neural network with 
shared weights U and W

U V

x(t) y(t)

h(t)

h(t-1)

U V

x(t-1) y(t-1)

U V

x(t-2)
y(t-2)

h(t-2)

W

W
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Feedback

Go to MyCourses > Lectures > Feedback for Lecture 2 and fill in the form. 

Some of the feedback from the previous week:

+ The lecture was clear and at an appropriate pace

+ The small group thing was okey. There was some talking. Not sure if 10 min is 
required for that

+ Aalto research stuff highlighting concept. First time saw this in any lecture..

- I didn't fully grasp the project work goals and practicalities

- Maybe some video presentation of available techniques would make the 
lecture even more thrilling

- I think you could end the break out rooms and then announce the break

                                                              Thanks for all the valuable feedback!
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