
Faculty of Arts Mathias Creutz

MORPHEME-LEVEL PROCESSING

Lecture on 15 February 2022 at Aalto University (Zoom)

Slides by Mathias Creutz and Sami Virpioja

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

1

Faculty of Arts Mathias Creutz

INTRODUCTION

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

2

Faculty of Arts Mathias Creutz

• Computational Morphology (fall 2022, 5 cr: Oct – Dec)

• Computational Syntax (spring 2022, 5 cr: Mar – May)

• Computational Semantics (spring 2022, 5 cr: Jan – Mar)

• Models and Algorithms in NLP applications (fall 2022, 5 cr: Sep – Oct)

• Approaches to Natural Language Understanding (spring 2022, 5 cr: Mar – May)

• Introduction to Deep Learning (spring 2022, 5 cr, Jan – Mar)

• A practical intro to modern Neural Machine Translation (fall 2022, 5 cr: Oct – Dec)

• plus courses in General Linguistics, Phonetics, Cognitive Science and Digihum

• More info: http://blogs.helsinki.fi/language-technology/

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

3

LINGDIG (LINGUISTIC DIVERSITY AND DIGITAL HUMANITIES)
MASTER’S PROGRAMME:

LANGUAGE TECHNOLOGY COURSES OFFERED AT THE
UNIVERSITY OF HELSINKI

Faculty of Arts Mathias Creutz

• Linguistic theory
• Automatic morphological processing

• Approach 1: Normalization or “Canonical forms”
‒ Stemming
‒ Lemmatization

• Approach 2: Analysis and generation
‒ Finite-state methods
‒ Supervised machine learning: Morphological reinflection

• Approach 3: Segmentation
‒ Unsupervised learning, method 1: Harris’s method
‒ Unsupervised learning, method 2: Morfessor
‒ Unsupervised learning, method 3: Byte pair encoding (BPE) and SentencePiece

• Approach 4: Implicit modeling
‒ Feature extraction in word embeddings (word2vec): FastText
‒ Character-based models

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

4

CONTENTS

Faculty of Arts Mathias Creutz

• Linguistic theory
• Automatic morphological processing

• Approach 1: Normalization or “Canonical forms”
‒ Stemming
‒ Lemmatization

• Approach 2: Analysis and generation
‒ Finite-state methods
‒ Supervised machine learning: Morphological reinflection

• Approach 3: Segmentation
‒ Unsupervised learning, method 1: Harris’s method
‒ Unsupervised learning, method 2: Morfessor
‒ Unsupervised learning, method 3: Byte pair encoding (BPE) and SentencePiece

• Approach 4: Implicit modeling
‒ Feature extraction in word embeddings (word2vec): FastText
‒ Character-based models

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

5

CONTENTS

Faculty of Arts Mathias Creutz

• Linguistic theory
• Automatic morphological processing

• Approach 1: Normalization or “Canonical forms”
‒ Stemming
‒ Lemmatization

• Approach 2: Analysis and generation
‒ Finite-state methods
‒ Supervised machine learning: Morphological reinflection

• Approach 3: Segmentation
‒ Unsupervised learning, method 1: Harris’s method
‒ Unsupervised learning, method 2: Morfessor
‒ Unsupervised learning, method 3: Byte pair encoding (BPE) and SentencePiece

• Approach 4: Implicit modeling
‒ Feature extraction in word embeddings (word2vec): FastText
‒ Character-based models

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

6

CONTENTS

Faculty of Arts Mathias Creutz

• Linguistic theory
• Automatic morphological processing

• Approach 1: Normalization or “Canonical forms”
‒ Stemming
‒ Lemmatization

• Approach 2: Analysis and generation
‒ Finite-state methods
‒ Supervised machine learning: Morphological reinflection

• Approach 3: Segmentation
‒ Unsupervised learning, method 1: Harris’s method
‒ Unsupervised learning, method 2: Morfessor
‒ Unsupervised learning, method 3: Byte pair encoding (BPE) and SentencePiece

• Approach 4: Implicit modeling
‒ Feature extraction in word embeddings (word2vec): FastText
‒ Character-based models

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

7

CONTENTS

Faculty of Arts Mathias Creutz

• Linguistic theory
• Automatic morphological processing

• Approach 1: Normalization or “Canonical forms”
‒ Stemming
‒ Lemmatization

• Approach 2: Analysis and generation
‒ Finite-state methods
‒ Supervised machine learning: Morphological reinflection

• Approach 3: Segmentation
‒ Unsupervised learning, method 1: Harris’s method
‒ Unsupervised learning, method 2: Morfessor
‒ Unsupervised learning, method 3: Byte pair encoding (BPE) and SentencePiece

• Approach 4: Implicit modeling
‒ Feature extraction in word embeddings (word2vec): fastText
‒ Character-based models

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

8

CONTENTS

Faculty of Arts Mathias Creutz

LINGUISTIC THEORY

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

9

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

10

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

11

Faculty of Arts Mathias Creutz

• Morphology: Study (-logy) of shape and form (morpho)
• In linguistics:

• Identification, analysis and description of the structure of words

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

12

LINGUISTIC MORPHOLOGY

Faculty of Arts Mathias Creutz

• Morphology: Study (-logy) of shape and form (morpho)
• In linguistics:

• Identification, analysis and description of the structure of words
• Word form vs. word lexeme:

Are “cat” and “cats” the same word or not?
• The same lexeme
• Different forms

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

13

LINGUISTIC MORPHOLOGY

Faculty of Arts Mathias Creutz

• Morphology: Study (-logy) of shape and form (morpho)
• In linguistics:

• Identification, analysis and description of the structure of words
• Word form vs. word lexeme:

Are “cat” and “cats” the same word or not?
• The same lexeme
• Different forms

• Traditional view: Grammar = morphology + syntax

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

14

LINGUISTIC MORPHOLOGY

Faculty of Arts Mathias Creutz

• Morphology: Study (-logy) of shape and form (morpho)
• In linguistics:

• Identification, analysis and description of the structure of words
• Word form vs. word lexeme:

Are “cat” and “cats” the same word or not?
• The same lexeme
• Different forms

• Traditional view: Grammar = morphology + syntax
• The morphological complexity of languages vary:

• “punaviinipullossa" (Finnish) vs. “in the bottle of red wine”
• “itsega" (Cherokee) vs. “you are all going”

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

15

LINGUISTIC MORPHOLOGY

Faculty of Arts Mathias Creutz

Morphemes are
• “the smallest individually meaningful elements in the utterances of a language”

(Charles F. Hockett, A Course in Modern Linguistics, 1958)

• “the primitive units of syntax, the smallest units that can bear meaning” (Peter H.
Matthews, Morphology, 1991)

• “minimal meaningful form-units” (Robert de Beaugrande, A New Introduction to the Study of
Text and Discourse, 2004)

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

16

TERMINOLOGY

Faculty of Arts Mathias Creutz

Morphemes are
• “the smallest individually meaningful elements in the utterances of a language”

(Charles F. Hockett, A Course in Modern Linguistics, 1958)

• “the primitive units of syntax, the smallest units that can bear meaning” (Peter H.
Matthews, Morphology, 1991)

• “minimal meaningful form-units” (Robert de Beaugrande, A New Introduction to the Study of
Text and Discourse, 2004)

Meaning elements (cats = CAT + PLURAL) or form elements (cats = cat + -s)?

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

17

TERMINOLOGY

Faculty of Arts Mathias Creutz

• Root: a portion of word without any affixes; carries the principal portion of
meaning (buildings è build)

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

18

TYPES OF MORPHEMES

Faculty of Arts Mathias Creutz

• Root: a portion of word without any affixes; carries the principal portion of
meaning (buildings è build)

• Stem: a root, or compound of roots together with derivational affixes (buildings è
building)

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

19

TYPES OF MORPHEMES

Faculty of Arts Mathias Creutz

• Root: a portion of word without any affixes; carries the principal portion of
meaning (buildings è build)

• Stem: a root, or compound of roots together with derivational affixes (buildings è
building)

• Affix: a bound morpheme (does not occur by itself) that is attached before, after,
or inside a root or stem
• Prefix (un-happy)
• Suffix (build-ing, happi-er)
• Infix (abso-bloody-lutely)
• Circumfix (ge-sproch-en)
• Transfix (e.g., vowel patterns for consonant roots in Semitic languages: k-i-t-aa-b –

k-u-t-u-b)

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

20

TYPES OF MORPHEMES

Faculty of Arts Mathias Creutz

• Root: a portion of word without any affixes; carries the principal portion of
meaning (buildings è build)

• Stem: a root, or compound of roots together with derivational affixes (buildings è
building)

• Affix: a bound morpheme (does not occur by itself) that is attached before, after,
or inside a root or stem
• Prefix (un-happy)
• Suffix (build-ing, happi-er)
• Infix (abso-bloody-lutely)
• Circumfix (ge-sproch-en)
• Transfix (e.g., vowel patterns for consonant roots in Semitic languages: k-i-t-aa-b –

k-u-t-u-b)
• Clitic: a bound (but more “independent”) morpheme that has syntactic

characteristics of a word (that's, hänkin)

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

21

TYPES OF MORPHEMES

Faculty of Arts Mathias Creutz

Inflection:
• cat – cats
• slow – slower
• find – found

Derivation:
• build (V) – building (N)
• do (V) – doable (ADJ)
• short (ADJ) – shorten (V)
• write – rewrite
• do – undo

Compounding:
• fireman (fire + man)
• hardware (hard + ware)

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

22

MORPHOLOGICAL PROCESSES

Faculty of Arts Mathias Creutz

Isolating or analytic (little or no morphology)
vs.

synthetic (many morphemes per word)

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

23

MORPHOLOGICAL TYPOLOGY

* Correct Latin: Romani ite domum

Faculty of Arts Mathias Creutz

Isolating or analytic (little or no morphology)
vs.

synthetic (many morphemes per word)

Agglutinative (morphemes joined together to form words)
vs.

fusional (overlaying of morphemes; difficult to segment)

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

24

MORPHOLOGICAL TYPOLOGY

* Correct Latin: Romani ite domum

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

25

EFFECT ON VOCABULARY SIZE
Different types of morphology in different languages:

Vocabulary growth
estimated from WikipediaVarjokallio, Kurimo, Virpioja (2016)

Faculty of Arts Mathias Creutz

Three general approaches to the modeling of morphology (Charles F. Hockett, 1954):

1. Word-and-Paradigm (word-based morphology)
2. Item-and-Arrangement (morpheme-based morphology)
3. Item-and-Process (lexeme-based morphology)

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

26

HOCKETT’S MODELS OF MORPHOLOGY

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

27

WORD AND PARADIGM (W&P)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

28

WORD AND PARADIGM (W&P)

The W&P model does not describe derivation or compounding.

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

29

ITEM & ARRANGEMENT (I&A)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

30

ITEM & ARRANGEMENT (I&A)

Morph (e.g., “splitt”):
• surface realization of a

morpheme

Allomorphs (e.g., “split”, “splitt”):
• different surface realizations of

the same morpheme

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

31

ITEM & ARRANGEMENT (I&A)

Morph (e.g., “splitt”):
• surface realization of a

morpheme

Allomorphs (e.g., “split”, “splitt”):
• different surface realizations of

the same morpheme

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

32

ITEM & PROCESS (I&P)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

33

ITEM & PROCESS (I&P)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

34

ITEM & PROCESS (I&P)

Faculty of Arts Mathias Creutz

AUTOMATIC MORPHOLOGICAL
PROCESSING

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

35

Faculty of Arts Mathias Creutz

1. Normalization or “Canonical forms”: identification of morphologically related
word forms
• Stemming
• Lemmatization

2. Analysis and generation: full-blown morphological lexicons
3. Segmentation: splitting of words into morphs
4. Implicit modeling: no explicit selection of morphs or morphemes at input level

Different applications (e.g., information retrieval, speech recognition, machine
translation) have different needs.

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

36

APPROACHES IN MORPHOLOGICAL
PROCESSING

Faculty of Arts Mathias Creutz

APPROACH 1: NORMALIZATION OR
“CANONICAL FORMS”

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

37

Faculty of Arts Mathias Creutz

• Works both for
agglutinative and
fusional languages

• Applications that
need to identify
which word forms
“are the same”,
without having to
produce any
correct word forms

• Useful in
information
retrieval

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

38

MORPHOLOGICAL “CANONICAL FORMS”

è

Faculty of Arts Mathias Creutz

• Reduce inflected word forms to their stem; usually also derived forms to roots.
• Happens through suffix-stripping and reduction rules
• Stemmers for English: e.g., Porter (1980), Snowball:

http://snowball.tartarus.org

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

39

STEMMING
Canonical form 1:

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

40

STEMMING EXAMPLES

Faculty of Arts Mathias Creutz

• Stemming is typically a much too simplified approximation
• Stemming fails to see connections between irregular forms or more complex

phenomena
• bring – brought
• swim – swam – swum
• yksi – yhden
• tähti – tähden

• Stemming finds connections between similar, but unrelated forms
• sing – singed
• tähtien – tähteiden

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

41

LIMITATIONS OF STEMMING

Faculty of Arts Mathias Creutz

• Reduce inflected word forms to lemmas
• Lemma = canonical form of the lexeme = dictionary form = base form

• cat’s è cat
• swum è swim
• tähtien è tähti

• More accurate than stemming
• Can be used in the same applications as stemming
• Often implemented as a by-product of full morphological analysis (= our

“Approach 2” to be looked at next)

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

42

LEMMATIZATION
Canonical form 2:

Faculty of Arts Mathias Creutz

Examples:

cat's cat+N+GEN
swum swim+V+PPART
tähtien tähti N Gen Pl
tähteiden tähde N Gen Pl
epäjärjestyksessä epä#järjestys N Ine Sg
epäjärjestyksessäkö epä#järjestys N Ine Sg Foc_kO

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

43

FULL MORPHOLOGICAL ANALYSIS

Faculty of Arts Mathias Creutz

• Out-of-vocabulary words
• epäjärjestelmällistyttämättömyydellänsäkäänköhän è

epäjärjestelmällistyttämättömyydellänsäkäänköhän+?

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

44

LIMITATIONS OF MORPHOLOGICAL ANALYSIS

Faculty of Arts Mathias Creutz

• Out-of-vocabulary words
• epäjärjestelmällistyttämättömyydelläänsäkäänköhän è

epäjärjestelmällistyttämättömyydelläänsäkäänköhän+?

• Ambiguous forms
• saw see+V+PAST or saw+N or saw+V+INF ?

“I saw her yesterday.” è SEE (verb)
“The saw was blunt.” è SAW (noun)
“Don’t saw off the branch you are sitting on.” è SAW (verb)

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

45

LIMITATIONS OF MORPHOLOGICAL ANALYSIS

Faculty of Arts Mathias Creutz

• Out-of-vocabulary words
• epäjärjestelmällistyttämättömyydelläänsäkäänköhän è

epäjärjestelmällistyttämättömyydelläänsäkäänköhän+?

• Ambiguous forms
• saw see+V+PAST or saw+N or saw+V+INF ?

“I saw her yesterday.” è SEE (verb)
“The saw was blunt.” è SAW (noun)
“Don’t saw off the branch you are sitting on.” è SAW (verb)

• meeting meet+V+PROG or meeting+N ?
“We are meeting tomorrow.” è MEET (verb)
“In our meeting, we decided not to meet again.” è MEETING (noun)

• Solutions?

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

46

LIMITATIONS OF MORPHOLOGICAL ANALYSIS

Faculty of Arts Mathias Creutz

APPROACH 2: ANALYSIS AND GENERATION

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

47

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

48

FINITE-STATE
MORPHOLOGY

Book:

Kenneth R. Beesley and Lauri Karttunen, Finite
State Morphology, CSLI Publications, 2003

http://press.uchicago.edu/ucp/books/book/distribut
ed/F/bo3613750.html

These are rule-based systems, i.e., computer
programs written by linguists that model
morphological lexicons of different languages.

http://press.uchicago.edu/ucp/books/book/distributed/F/bo3613750.html

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

49

FINITE-STATE MORPHOLOGY
CONTRIBUTORS FROM FINLAND

Professor emeritus
Kimmo Koskenniemi

Lauri Karttunen
(Stanford university,
Xerox Research etc.)

Faculty of Arts Mathias Creutz

• HFST – Helsinki Finite-State Transducer Technology
• Open source software and demos

• Python interface also available

• https://www.kielipankki.fi/tools/demo/cgi-bin/omor/omordemo.bash

• Lingsoft
• Commercial licenses?

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

50

FINITE-STATE MORPHOLOGY SOFTWARE

https://www.kielipankki.fi/tools/demo/cgi-bin/omor/omordemo.bash

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

51

FINITE-STATE AUTOMATON
A finite-state automaton (FSA) – or finite automaton – is a network consisting of nodes, which
represent states, and directed arcs connecting the states, which represent transitions between
states. Every arc is labeled with a symbol that is consumed from input. State transitions can also
take place without consuming any input; these transitions are called epsilon transitions.

From: http://www.tylerpalsulich.com/blog/2015/05/12/introduction-to-finite-state-automata/

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

52

FINITE STATE AUTOMATON FOR SOME
FINNISH NOUNS WITH CASE ENDINGS

Accepts input strings such as: kisko, kiskoa, kiskolla, kiskolle, kissa, kissaa, kissakoulu, …

The epsilon transition is written as ”00” and does not consume any input.

STEMS ENDINGS

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

53

OPTIMIZED FINITE STATE AUTOMATON OF
FINNISH NOUNS WITH CASE ENDINGS

Accepts exactly the same word forms, but is much more compact!

Produced using algorithms for epsilon removal, determinization and minimization of finite state networks.

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

54

FINITE-STATE TRANSDUCER

A finite-state transducer (FST) is a finite automaton for which each transition has an input label and
an output label.

It recognizes whether the two strings are valid correspondences (or translations) of each other.

From: http://www-01.sil.org/pckimmo/v2/doc/Rules_2.html

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

55

FINITE STATE TRANSDUCER FOR SOME
FINNISH NOUNS WITH CASE ENDINGS

Transduces (translates) between word forms as input and morphological analyses as output:

Input: kisko è Output: kisko+N+Sg+Nom
Input: kiskoa è Output: kisko+N+Sg+Ptv
Input: kiskolla è Output: kisko+N+Sg+Ade

Input: koululle è Output: koulu+N+Sg+All
Input: kissakoulua è Output: kissakoulu+N+Sg+Ptv
…

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

56

OPTIMIZED FINITE STATE TRANSDUCER
FOR FINNISH NOUNS WITH CASE ENDINGS

Still transduces between
the same word forms as
input and morphological
analyses as output, but is
more efficient.

Faculty of Arts Mathias Creutz

• You have seen how a finite state transducer can be used as a morphological
analyzer:

• A morphological generator is simple to produce by inverting the transducer,
such that input becomes output and vice versa:

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

57

MORPHOLOGICAL ANALYSIS VS.
GENERATION

Input: kisko è Output: kisko+N+Sg+Nom
Input: kiskoa è Output: kisko+N+Sg+Ptv
Input: kiskolla è Output: kisko+N+Sg+Ade
Input: koululle è Output: koulu+N+Sg+All
Input: kissakoulua è Output: kissakoulu+N+Sg+Ptv
…

Input: kisko+N+Sg+Ade è Output: kiskolla
Input: koulu+N+Sg+Ptv è Output: koulua
…

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

58

EXAMPLE OF SUPERVISED MACHINE LEARNING:
MORPHOLOGICAL REINFLECTION

Cases \
Numbers

Singular Plural

Nominative susi sudet
Genitive suden ?
Partitive sutta susia
Inessive sudessa ?
Elative ? susista
Illative suteen susiin
Adessive ? ?

Cases \
Numbers

Singular Plural

Nominative käsi ?
Genitive käden käsien, kätten
Partitive ? ?
Inessive kädessä käsissä
Elative kädestä ?
Illative ? käsiin
Adessive kädellä ?

• Learn morphological inflection patterns from tagged, incomplete data.

• Check out the SIGMORPHON shared tasks: https://sigmorphon.github.io/sharedtasks/

https://sigmorphon.github.io/sharedtasks/

Faculty of Arts Mathias Creutz

APPROACH 3: SEGMENTATION

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

59

Faculty of Arts Mathias Creutz

• Suitable for agglutinative languages; problems with fusional languages.
• Applications that need only the surface forms:

• speech recognition, text prediction, language identification, etc.
• Can be considered as a labeling problem:

• A related task is word segmentation for languages written without spaces
between words; e.g., Chinese word segmentation.

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

60

MORPHOLOGICAL SEGMENTATION

u n r e al t e nd e s s ##

0 1 0 0 0 0 0 0 011 110

u n r e al t e nd e s s ##

I SI I IB EB B I IE E

BIES label set:

Binary labels for boundaries:

Faculty of Arts Mathias Creutz

• Proportion of out-of-vocabulary
(OOV) units in different languages
as a function of the training corpus
size, estimated form the Europarl
corpus

• By using morphs instead of words
as basic units in the NLP system,
the OOV rate is reduced.

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

61

EFFECT OF MORPH-LEVEL MODELING

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

10

Corpus size [1000 sentences]

O
O

V
ra

te
 [%

]

Finnish, words
Swedish, words
English, words
Finnish, morphs
Swedish, morphs
English, morphs

è

Faculty of Arts Mathias Creutz

• Train a model that predicts the label yi of the current character xi given the
characters and the previous labels: P(yi | (x0, ..., xn); (y0, ..., yi–1))

• E.g., Hidden Markov Models, Conditional Random Fields

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

62

SUPERVISED LEARNING
Morphological segmentation:

Faculty of Arts Mathias Creutz

• Zellig Harris proposed the first(?) unsupervised morpheme segmentation
algorithm (1955)

• Computer experiment carried out in 1967

• Test data consisted of 48 words…

• Principle:

• Morpheme boundaries are proposed at intra-word locations with a peak in
successor and predecessor variety.

• Demonstrated on the next slides.

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

63

UNSUPERVISED LEARNING, METHOD 1
Morphological segmentation:

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

64

SUCCESSOR VARIETY

Prefix Successor varietyTest word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Zellig Harris’s morpheme segmentation model:

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

65

SUCCESSOR VARIETY

Prefix Successor variety

r 3 e, o, i

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Zellig Harris’s morpheme segmentation model:

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

66

SUCCESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Prefix Successor variety

r 3 e, o, i

re 2 a, d

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

67

SUCCESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Prefix Successor variety

r 3 e, o, i

re 2 a, d

rea 1 d

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

68

SUCCESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Prefix Successor variety

r 3 e, o, i

re 2 a, d

rea 1 d

read 3* a, i, s

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

69

SUCCESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Prefix Successor variety

r 3 e, o, i

re 2 a, d

rea 1 d

read 3* a, i, s

reada 1 b

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

ç peak here
successor
variety
higher than
before and
after

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

70

SUCCESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Prefix Successor variety

r 3 e, o, i

re 2 a, d

rea 1 d

read 3* a, i, s

reada 1 b

readab 1 l

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

71

SUCCESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Prefix Successor variety

r 3 e, o, i

re 2 a, d

rea 1 d

read 3* a, i, s

reada 1 b

readab 1 l

readabl 1 e

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

72

SUCCESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Prefix Successor variety

r 3 e, o, i

re 2 a, d

rea 1 d

read 3* a, i, s

reada 1 b

readab 1 l

readabl 1 e

readable 1* -

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

73

PREDECESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Suffix Predecessor varietyTest word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

74

PREDECESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Suffix Predecessor variety

e 2 l, p

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

75

PREDECESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Suffix Predecessor variety

e 2 l, p

le 1 b

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

76

PREDECESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Suffix Predecessor variety

e 2 l, p

le 1 b

ble 1 a

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

77

PREDECESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Suffix Predecessor variety

e 2 l, p

le 1 b

ble 1 a

able 3* d, t, x

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

78

PREDECESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Suffix Predecessor variety

e 2 l, p

le 1 b

ble 1 a

able 3* d, t, x

dable 1 a

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

ç peak here
predecessor
variety
higher than
before and
after

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

79

PREDECESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Suffix Predecessor variety

e 2 l, p

le 1 b

ble 1 a

able 3* d, t, x

dable 1 a

adable 1 e

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

80

PREDECESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Suffix Predecessor variety

e 2 l, p

le 1 b

ble 1 a

able 3* d, t, x

dable 1 a

adable 1 e

eadable 1 r

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

81

PREDECESSOR VARIETY
Zellig Harris’s morpheme segmentation model:

Suffix Predecessor variety

e 2 l, p

le 1 b

ble 1 a

able 3* d, t, x

dable 1 a

adable 1 e

eadable 1 r

readable 1* -

Test word:
readable

Corpus:
able
ape
beatable
fixable
read
readable
reading
reads
red
rope
ripe

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

82

Successor variety

Predecessor variety

INSERT A BOUNDARY WHERE THE PEAKS “MEET”
Zellig Harris’s morpheme segmentation model:

From: Harris (1967)

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

83

UNSUPERVISED LEARNING, METHOD 2
Morphological segmentation:

• We want to send a vocabulary (=
word list) of some language over a
channel with limited band-width.

• We want to compress the
vocabulary.

• What regularities can we exploit?

• What about morphemes, the
smallest meaning-bearing units of
language?

• The method is called Morfessor
(Creutz & Lagus, 2002)

…
aamu
aamu a
aamu aurinko
aamu kahvi
aamu ksi
aamu lehti
aamu lla
aamu n
aamu naama si
aamu pala lla
aamu pala n
aamu posti a
aamu päivä
aamu päivä llä
aamu yö
aamu yö llä
aamu yö stä
…

…
aamu
aamua
aamuaurinko
aamukahvi
aamuksi
aamulehti
aamulla
aamun
aamunaamasi
aamupalalla
aamupalan
aamupostia
aamupäivä
aamupäivällä
aamuyö
aamuyöllä
aamuyöstä
…

?

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

84

TWO-PART CODE

• Instead of sending over the vocabulary as it is, we split it into two parts:
1. a fairly compact lexicon of morphs: “aamu”, “aurinko”, “ksi”, “lla”, …
2. the word vocabulary expressed as sequences of morphs

Morfessor:

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

85

TWO-PART CODE

• Instead of sending over the vocabulary as it is, we split it into two parts:
1. a fairly compact lexicon of morphs: “aamu”, “aurinko”, “ksi”, “lla”, …
2. the word vocabulary expressed as sequences of morphs

• Since we are doing unsupervised learning, we do not know the correct answer.

• Our target is to minimize the combined code length of:
1. the code length of the morph lexicon
2. plus the code length of the word vocabulary expressed using the morph lexicon.

Morfessor:

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

86

TWO-PART CODE

• Instead of sending over the vocabulary as it is, we split it into two parts:
1. a fairly compact lexicon of morphs: “aamu”, “aurinko”, “ksi”, “lla”, …
2. the word vocabulary expressed as sequences of morphs

• Since we are doing unsupervised learning, we do not know the correct answer.

• Our target is to minimize the combined code length of:
1. the code length of the morph lexicon
2. plus the code length of the word vocabulary expressed using the morph lexicon.

• There are two theories that operate on two-part codes like this:
• (Two-part code version of) Minimum Description Length (MDL)
• Minimum Message Length (MML)

Morfessor:

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

87

CODE LENGTH OF THE MORPH LEXICON
Morfessor:

• Let us assume, for simplicity, that there are 32 different letters in our alphabet.

• This means we need 5 bits to encode one letter, because 25 = 32:

• The letter ‘a’ could have the code 00000.

• The letter ‘b’ could have the code 00001.

• The letter ‘c’ could have the code 00010.

• The letter ‘d’ could have the code 00011, etc.

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

88

CODE LENGTH OF THE MORPH LEXICON
Morfessor:

• Let us assume, for simplicity, that there are 32 different letters in our alphabet.

• This means we need 5 bits to encode one letter, because 25 = 32:

• The letter ‘a’ could have the code 00000.

• The letter ‘b’ could have the code 00001.

• The letter ‘c’ could have the code 00010.

• The letter ‘d’ could have the code 00011, etc.

• We could send over a four-morph lexicon as the following string:
aamu#aurinko#ksi#lla## (binary: 000000000001000 …)

• Here we use the hash tag ‘#’ as a morph separator and use two hash tags ‘##’ to
indicate that the lexicon ends.

• The lexicon string contains 22 characters.

• Thus, the code length of this lexicon is 22 * 5 bits = 110 bits.

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

89

CODE LENGTH OF THE CORPUS (1)
Morfessor:

• Each word in our word vocabulary (or hereafter called corpus) is expressed as a
concatenation of morphs:
• aamu is expressed as Morph1 + EoW (= End of Word)

• aamuksi is expressed as Morph1 + Morph3 + EoW

• aamulla is expressed as Morph1 + Morph4 + EoW

• aamuaurinko is expressed as Morph1 + Morph2 + EoW

• How are the symbols (or ”variables”) Morph1, Morph2, etc encoded?

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

90

CODE LENGTH OF THE CORPUS (2)
Morfessor:

• For instance, if there were 64 different morphs, and all morphs were as frequently
used, we could use a fixed 6-bit code for every morph (because 26 = 64).
• The first morph would have the code 000000.
• The second morph would have the code 000001.
• The third morph would have the code 000010.
• The fourth morph would have the code 000011, etc.

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

91

CODE LENGTH OF THE CORPUS (2)
Morfessor:

• For instance, if there were 64 different morphs, and all morphs were as frequently
used, we could use a fixed 6-bit code for every morph (because 26 = 64).
• The first morph would have the code 000000.
• The second morph would have the code 000001.
• The third morph would have the code 000010.
• The fourth morph would have the code 000011, etc.

• However, the morph distribution of a natural language is not uniform at all:
• Some morphs are very frequent, such as ‘ksi’ and ‘lla’.
• Other morphs are infrequent, such as ‘aurinko’.

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

92

CODE LENGTH OF THE CORPUS (3)
Morfessor:

• Suppose that our morph-segmented
“corpus” (= word vocabulary) consists of 8
words and looks like this.

• The underscore ‘_’ represents the end-of-
word morph.

• In this segmentation there are 32 morph
tokens, representing 16 different morph
types.

• The morph frequencies are as follows:

aamu aurinko a _
aamu ksi ko _
aamu lla kin han _
aamu pala lla _
pala a _
pala ksi _
posti n kulje t us _
suu pala _

8 _
2 a
4 aamu
1 aurinko
1 han
1 kin
1 ko
2 ksi

1 kulje
2 lla
1 n
4 pala
1 posti
1 suu
1 t
1 us

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

93

CODE LENGTH OF THE CORPUS (4)
Morfessor:

• It turns out that the optimal code length of a symbol is the negative logprob (with base 2) of the symbol in the data.
• The probability of a symbol is the frequency of the symbol in the data divided by the total frequency of all symbols in the

data.

‒ For instance, Prob(“aamu”) = 4/32 = 1/8 = 0.125.

• The negative logprob of a symbol is: –log2 Prob(symbol)

‒ For instance, neglogprob(“aamu”) = –log2 1/8 = log2 8 = 3 (because 23 = 8)

• Frequent morphs will have shorter codes than rare morphs.

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

94

CODE LENGTH OF THE CORPUS (4)
Morfessor:

• It turns out that the optimal code length of a symbol is the negative logprob (with base 2) of the symbol in the data.
• The probability of a symbol is the frequency of the symbol in the data divided by the total frequency of all symbols in the

data.

‒ For instance, Prob(“aamu”) = 4/32 = 1/8 = 0.125.

• The negative logprob of a symbol is: –log2 Prob(symbol)

‒ For instance, neglogprob(“aamu”) = –log2 1/8 = log2 8 = 3 (because 23 = 8)

• Frequent morphs will have shorter codes than rare morphs.

• The code needs to be a so-called prefix code in order to be unambiguous:

• When symbols have different code lengths, it must be clear to the decoder at every time how many bits to expect for that
symbol.

• For instance, if there is one symbol that has code length = 2, then it could have the code ‘00’.

• This means that no other symbol is allowed to have a code that starts with ‘00’, because then this prefix would be
ambiguous, and the system would not know when the whole symbol has been read.

• Let’s do the maths for our morph set…

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

95

CODE LENGTH OF THE CORPUS (5)
Morfessor:

Morph Frequency Probability Neglogprob Binary prefix
code

Morph Frequency Probability Neglogprob Binary prefix
code

_ 8 0.25 2 00 kin 1 0.03125 5 11000

aamu 4 0.125 3 010 ko 1 0.03125 5 11001

pala 4 0.125 3 011 kulje 1 0.03125 5 11010

a 2 0.0625 4 1000 n 1 0.03125 5 11011

ksi 2 0.0625 4 1001 posti 1 0.03125 5 11100

lla 2 0.0625 4 1010 suu 1 0.03125 5 11101

aurinko 1 0.03125 5 10110 t 1 0.03125 5 11110

han 1 0.03125 5 10111 us 1 0.03125 5 11111

In the “Binary prefix code” columns above I have underlined the part of the code, after which the decoder knows how long the code for that
symbol is.

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

96

CODE LENGTH OF THE CORPUS (6)
Morfessor:

aamu aurinko a _
aamu ksi ko _
aamu lla kin han _
aamu pala lla _
pala a _
pala ksi _
posti n kulje t us _
suu pala _

8 _
2 a
4 aamu
1 aurinko
1 han
1 kin
1 ko
2 ksi

1 kulje
2 lla
1 n
4 pala
1 posti
1 suu
1 t
1 us

• The code for our corpus is thus:
0101011010000001010011100100 …

• The total code length of the corpus is:

8 * 2 bits + (4 + 4) * 3 bits

+ (2 + 2 + 2) * 4 bits + 10 * 5 bits

= 114 bits

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

97

TO CONSIDER
Morfessor:

• In real situations, we don’t get tidy integer-number code lengths, such as 2, 3, 4 in the example above.

• Instead, we can get any real-valued number of bits, such as 5.37 or 1.111.
• There is a proof by Jorma Rissanen (the inventor of MDL) that this does not matter.

• Also, the base of the logarithm does not matter either: we don’t have to calculate in bits (with base 2), but
can use nats (with base e for the natural logarithm).

• Furthermore, we are not really interested in the actual codes of our symbols, because we are not building
an encoder/decoder.
• We use this encode-decode methodology as a “metaphor” to learn a morph segmentation in an unsupervised

way.

• Maximum A Posteriori (MAP) optimization is a fully equivalent method that does not deal with code lengths at
all, just plain probabilities.

• Also on the lexicon side, we could have used variable-length codes instead of fixed-length codes for the
letters of the alphabet.

• There are other parts of the mathematical formulation that I have been left out, for simplicity.

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

98

HOW TO FIND THE BEST SEGMENTATION
Morfessor:

• We use a search algorithm that tests different morph segmentations and
calculates the two-part code length: code length of lexicon plus code length of
corpus.

• The algorithm stops when it has reached a minimum, the shortest code length it
can find.

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

99

DIFFERENT MORPH SPLITTING SCENARIOS
Morfessor:

1. The algorithm splits every word into individual letters, such as: a a m u p a l a
• The code length of the lexicon will be very small, because it only contains 32 morphs: every

letter of the alphabet is its own morph.
• The code length of the corpus will be large, because it consists of a very high number of morph

symbols.
• As a consequence, the combined code length will be fairly large.

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

100

DIFFERENT MORPH SPLITTING SCENARIOS
Morfessor:

1. The algorithm splits every word into individual letters, such as: a a m u p a l a
• The code length of the lexicon will be very small, because it only contains 32 morphs: every

letter of the alphabet is its own morph.
• The code length of the corpus will be large, because it consists of a very high number of morph

symbols.
• As a consequence, the combined code length will be fairly large.

2. The algorithm does not split any word at all; each word is its own morph, such as aamupala.
• The code length of the corpus will be fairly small, because it contains the smallest number of

morph symbols possible.
• The code length of the lexicon will be large, because every word form is there as its own morph.
• As a consequence, the combined code length will be fairly large.

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

101

DIFFERENT MORPH SPLITTING SCENARIOS
Morfessor:

1. The algorithm splits every word into individual letters, such as: a a m u p a l a
• The code length of the lexicon will be very small, because it only contains 32 morphs: every

letter of the alphabet is its own morph.
• The code length of the corpus will be large, because it consists of a very high number of morph

symbols.
• As a consequence, the combined code length will be fairly large.

2. The algorithm does not split any word at all; each word is its own morph, such as aamupala.
• The code length of the corpus will be fairly small, because it contains the smallest number of

morph symbols possible.
• The code length of the lexicon will be large, because every word form is there as its own morph.
• As a consequence, the combined code length will be fairly large.

3. Balanced morph splitting, such as: aamu pala.
• The shortest combined code length is achieved by an optimal balance (a “compromise”): not the

shortest possible lexicon, nor the shortest possible representation of the corpus.

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

102

DOES THIS WORK?
Morfessor:

English example output from (the earliest context-insensitive version of) Morfessor,
which corresponds fairly closely to the model described above:

abandon ed
abandon ing
abb
abb y
ab del
able
ab normal
a board
ab out
a broad
ab rupt ly
ab s ence
ab s ent
ab s ent ing

absolute
absolute ly
absorb
absorb ing
absurd
absurd ity
ab t
a bu
abuse
abuse d
abuse r s
abuse s
ab y s s
ac cent

differ
differ ence
differ ence s
differ ent
differ ent ial
differ ent ly
differ ing
difficult
difficult ies
difficult y
dig
dig est
dig it al
dig li pur

present ed
present ing
present ly
present s
pre serve
pre serve s
provide s
pro vi d ing
pull ed
pull ers
pull ing
pump
pump ed
pump ing

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

103

ERROR ANALYSISMorfessor:
Morphs that make sense in some context appear in contexts where they
don’t really belong. There are also instances of over- and under-
segmentation.

abandon ed
abandon ing
abb
abb y
ab del
able
ab normal
a board
ab out
a broad
ab rupt ly
ab s ence
ab s ent
ab s ent ing

absolute
absolute ly
absorb
absorb ing
absurd
absurd ity
ab t
a bu
abuse
abuse d
abuse r s
abuse s
ab y s s
ac cent

differ
differ ence
differ ence s
differ ent
differ ent ial
differ ent ly
differ ing
difficult
difficult ies
difficult y
dig
dig est
dig it al
dig li pur

present ed
present ing
present ly
present s
pre serve
pre serve s
provide s
pro vi d ing
pull ed
pull ers
pull ing
pump
pump ed
pump ing

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

104

IMPROVED MODEL
Morfessor:

abandon/STM ed/SUF
abandon/STM ing/SUF
abb/STM
abby/STM
abdel/STM
able/STM
ab/STM normal/STM
aboard/STM
about/STM
abroad/STM
abrupt/STM ly/SUF
absence/STM
absent/STM
absent/STM ing/SUF

absolute/STM
absolute/STM ly/SUF
absorb/STM
absorb/STM ing/SUF
absurd/STM
absurd/STM ity/SUF
abt/STM
abu/STM
abuse/STM
abuse/STM d/SUF
ab/STM users/STM
abuse/STM s/SUF
aby/STM s/SUF s/SUF
accent/STM

differ/STM
differ/STM ence/STM
differ/STM ence/STM s/SUF
different/STM
differential/STM
different/STM ly/SUF
differ/STM ing/SUF
difficult/STM
difficult/STM i/SUF es/SUF
difficult/STM y/SUF
dig/STM
digest/STM
digital/STM
diglipur/STM

present/STM ed/SUF
present/STM ing/SUF
present/STM ly/SUF
present/STM s/SUF
preserv/STM e/SUF
preserv/STM e/SUF s/SUF
provide/STM s/SUF
provi/STM ding/STM
pull/STM ed/SUF
pull/STM er/SUF s/SUF
pull/STM ing/SUF
pump/STM
pump/STM ed/SUF
pump/STM ing/SUF

• A later context-sensitive version of Morfessor introduces three categories: stem (STM), prefix (PRE) and suffix
(SUF) that each morph must belong to.

• A word form must have the structure of the following regular expression: (PRE* STM SUF*)+
• From the updated examples below, you can see that many issues have been fixed, but the model is still fairly

crude; for instance, it suggests two consecutive s-suffixes in the word “abyss”: aby s s.

Software available at:
http://www.cis.hut.fi/projects/morpho/

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

105

METHOD 3: BYTE PAIR ENCODING (BPE)
Pragmatic segmentation approach:

• Simple data compression algorithm (like Morfessor)

• Repeat in multiple steps: The most common pair of consecutive bytes (characters) of data is
replaced with a byte (character) that does not occur within that data:

1. aaabdaaabac
2. Z = aa -> ZabdZabac
3. Y = ab, Z = aa -> ZYdZYac
4. X=ZY, Y = ab, Z = aa -> XdXac

• Stop when you have reached the number of subword units you want or when there is no byte pair
that occurs more than once.

For more info, see Wikipedia, Philip Gage (1994) or Sennrich, Haddow, and Birch (2016).

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

106

SUBWORD UNITS OBTAINED USING BPE OFTEN USED AS
INPUT VECTORS TO NEURAL NETWORKS

• For instance, the widely used neural language model BERT creates input
embeddings based on a BPE segmentation, even for English input:

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

107

METHOD 3++: SENTENCEPIECE

• Supports two segmentation algorithms: BPE and a unigram language model

• Whitespace is treated as a basic symbol

• Raw text: Hello_world.

Ø Tokenized: [Hello] [_wor] [ld] [.]

• Raw text: こんにちは世界。 (Hello world.)

Ø Tokenized: [こんにちは] [世界] [。]

For more info, see https://github.com/google/sentencepiece

Extension of BPE:

https://github.com/google/sentencepiece

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

108

METHOD 3++: SENTENCEPIECE

• Sampling of multiple alternatives

For more info, see https://github.com/google/sentencepiece

Extension of BPE:

>>> import sentencepiece as spm

>>> s = spm.SentencePieceProcessor(model_file='spm.model’)

>>> for n in range(5):

... s.encode('New York', out_type=str, enable_sampling=True, alpha=0.1, nbest=-1)

...

['▁', 'N', 'e', 'w', '▁York’]
['▁', 'New', '▁York’]
['▁', 'New', '▁Y', 'o', 'r', 'k’]
['▁', 'New', '▁York’]
['▁', 'New', '▁York']

https://github.com/google/sentencepiece

Faculty of Arts Mathias Creutz

APPROACH 4: IMPLICIT MODELING

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

109

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

110

FASTTEXT: OVERLAPPING SUB-WORD SEGMENTS

Piotr Bojanowski, Edouard Grave, Armand Joulin and Tomas Mikolov: Enriching
Word Vectors with Subword Information. Transactions of the Association for
Computational Linguistics, Vol 5, 2017.

• The fastText model is based on the
skipgram model of the word2vec
package.

• In fastText, word embeddings are
created by summing overlapping
subword vectors together.

• Also a vector for the whole word is
included, if available (not possible for
OOV words).

https://moodle.helsinki.fi/pluginfile.php/3413546/course/section/503610/tacl.pdf

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

111

FASTTEXT: OVERLAPPING SUB-WORD SEGMENTS

Piotr Bojanowski, Edouard Grave, Armand Joulin and Tomas Mikolov: Enriching
Word Vectors with Subword Information. Transactions of the Association for
Computational Linguistics, Vol 5, 2017.

• The fastText model is based on the
skipgram model of the word2vec
package.

• In fastText, word embeddings are
created by summing overlapping
subword vectors together.

• Also a vector for the whole word is
included, if available (not possible for
OOV words).

https://moodle.helsinki.fi/pluginfile.php/3413546/course/section/503610/tacl.pdf

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

112

FASTTEXT: OVERLAPPING SUB-WORD SEGMENTS

Piotr Bojanowski, Edouard Grave, Armand Joulin and Tomas Mikolov: Enriching
Word Vectors with Subword Information. Transactions of the Association for
Computational Linguistics, Vol 5, 2017.

https://moodle.helsinki.fi/pluginfile.php/3413546/course/section/503610/tacl.pdf

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

113

FASTTEXT: OVERLAPPING SUB-WORD SEGMENTS

Faculty of Arts Mathias Creutz 15/02/22
Statistical Natural Language Processing – Morpheme-level processing

114

CHARACTER-LEVEL EMBEDDINGS

• No morphology used!

• The neural network learns what
it needs (hopefully…) about the
internal structure of words.

• Each character (letter) is treated
as its own ”word” vector.

• Computationally heavy but some
people believe this will be the
standard approach in the future.

Faculty of Arts Mathias Creutz

THE END

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

115

Faculty of Arts Mathias Creutz

THANK YOU!

15/02/22
Statistical Natural Language Processing – Morpheme-level processing

116

