

Statistical Natural Language Processing course 2022 conclusion

Mikko Kurimo

Learning goals

- To learn how statistical and adaptive methods are used in information retrieval, machine translation, text mining, speech processing and related areas to process natural language data
- To learn how to apply the basic methods and techniques for clustering, classification, generation and recognition by natural language modeling

How to achieve the learning goals (and pass the course)?

- Participate actively in each lecture, read the corresponding material and ask questions to learn the basics, take part in discussions, complete the lecture exercises
- Participate actively in each exercise session after each lecture to learn how to solve the problems, in practice DONE
- Complete the home exercises in time Almost DONE
- Participate actively in project work to learn to apply your knowledge
 Final report DL April 28
- Prepare well for the examination

Course exam April 12 (next exam September)

Final course grade and exam

- 60% (or 40% + exam) of the grade is from the weekly home exercises and lecture activities
- 20% of the grade comes from the **optional exam** at 12 April. Exam points are counted on top of the exercise points (see below) which are then capped to 2/3 of available points. Examples:
 - 40/60 exercises + 10/20 exam = 50/60 (40/60 without exam)
 - 50/60 exercises + 15/20 exam = 55/60 (50/60 without exam)
 - 50/60 exercises + 5/20 exam = (45/60) 50/60 as without exam
 - The true max points may be different, they are just scaled to 60 (exercises) and 20 (exam) for computing the final grade
- 40% of the grade is from the **project work**: experiments, literature study, short (video) presentation and final report

Course project grading

- See Mycourses for the requirements of an acceptable project report
- Peer grading will be performed for some parts to get more feedback, but that is separate from the final project grade
- Excellent projects typically include additional work such as
 - Exceptional analysis of the data
 - Application of the method to a task or several
 - Algorithm development
 - Own data set(s) (with preprocessing etc to make them usable)

Course exam grading

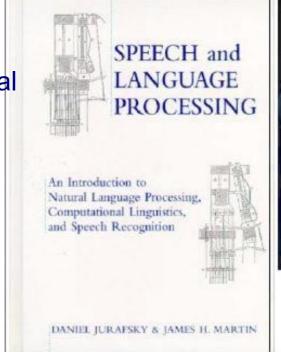
- The exam will be a remote digital exam
- There are 5 questions in MyCourses open in Wed 12.4. 12:00 15:00
- Grading 0 5, max 6 points per question makes total 30p. The grade limits will depend on the exam's difficulty. Last year 11p gave the (exam) grade 1.
- You can use any books, course material, internet, calculators and toolkits
- You must write in your own words. If any copy-pasted texts are found, there will be an automatic reject and report to Aalto University
- You are not allowed to communicate or collaborate with other people during the exam. If any co-operation is found, there will be an automatic reject and report to Aalto University
- All exam questions and course exercise materials are copyrighted. You are not allowed to distribute them in any way.

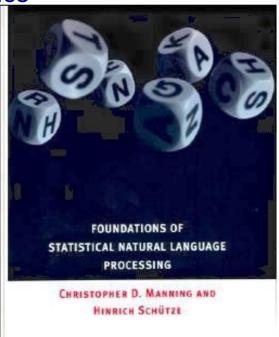
Reading material

- Manning & Schütze, Foundations of Statistical Natural language processing (1999) http://nlp.stanford.edu/fsnlp/
- Jurafsky & Martin, Speech and Language Processing (3rd ed. Draft, 2020) http://web.stanford.edu/~jurafsky/slp3/

Read the chapters corresponding to the lecture topics

 Do not forget to study the topic-specific reading material (mentioned in slides)





7/

Lecture topics

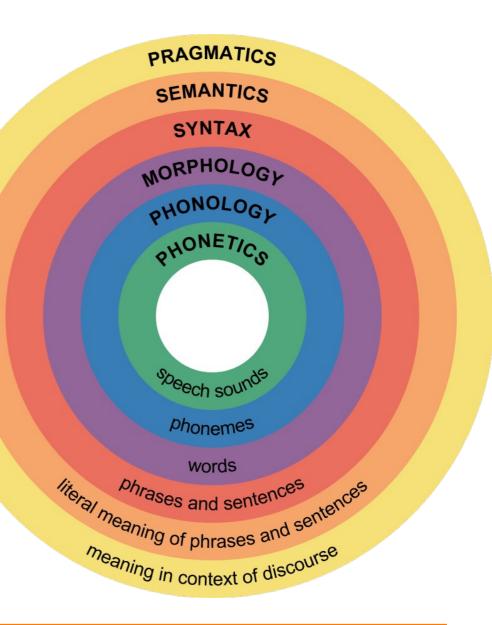
- 1. 12 Jan Introduction & Project groups / Mikko Kurimo
- 2. 19 jan Statistical language models / Mikko Kurimo
- 3. 26 jan Word2vec / Tiina Lindh-Knuutila
- 4. 02 feb Sentence level processing / Mikko Kurimo
- 5. 09 feb Speech recognition / Janne Pylkkönen
- 6. 16 feb Chatbots and dialogue agents / Mikko Kurimo
- 7. 02 mar Statistical machine translation / Jaakko Väyrynen
- 8. 09 mar Morpheme-level processing / Mathias Creutz
- 9. 16 mar Neural language modeling and BERT / Mittul Singh
- 10. 23 mar Neural machine translation / Stig-Arne Grönroos
- 11. 30 mar Societal impacts and course conclusion / Krista Lagus, Mikko

1. Introduction

- What does language include?
- What makes languages so complex?
- What are the applications of statistical language modeling?

What is in a language?

- Phonetics and phonology:
 - the physical sounds
 - the patterns of sounds
- Morphology: The different building blocks of words
- Syntax: The grammatical structure
- Semantics: The meaning of words
- Pragmatics, discourse, spoken interaction...



Complexity of languages

- A large proportion of modern human activity in its different forms is based on the use of language
- Large variation:
 - morphology and
 - syntactic structures
- Complexity of natural language(s)
 - More than 6000 languages, many more dialects
 - Each language a large number of different word forms
 - Each word is understood differently by each speaker of a language at least to some degree

Application areas

- Information retrieval
- Text clustering and classification
- Automatic speech recognition
- Natural language interfaces
- Statistical machine translation

- Topic detection
- Sentiment analysis
- Word sense disambiguation
- Syntactic parsing
- Text generation
- Image, audio and video description
- Text-to-speech synthesis
- •

2. Statistical language modeling

- N-gram LMs
 - Data sparsity problem
 - Equivalence classes
 - Back-off and interpolation
 - Smoothing methods, add-one, Good Turing, Kneser-Ney
- Maximum entropy LMs
- Continuous space LMs
- Neural network LMs

Statistical Language Model

- Model of a natural language that predicts the probability distribution of words and sentences in a text
- Often used to determine which is the most probable word or sentence in given conditions or context
- Estimated by counting word frequencies and dependencies in large text corpora
- Has to deal with: big data, noisy data, sparse data, computational efficiency

Estimation of N-gram model

$$P(w_i \mid w_j) = \frac{c(w_j, w_i)}{c(w_j)} \qquad \frac{c(\text{"eggplant stew"})}{c(\text{"eggplant"})}$$
$$= P(w_i)b_{w_i} \qquad \text{otherwise}$$

•Bigram example:

Start from a maximum likelihood estimate

probability of *P("stew"* | *"eggplant"*) is computed from **counts** of *"eggplant stew"* and *"eggplant"*

works well for frequent bigrams

Why not for good rare bigrams?

Zero probability problem

- If an N-gram is not seen in the corpus, it will get probability = 0
- The higher N, the sparser data, and the more zero counts there will be
- •20K words => 400M 2-grams => 8000G 3-grams, so even a gigaword corpus has MANY zero counts!
- Equivalence classes: Cluster several similar n-grams together to reach higher counts
- •Smoothing: Redistribute some probability mass from seen N-grams to unseen ones

Smoothing methods

- **1.Add-one**: Add 1 to each count and normalize => gives too much probability to unseen N-grams
- **2.(Absolute) discounting**: Subtract a constant from all counts and redistribute this to unseen ones using N-1 gram probs and back-off (normalization) weights
- **3.Witten-Bell smoothing**: Use the count of things seen once to help to estimate the count of unseen things
- **4.Good Turing smoothing**: Estimate the rare n-grams based on counts of more frequent counts
- 5.Best: **Kneser-Ney smoothing**: Instead of the number of occurrences, weigh the back-offs by the **number of contexts** the word appears in
- 6.Instead of only back-off cases, interpolate all N-gram counts with N-1 counts

Weaknesses of N-grams

- Skips long-span dependencies:
 - "The girl that I met in the train was ..."
- Too dependent on word order:
 - "dog chased cat": "koira jahtasi kissaa" ~ "kissaa koira jahtasi"
- Dependencies directly between words, instead of latent variables, e.g. word categories

Maximum entropy LMs

- Represents dependency information
- by a weighted sum of features f(x,h)
- $P(x|h) = \frac{e^{\sum_{i} \lambda_{i} f_{i}(x,h)}}{\sum_{x'} e^{\sum_{j} \lambda_{j} f_{j}(x',h)}}$
- Features can be e.g. n-gram counts
- Alleviates the data sparsity problem by smoothing the feature weights (lambda) towards zero
- The weights can be adapted in more flexible ways than n-grams
 - Adapting only those weights that significantly differ from a large background model (1)
- Normalization is computationally hard, but can be approximated effectively

Continuous space LMs

- Alleviates the data sparsity problem by representing words in a distributed way
- Various algorithms can be used to learn the most efficient and discriminative representations and classifiers
- The most popular family of algorithm is called (Artificial) Neural Networks
 (NN)
 - can learn very complex functions by combining simple computation units in a hierarchy of non-linear layers
 - Fast in action, but training takes a lot of time and labeled training data
- Can be seen as a non-linear multilayer generalization of the maximum entropy model

3. Vector space models for words and documents

- Vector space models, distributional semantics
 - word-document and word-word matrices
 - Constructing word vectors
 - stemming, weighting, dimensionality reduction
 - similarity measures
 - Count models vs. predictive models
 - Word2vec
- Information retrieval

Vector space models

Use a high-dimensional space for documents and words

- Closeness in the vector space resembles closeness in the semantics or structure of the documents (depending on the features extracted).
- Makes the use of data mining possible

Applications:

- Document clustering and classification
 - Finding similar documents
 - Finding similar words
- Word disambiguation
- Information retrieval
 - Term discrimination: ranking keywords by their usefulness

How to build a vector space model?

- 1. Preprocessing
- 2. Defining word-document or word-word matrix
 - choosing features
- 3. Dimensionality reduction
 - choosing features
 - removing noise
 - easing computation
- 4. Weighting and normalization
 - emphasizing the features
- 5. Similarity / distance measures
 - comparing the vectors

To count or predict?

Count-based methods

- compute the word co-occurrence statistics with its neighbor words in a large text corpus
- followed by a mapping (through weighting and dimensionality reduction) to dense vectors

Predictive models

 try to predict a word from its neighbors by directly learning a dense representation

Statistical semantics

- **Statistical semantics hypothesis:** Statistical patterns of human word usage can be used to figure out what people mean (Weaver, 1955; Furnas et al., 1983).
- **Bag of words hypothesis:** The frequencies of words in a document tend to indicate the relevance of the document to a query (Salton et al., 1975).
- **Distributional hypothesis:** Words that occur in similar contexts tend to have similar meanings (Harris, 1954; Firth, 1957; Deerwester et al., 1990).
- **Latent relation hypothesis:** Pairs of words that co-occur in similar patterns tend to have similar semantic relations (Turney et al., 2003).

Modifying the vector spaces

The basic matrix formulation offers lots of variations:

- -window sizes
- -word weighting, normalization, thresholding, removing stopwords
- -stemming, lemmatizing, clustering, classification, sampling
- -distance measures
- -dimensionality reduction methods
- -neural networks

Information retrieval: **The query** is compared to **the index** and the best matching results are returned

- Images
- Videos
- News
- Shopping
- Realtime
- ▼ More

teemu selänteen

About 437,000 results (0.37 seconds)

Teemu Selänne - Wikipedia, the free encyclopedia

Teemu Ilmari **Selänne** nicknamed "The Finnish Flash" (born July 3, 1970) is a Finnish professional ice hockey player and an alternate captain of the Anaheir Playing career - International - Personal - Career statistics en.wikipedia.org/wiki/**Teemu_Selänne** - Cached - Similar

Teemu Selänne – Wikipedia 😭 - [Translate this page]

Teemu Ilmari Selänne (s. 3. heinäkuuta 1970 Helsinki) on suomalainen ...
Peliura - Perhe ja vapaa-aika - Muuta - Tilastot
fi.wikipedia.org/wiki/Teemu_Selänne - Cached - Similar

Show more results from wikipedia.org

Teemu Selanne hockey statistics & profile at hockeydb.com

3 Jul 1970 ... A profile of **Teemu Selanne**, a hockey player from Helsinki, Fin born July 03, 1970.

www.hockeydb.com/ihdb/stats/pdisplay.php?pid=4863 - Cached - Similar

Ranking the results

Compute a numeric score on how well each object in the database matches the query

- Distance in the vector space
- Content and structure of the document collection
- Number of hits in a document
- Number of hits in title, first paragraph, elsewhere
- Other meta information in the documents or external knowledge

The retrieved objects are ranked according to the score and only the top ranking objects shown to the user.

4. Sentence-level processing

- Tagging words in a sentence
 - Part-of-speech tagging
 - Named entity recognition
 - Solving ambiguities
 - Hidden Markov model, Viterbi, Baum-Welch, Forward-Backward
 - Recurrent neural networks
- Sentence parsing
 - Grammars, trees
 - Probabilistic context free grammar

Part of Speech (POS) tagging

Task: Assign tags for each word in a sentence

Applications: Tool for parsing the sentence

The reaction in the newsroom was emotional.

=> DT NN IN DT NN VBD JJ

(determiner)

(noun) (preposition)

(determiner) (noun)

(verb past tense) (adjective)

Named entity recognition

- Detect names of persons, organizations, locations
- Detect dates, addresses, phone numbers, etc
- Applications: Information retrieval, ontologies
- UN official Ekeus heads for Baghdad.

```
=> ORG - PER - - LOC (organization) (person) (location)
```


A general approach

- 1. Generate candidates
- 2. Score the candidates
- 3. Select the highest scoring ones

A simple scoring method

- Count the frequency of each tagging by listing all appearances of the word in an annotated corpus
- Select the most common tag for each word
- How well would this method work?

Count transitions

- Use the Penn Treebank corpus and count how often each tag pair appears
- Prepare a tag transition matrix
- Compute transition probabilities from the counts
 - Just like bigrams for words, but now for tags
 - P(y1), P(y2|y1), P(y3|y2), P(y4|y3)

Score the tags for the sentence

Combine the transition probabilities:

```
P(y1) P(y2|y1) P(y3|y2) ...
```

with the tag-word pair observation probabilites:

```
P(x1|y1) P(x2|y2) P(x3|y3)
```

- to get the total tagging score:
- P(y1)P(x1|y1) P(y2|y1)P(x2|y2) P(y3|y2)P(x3|y3)
- Known as Hidden Markov Model (HMM) tagger
- Achieves about 96% accuracy

Hidden Markov model (HMM)

- Markov chain assumes that the next state (tag) depends only on the previous state (tag)
- The states (tags) are hidden, we only see the words
- The algorithm can compute the most likely state sequence given the seen words

Estimation of HMM parameters

- For corpora annotated with POS tags
 - Just count each tag observations P(y(t)|x(t)
 - And tag transitions P(y(t)|y(t-1))
- For unknown data use e.g. Viterbi to first estimate labels and then re-estimate parameters and iterate

Even better POS tags? Discriminative models

- Use previous words and tags as features
- The context is computed from a sliding window
- Train a classifier to predict the next tag
 - Jurafsky: Maximum entropy Markov model (MEMM)
 - Support vector machine (SVM)
 - Deep (feed-forward) neural network (DNN)
 - Conditional random field (CRF) is a bidirectional extension of MEMM that uses also tags on right

Recurrent neural network tagger

- No fixed-length context window
- Loop in the hidden layer adds an infinite memory
- Can provide word-level tags:
 - POS or named entity
- Or sentence-level tags:
 - Sentiment analysis
 - Topic or spam detection

5. Speech recognition

- Acoustic features
- Gaussian mixture models
- Hidden Markov models
- Deep neural networks for acoustic modeling
- Phonemes, pronunciation of words
- Decoding with language models
- End-to-end neural networks
- Encoder, Attention, Decoder

Speech Recognition Tasks

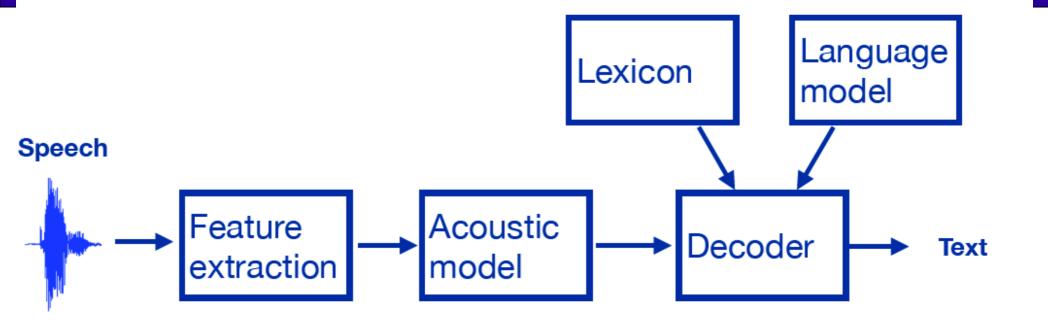
- Popular automatic speech recognition (ASR) application:
 - Keyword detection
 - Command-and-control
 - Search by speech
 - Dictation
 - Conversational interaction

Easier

Harde

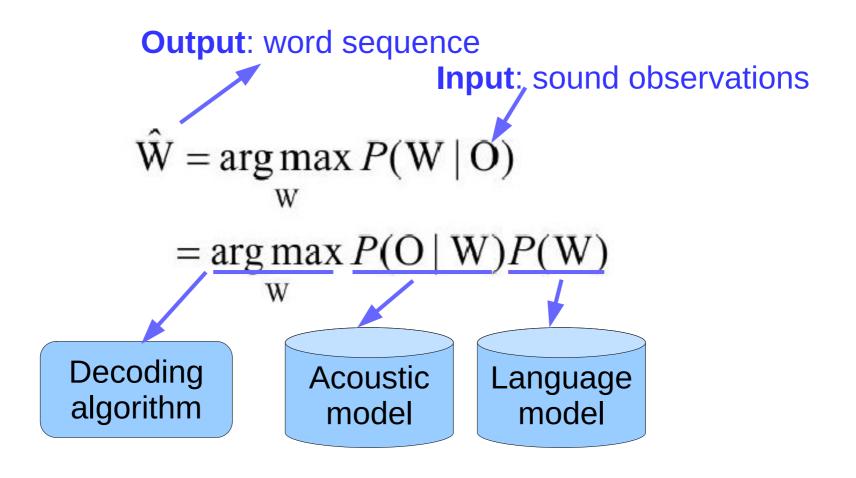
- Speech characteristics relating to the recognition task:
 - Isolated words vs. continuous speech
 - Speaker dependent vs. independent
 - Vocabulary size
 - Read speech, planned speech, conversational speech
 - Environmental noise
 - Space and distance to the microphone: close-talk, near-field, far-field
- Recognising everyday speech around us is challenging because it is speaker independent, conversational, large vocabulary, continuous speech, mixed in various environmental noises!

Traditional Components of an ASR system



- Task of an automatic speech recognition: Find the most likely word sequence given the observations (speech) and the models for acoustics and language
- Speech acoustics are matched with a statistical model
- Language model is also typically a statistical model (n-gram, RNN), but in simple tasks it can be a fixed grammar or just a vocabulary

Speech recognition: large probabilistic models



6. Chatbots and dialogue agents

- True chatbots vs task-oriented dialogue agents
- Text processing steps in chatbots
- Chatbot architectures
- Evaluation of chatbots

Definitions

Chatbot:

- A system that you can chat with
- Discussion topics can be fixed, but there is no specific goal except for fun and keeping company

Dialogue agent:

 A system that helps you to reach a specific goal by giving and collecting information by answering and asking questions

In popular media both are often called chatbots, but here only the first one.

Comparison of chatbots and dialogue agents: required operations

Chatbot

- Detect the discussion topic
- Ask typical questions
- React to human input, be coherent with previous turns
- World knowledge, persona

Dialogue agent

- Detect the user's intent
- Ask the required questions
- Parse and use human input

Chatbot architectures

Rule-based

- Pattern-action rules: Eliza (1966)
- Mental model: Parry (1971)

Corpus-based

- IR: Cleverbot
- DNN encoder-decoders etc

Turing's test (1950) for machine intelligence: Can you judge between a real human and a chatbot?

Evaluation of chatbots

Automatic evaluation

- Lack of proper evaluation data and metrics
- N-gram matching evaluations such as BLEU correlate poorly with human evaluation
 - Too many correct answers
 - Common words give a good score
- Perplexity measures predictability using a language model
 - Favours short, boring and repetitive answers
- ADEM classifier trained by human judgements
- Adversarial evaluation trained to distinguish human and machine responses

Human evaluation

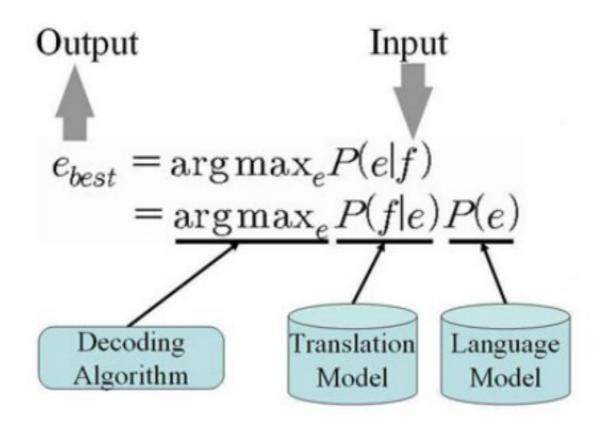
e.g. research challenges (competitions):

- ConvAl (NeurIPS)
- Dialog Systems
 Technology Challenge
 (DSTC7)
- Amazon Alexa prize
- Loebner Prize

7. Statistical machine translation

- Sentence, word and phrase alignment methods
- Re-ordering models
- Translation methods
- Full SMT systems

Machine translation: large probabilistic models



isoft.postech.ac.kr

Phrase-based SMT system

- Training data and data preprocessing
- Word aligment, phrase aligment
- Estimation of translation model scores
- Estimation of reordering model scores
- Estimation of language model scores
- Decoding algorithm and optimization of the model weights
- Translation, recasing, detokenization
- Evaluation, quality estimation
- Operational management

Sentence Alignment

- Simplifying assumptions: monotonic, break on paragraphs
- Gale&Church algorithm: model sentence lengths
- Other features: (automatic) dictionaries, cognates
- Dynamic programming (Similar to Viterbi)

Word Alignment

- The sentence alignment was the first step
- The word alignment takes into account
 - reordering (distortion)
 - fertility of the words
- Iterative Expectation-Maximization algorithm:
 - 1. Generate a word level alignment using estimated translation probabilities
 - 2. Estimate translation probabilities for word pairs from the alignment

Phrase alignment

- "Cut-and-paste" translation
- The distortion (reordering) probability typically penalizes more, if several words have to be reordered. However, usually larger multi-word chunks (subphrases) need to be moved
- Algorithms to learn a phrase translation table
- Re-ordering models

Translation methods

- Phrase-based beam-search decoder (e.g. Moses)
- Weighted finite state transducer (WFST) based translation models
- Extended word-level representations, e.g., hierarchical phrase-based models and factored translation models with words augmented with POS tags, lemmas, etc.
- Syntax-based translation models, which take syntax parse trees as input.
- Feature-based models, where translation is performed between features. E.g., discriminative training or exponential models over feature vectors

8. Morpheme-level processing

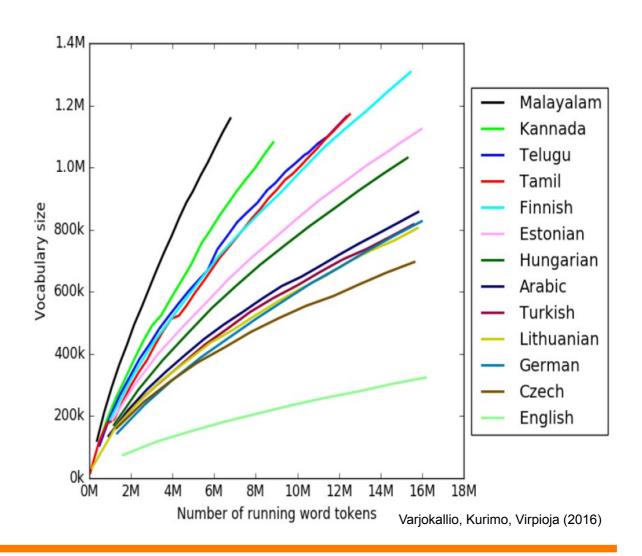
- Morphemes
 - morphological complexity, processes, models
- Morphological clustering
 - stemming, lemmatization
- Morphological analysis and generation
 - Finite-state methods, transducers
- Morphological segmentation
 - Zellig Harris's method
 - Morfessor

Types of morphemes

- Stem: a root, or compound of roots together with derivational affixes (buildings (building))
- Affix: a bound morpheme (does not occur by itself) that is attached before, after, or inside a root or stem
 - Prefix (un-happy)
 - Suffix (build-ing, happi-er)
 - Infix (abso-bloody-lutely)
 - •

Morphology affects the vocabulary size

Vocabulary size as a function of corpus size



Aalto University

Morphological processes

Inflection:

- cat cats
- slow slower
- find found

Derivation:

- build (V) building (N)
- do (V) doable (ADJ)
- short (ADJ) shorten (V)
- write rewrite
- do undo

Compounding:

- fireman (fire + man)
- hardwarè (hard + ware)

3 main approaches to deal with rich morphology

1. "Canonical" forms of a word

- Stemming is relatively simple and implementations are available, for English: e.g., Porter (1980), Snowball: http://snowball.tartarus.org
- Lemmatization is more complex and needs morphological analysis
- Applications: Information retrieval etc.

2. Morphological analysis

- Hand-crafted morphological analyzers/generators exist for many languages, e.g. Tähtien => tähti N Gen Pl
- Applications: Spell checking, syntactic parsers, machine translation, etc.

3. Segmentation into morphs

- Pragmatic approaches that work well enough in practice.
- Applications: Speech recognition, language modeling etc.

Limitations of morphological analysis

Out-of-vocabulary words

• epäjärjestelmällistyttämättömyydelläänsäkäänköhän ® epäjärjestelmällistyttämättömyydelläänsäkäänköhän+?

Ambiguous forms

sawsee+V+PAST or saw+N or saw+V+INF?

"I saw her yesterday."

SEE (verb)

meetingmeet+V+PROG or meeting+N?

Unupervised morphological segmentation

- Morphological segmentation
- Send a vocabulary of the language over a channel with limited bandwidth.
- compress the vocabulary.
- What regularities can we exploit?
- Use morphemes, the smallest meaning-bearing units of language?
- Morfessor method (Creutz & Lagus, 2002)

aamu aamua aamuaurinko aamukahvi aamuksi aamulehti aamulla aamun aamunaamasi aamupalalla aamupalan aamupostia aamupäivä aamupäivällä aamuyö aamuyöllä aamuyöstä

aamu aamu a aamu aurinko aamu kahvi aamu ksi aamu lehti aamu lla aamu n aamu naama si aamu pala lla aamu pala n aamu posti a aamu päivä aamu päivä 11ä aamu yö aamu yö llä aamu yö stä

Morfessor

- Instead of sending over the vocabulary as it is, we split it into two parts:
 - 1. a fairly compact lexicon of morphs: "aamu", "aurinko", "ksi", "lla", ...
 - 2. the word vocabulary expressed as sequences of morphs
- Since we are doing unsupervised learning, we do not know the correct answer.
- Our target is to minimize the combined code length of:
 - 1. the code length of the morph lexicon
 - 2. plus the code length of the word vocabulary expressed using the morph lexicon.

Improved Morfessor model

Software: http://morpho.aalto.fi

- A later context-sensitive version of Morfessor introduces three categories: stem (STM), prefix (PRE) and suffix (SUF) that each morph must belong to.
- A word form must have the structure of the following regular expression: (PRE* STM SUF*)+
- From the updated examples below, you can see that many issues have been fixed, but the model is still fairly crude; for instance, it suggests two consecutive s-suffixes in the word "abyss": aby s s.

absolute/STM
absolute/STM ly/SUF
absorb/STM
absorb/STM ing/SUF
absurd/STM
absurd/STM ity/SUF
abt/STM
abu/STM
abuse/STM
abuse/STM d/SUF
ab/STM users/STM
abuse/STM s/SUF
aby/STM s/SUF s/SUF
accent/STM

differ/STM
differ/STM ence/STM
differ/STM ence/STM s/SUF
different/STM
differential/STM
different/STM ly/SUF
differ/STM ing/SUF
difficult/STM
difficult/STM i/SUF es/SUF
difficult/STM y/SUF
dig/STM
digest/STM
digital/STM
diglipur/STM

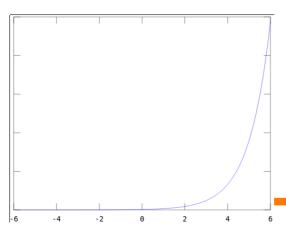
present/STM ed/SUF
present/STM ing/SUF
present/STM ly/SUF
present/STM s/SUF
preserv/STM e/SUF
<pre>preserv/STM e/SUF s/SUF</pre>
provide/STM s/SUF
provi/STM ding/STM
pull/STM ed/SUF
pull/STM er/SUF s/SUF
pull/STM ing/SUF
pump/STM
pump/STM ed/SUF
pump/STM ing/SUF

9. Neural Network LM

- Feed-Forward and Recurrent NNLM
- NNLM training
- Various architectures and modeling units
- Model combination

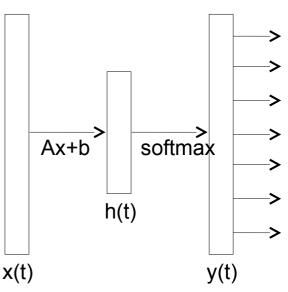
A linear bigram NN LM

- Outputs the probability of next word y(t) given the previous word x(t)
- Input layer maps the previous word as a vector x(t)
- Hidden layer has a linear transform h(t) = Ax(t) + b to compute a representation of linear distributional features
- Output layer maps the values by y(t) = softmax (h(t)) to range (0,1) that add up to 1
- Resembles a bigram Maximum entropy LM



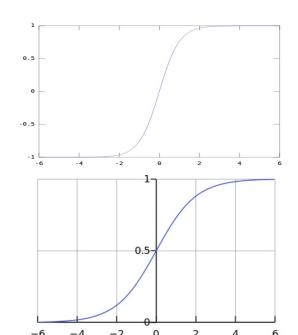
Softmax:

$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for j = 1, ..., K



A non-linear bigram NN LM

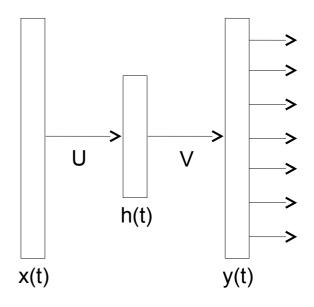
- The hidden layer h(t) includes a non-linear function h(t) = U(Ax(t) + b)
- Can learn more complex feature representations
- Common examples of non-linear functions U:



$$U(t) = tanh(t)$$

Sigmoid

$$\mathsf{U}\left(t
ight) = rac{1}{1+e^{-t}}$$

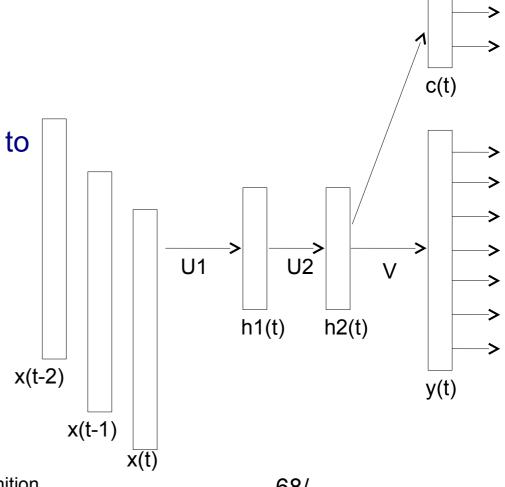


Common NN LM extensions

 Input layer is expanded over several previous words x(t-1), x(t-2), .. to learn richer representations

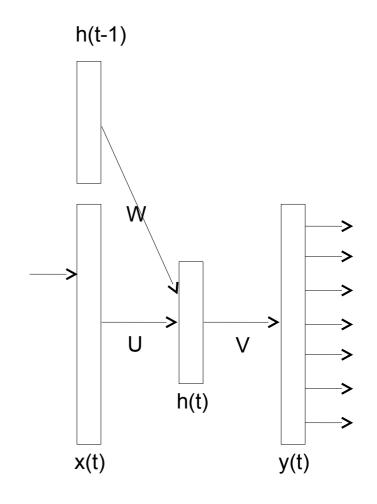
 Deep neural networks have several hidden layers h1, h2, .. to learn to represent information at several hierarchical levels

 Can be scaled to a very large vocabulary by training also a class-based output layer c(t)



Recurrent Neural Network (RNN) LM

- Looks like a bigram NNLM
- But, takes an additional input from the hidden layer of the previous time step
- Hidden layer becomes a compressed representation of the word history
- Can learn to represent unlimited memory, in theory
- Currently, the state-of-the-art in LMs



10. Neural machine translation

Neural machine translation

- Why NMT is the mainstream * approach?
- How are the current NMT systems build?
- What are the challenges and limitations for the systems?

Evaluation of machine translation

- How machine translation systems are evaluated manually?
- How do the standard automatic metrics work and how they can be improved?
- What are the limitations of the metrics?

Why NMT?

- Generalization
- Flexibility
- Integration

Building NMT

- Encoding variable-length sequences
- Sequence decoding
- Sequence-to-sequence models
- Recurrent neural networks
- Attention model, Transformer model
- Modeling units

Evaluation of machine translation

- Human evaluation
 - Assessment, ranking, agreement, efficiency
- Automatic evaluation
 - Challenges?
 - Edit distance metrics
 - Precision & recall, BLEU
 - Beyond word-based metrics
- Meta-evaluation
 - Evaluation of evaluation metrics

Lecture topics

- 1. 12 Jan Introduction & Project groups / Mikko Kurimo
- 2. 19 jan Statistical language models / Mikko Kurimo
- 3. 26 jan Word2vec / Tiina Lindh-Knuutila
- 4. 02 feb Sentence level processing / Mikko Kurimo
- 5. 09 feb Speech recognition / Janne Pylkkönen
- 6. 16 feb Chatbots and dialogue agents / Mikko Kurimo
- 7. 02 mar Statistical machine translation / Jaakko Väyrynen
- 8. 09 mar Morpheme-level processing / Mathias Creutz
- 9. 16 mar Neural language modeling and BERT / Mittul Singh
- 10. 23 mar Neural machine translation / Stig-Arne Grönroos
- 11. 30 mar Societal impacts and course conclusion / Krista Lagus, Mikko