CIV-E4100 Stability of Structures

Examination April $5^{\text {th }} 2018$

1. A straight beam is simply supported at one end, and supported by a rotational spring, with spring constant $c=\alpha E I / a$, at the other. Its length is a, and bending stiffness $E I$. Determine the
 critical compressive load of the beam, when $\alpha=1$. Show further that the result is covering the cases where the right hand end of the beam is simply supported and clamped by varying the coefficient α.

2. The cross-section of a beam is formed so that a plate of width $3 a$ is bent on the sides by an angle of α according to the figure. Determine the dependence of the coordinates of the shear center, and of the torsional and warping constants I_{t} and I_{ω} on the angle α. The wall thickness is constant t.
3. What is the critical length of a simply supported beam with respect to lateral buckling, when its cross-section is a narrow rectangle ($80 \mathrm{~mm} \times 1000 \mathrm{~mm}$) ? The Young's modulus and the shear modulus are $E=36 \mathrm{kN} / \mathrm{mm}^{2}$ and $G=15,4 \mathrm{kN} / \mathrm{mm}^{2}$ respectively. The loading due to the own weight is
 $g=24 \mathrm{kN} / \mathrm{mm}^{3}$.
4. The truss is constructed of two stiff bars $(E I, E A=\infty)$ which are hinged together. The truss is supported by an elastic horizontal spring with spring constant k. The truss is loaded by a concentrated load P on the top. Determine and draw all the equilibrium paths of this system. Determine further the type of the equilibrium on different paths.

CIV-E4100 Stability of Structures

Examination April 5 ${ }^{\text {th }} 2018$

Solutions:

1. Easiest way is to apply the slope-deflection method. Thus the
 equilibrium equation is $M_{21}+M_{2 s}=0 \Rightarrow\left(A_{21}^{0}+c\right) \varphi_{2}=0$.
$A_{21}^{o}+c=-\frac{1}{\Psi(k a)} \frac{3 E I}{a}+\alpha \frac{E I}{a}=0 \Rightarrow \Psi(k a)=\frac{3}{\alpha} . \operatorname{Jos} \Psi(k a)=\frac{3}{k a}\left(\frac{1}{k a}-\frac{1}{\tan k a}\right)$
$\Rightarrow \tan k a=\frac{\alpha k a}{\alpha+(k a)^{2}}$ If $\alpha=1 \Rightarrow \tan k a=\frac{k a}{1+(k a)^{2}} \Rightarrow k a=3.405 \Rightarrow P_{c r}=1.175 \frac{\pi^{2} E I}{a^{2}}$
If $\alpha=0 \Rightarrow \tan k a=0 \Rightarrow k a=n \pi \Rightarrow P_{c r}=\frac{\pi^{2} E I}{a^{2}}$. If $\alpha=\infty \Rightarrow \tan k a=k a \Rightarrow P_{c r}=2.046 \frac{\pi^{2} E I}{a^{2}}$.
From differential equation, the solution is $v(x)=C_{1} \sin k x+C_{2} \cos k x+C_{3} x+C_{4}$ where $k^{2}=P / E I$ and the boundary conditions $v(0)=v^{\prime \prime}(0)=v(a)=0, c v^{\prime}(a)=-E I v^{\prime \prime}(a)$ yielding $C_{2}=C_{4}=0$, $C_{3}=-C_{1} \sin k a / a$ and the condition $c(k \cos k a-\sin k a / a)=P \sin k a$, yielding the same result.
2. The shear center is located on the axis of symmetry, and also the origin of s-coordinate. The center of gravity is $y_{\mathrm{P}}=\frac{a}{3} \sin \alpha$ The sectorial coordinate with respect to the point P is

$\omega(s)= \pm \int_{0}^{s} \frac{a}{2} \sin \alpha \mathrm{~d} s= \pm \frac{a s}{2} \sin \alpha$ and $z(s)= \pm\left(\frac{a}{2}+s \cos \alpha\right)$.
Thus $I_{y}=\frac{a^{3} t}{12}+2\left(a t \frac{a^{2}}{4}(1+\cos \alpha)^{2}+\frac{(a \cos \alpha)^{3} t}{12 \cos \alpha}\right)=$
$=\frac{a^{3} t}{12}\left(7+12 \cos \alpha+8 \cos ^{2} \alpha\right)$ and
$I_{\omega z}=2 \int_{0}^{a} \frac{a s}{2} \sin \alpha\left(\frac{a}{2}+s \cos \alpha\right) t \mathrm{~d} s=\frac{a^{4} t}{12} \sin \alpha(3+4 \cos \alpha)$

The coordinate of the shear center is

$$
\begin{aligned}
& y_{c}=y_{\mathrm{P}}+\frac{I_{\omega z}}{I_{y}}=\frac{a}{3} \sin \alpha+\frac{a \sin \alpha(3+4 \cos \alpha)}{\left(7+12 \cos \alpha+8 \cos ^{2} \alpha\right)}=\frac{8 a \sin \alpha}{3} \frac{2+3 \cos \alpha+\cos ^{2} \alpha}{7+12 \cos \alpha+8 \cos ^{2} \alpha} \\
& \omega(s)=\left\{\begin{array}{l}
\pm\left(y_{c}-y_{\mathrm{P}}\right) s_{1}= \pm \frac{a \sin \alpha(3+4 \cos \alpha) s_{1}}{7+12 \cos \alpha+8 \cos ^{2} \alpha} \\
\mp\left[\left(y_{c}-y_{\mathrm{P}}\right)\left(\frac{a}{2}+s_{2} \cos \alpha\right)-\frac{a s_{2}}{2} \sin \alpha\right]=\mp \frac{a \sin \alpha}{2}\left(\frac{a(3+4 \cos \alpha)-s_{2}(7+6 \cos \alpha)}{7+12 \cos \alpha+8 \cos ^{2} \alpha}\right) \\
0 \leq s_{2} \leq \pm a
\end{array}\right.
\end{aligned}
$$

Warping constant is then $I_{\omega}=\int_{A} \omega^{2}(s) \mathrm{d} A=\frac{5}{12} a^{5} t \frac{\sin ^{2} \alpha}{7+12 \cos \alpha+8 \cos ^{2} \alpha}, I_{t}=a^{3} t$ (remains unchanged)
3. Let $L=2 \ell$, thus the bending moment due to the own weight is $M_{z}^{0}=\frac{q \ell^{2}}{2}\left(1-\left(\frac{x}{\ell}\right)^{2}\right)$, when the origin is located at the mid span. The energy integral is $\Pi=\int_{0}^{\ell}\left[E I_{y}\left(w^{\prime \prime}\right)^{2}+G I_{t}\left(\phi^{\prime}\right)^{2}+2\left(M_{z}^{0} \phi\right)^{\prime} w^{\prime}\right] \mathrm{d} x$ The beam is simply supported at each end when the approximations for the deflection and rotation can be of polynomial form, satisfying the boundary conditions $w^{\prime}(0)=w(\pm \ell)=\phi^{\prime}(0)=\phi(\pm \ell)=0$ and are $w=w_{0}\left(1-\left(\frac{X}{\ell}\right)^{2}\right)$ and $\phi=\phi_{0}\left(1-\left(\frac{X}{\ell}\right)^{2}\right)$. Trigonometric functions $w=w_{0} \cos \left(\frac{\pi X}{\ell}\right)$ and $\phi=\phi_{0} \cos \left(\frac{\pi X}{\ell}\right)$ give better approximation.

$$
\begin{aligned}
& \Pi=\int_{0}^{\ell}\left[E I_{y}\left(\frac{-2 w_{0}}{\ell^{2}}\right)^{2}+G I_{t}\left(\frac{-2 x \phi_{0}}{\ell^{2}}\right)^{2}+2\left(\frac{q \ell^{2}}{2} \phi_{0}\left(1-\left(\frac{x}{\ell}\right)^{2}\right)^{2}\right)^{\prime}\left(\frac{-2 x w_{0}}{\ell^{2}}\right)\right] \mathrm{d} x= \\
& =\frac{4 E I_{y}}{\ell^{3}} w_{0}^{2}+\frac{4 G I_{t}}{3 \ell} \phi_{0}^{2}+\frac{16 q \ell}{15} w_{0} \phi_{0} \Rightarrow\left\{\begin{array}{l}
\frac{\partial \Pi}{\partial w_{0}}=\frac{8 E I_{y}}{\ell^{3}} w_{0}+\frac{16 q \ell}{15} \phi_{0} \\
\frac{\partial \Pi}{\partial \phi_{0}}=\frac{8 G I_{t}}{3 \ell} \phi_{0}+\frac{16 q \ell}{15} w_{0}
\end{array}\right. \\
& {\left[\begin{array}{ll}
\frac{8 E I_{y}}{\ell^{3}} & \frac{16 q \ell}{15} \\
\frac{16 q \ell}{15} & \frac{8 G I_{t}}{3 \ell}
\end{array}\right]\left\{\begin{array}{l}
w_{0} \\
\phi_{0}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\} \Rightarrow \ell^{6}=\frac{75}{4} \frac{E I_{y} G I_{t}}{q^{2}} \Rightarrow L=2 \ell=33.1 \mathrm{~m}}
\end{aligned}
$$

4. Energy formulation $\Pi=U+V=\frac{1}{2} k(2 L)^{2}(\cos \theta-\cos \alpha)^{2}-P L(\sin \alpha-\sin \theta)$ Along the equilibrium path $\delta \Pi=\frac{\partial \Pi}{\partial \theta} \delta \theta=0 \Rightarrow-4 k L^{2} \sin \theta(\cos \theta-\cos \alpha)+P L \cos \theta=0$ From this we get the equilibrium path $\frac{P}{4 k L}=\tan \theta(\cos \theta-\cos \alpha)=\sin \theta-\tan \theta \cos \alpha$. The stability/instability is determined by the second derivative when we get $\delta^{2} \Pi=\frac{\partial^{2} \Pi}{\partial \theta^{2}} \delta^{2} \theta=0 \Rightarrow-4 k L^{2}\left(\cos ^{2} \theta-\cos \theta \cos \alpha-\sin ^{2} \theta\right)-P L \sin \theta$. Inserting here the
value of $P / 4 k L$ we get

$$
\frac{\partial^{2} \Pi}{\partial \theta^{2}}=-\cos ^{2} \theta+\frac{\cos \alpha}{\cos \theta}=\left\{\begin{array}{l}
>0 \text { when } \theta<-\arccos (\cos \alpha)^{1 / 3} \text { or } \theta>\arccos (\cos \alpha)^{1 / 3} \text { (stable) } \\
<0 \text { when }-\arccos (\cos \alpha)^{1 / 3}>\theta>\arccos (\cos \alpha)^{1 / 3}(\text { unstable }) \\
=0 \text { when } \theta=\arccos (\cos \alpha)^{1 / 3}(\text { indifferent })
\end{array}\right.
$$

