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LEARNING OUTCOMES

Students get an overall picture about prerequisites of the course, the roles of engineering

models in structure modelling, and finite element method in displacement analysis of

structures. The topics of week 2 are

   Structure modelling

  Structure analysis

  Mathematica language and the finite element solver of MEC-E8001
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EXPERIMENT VS. MODELLING

In design of a simple pendulum of a tall-case clock, the required information is the

dependency of period T on mass m , initial angle 0  from the stable equilibrium position,

acceleration by gravity g , and length L. The main options are

Straightforward experiment: Measurement of T on various physical structures

(characterized by m  and L ), with various initial angles 0 , and on various places on earth

(characterized  by g ).

Dimension analysis: Application of generic principles of physics to get 0/ ( )T L g f 

and measurement of /T g L   as the function of 0 .

Mathematical modelling: Application of simplifying assumptions, the basic laws of

mechanics, and rules of mathematics to get 2 /T L g .
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ERROR COMPONENTS

Measuring error u u : measured (u ) and exact (u )

Modeling error ˆu u : exact (u ) and exact to model (û ) 

Numerical error û u  : exact to model (û ) and numerical (u ) 

Error ˆ ˆ ˆ ˆu u u u u u u u u u u u u u              

An engineering model and, thereby, predictions by the model contain always error due to

the simplifications made. Therefore, in practice, numerical error of the same order in finding

the predictions (solution to the model) can be considered as acceptable.
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1.1 STRUCTURE MODELLING
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 MODELLING STEPS

 Crop: Decide the boundary of structure. Interaction with surroundings need to be

described in terms of known forces, moments, displacements, and rotations. All

uncertainties with this respect bring uncertainty to the model too.

 Idealize: Simplify the geometry and decide the model. Ignoring the details, not likely to

affect the outcome, may simplify analysis a lot.

  Parameterize: Assign symbols to geometric and material parameter of the idealized

structure. Measure or find the values needed in numerical calculations.

 Divide-and-rule: Represent a complex structure as a set of structural parts interacting

with each other through connection points and surroundings with interaction models.
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CROP-IDEALIZE-PARAMETERIZE

d 4.8 mm

h 0.156 m

l 0.4 m

w 0.243 m

L 0.44 m

W 0.295 m

t 1.5 cm

r 6.5 cm

t (Al)

h h

L

w

r

l

W

d (M6, Fe)
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DIVIDE-AND-RULE

The book-keeping with unique identifiers for the structural parts and connection points

allow a consistent naming of the kinematic and kinetic quantities of analysis.
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KINEMATIC AND KINETIC QUANTITIES

The primary quantities of analysis are displacements, rotations, forces and moments at the

connection points of the structural parts. The components of the vector quantities

(magnitude and direction) are taken to be positive in the directions of the coordinate axes.

Vector quantities are invariants in the sense x y z X Y Za a i a j a k a I a J a K     
     , and

can be transformed from one coordinate system to another using the property.

X

Y
Z
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INTERACTION MODELS

name symbol equations

force AF F
 

, AM M
 

fixed Au u  , A 
 

joint A 0u  , A 0M 


slider A 0n u   , A A( ) 0F F n n  
    , A 0M 



A

A
 n

A

θ

u

AF

M
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joint B Au u  , A 0M 


, B 0M 


fixed B Au u  , B A 
 

rigid B A A ABu u    
   , B A 

 

contact A 0n u   , A 0n F 
 , A A( )( ) 0n u n F  

  

Interaction models define a kinematic quantity (displacements and rotations) or its work

conjugate (forces and moments)!

B
A

A B

A B

A n
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NEWTON’s LAWS OF MOTION

I In an inertial frame of reference, an object either remains at rest or continues to move

at a constant velocity, unless acted upon by a force.

II The vector sum of the forces on an object is equal to the mass of that object multiplied

by the acceleration of the object (assuming that the mass is constant).

III When one body exerts a force on a second body, the second body simultaneously exerts

a force equal in magnitude and opposite in direction on the first body.

Newton’s laws in their original forms apply to particles only. The formulation for rigid

bodies and deformable bodies require slight modifications.
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MODELS FOR STRUCTURAL PARTS

Structural part model is a relationship between the displacements, rotations, forces,

moments at the connection points and external given forces (like weight) acting on the

structural parts. The relationship is. One may consider the relationship as the generalization

of the simple spring model affected by the assumptions used (beam, plate, solid model),

material model, the number of connection and additional points, and the shape of the

structural parts. Assuming a linear and stationary case

      F K u f 

nodal displacements

nodal forces

distributed forces

stiffness
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1.2 STRUCTURE ANALYSIS

  Idealize a complex structure as a set of structural parts, whose behavior can be

approximated by using the usual engineering models (bar, beam, plate, rigid body etc.).

  Write down the equilibrium equations at the connections (Newton III), the force-

displacement relationships of the structural parts, and constraints concerning the nodal

displacements (displacements and rotations should match).

  Solve the nodal displacements and rotations and the forces and moments acting on the

structural parts from the equation system.

  Determine the stress in the structural parts one-by-one according to the engineering

model used (optional step).
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EXAMPLE 1.1 A connector bar is welded at its ends to rigid walls. If the right end wall

displacement is a , determine the displacements of connection points 1, 2, and 3 and the

forces acting on structural parts 1 and 2. Cross sectional area A and Young’s modulus of the

material E are constants and the displacement force relationship of a bar is the same as that

of a spring with coefficient /k EA L .

Answer 1
1 0u  , 1 2

2 2
1
2

u u a  , 2
3u a , 1 2

1 2
1
2

F F ka   , 1 2
2 3

1
2

F F ka  .

a

L

X

LZ

1 321

EA EA

2
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 Let us omit the index for the component (x,y,z as unnecessary in this simplistic case) and

use the two-index notation e
iu  , e

iF  for the displacements and forces acting on the

structure. Superscript denotes the structural element and subscript the connection point.

The exploded structure with the displacements and forces is given by

 Interaction model between the bars and with the surroundings is of type “fixed” so
1
1 0u  , 1 2

2 2u u , and 2
3u a  (left edge welding, integrity of structure at the connection,

and displacement of the right end wall). The force constraints are due to Newton III
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which requires that 1
2F  and 2

2F  are equal in magnitude and opposite in signs i.e.
1 2
2 2 0F F  .

 As the structural parts can be considered as springs of coefficient /k EA L ,
1 1 1

1 1 2( )F k u u  , 2 1 1
1 2 1( )F k u u  , 2 2 2

2 2 3( )F k u u  , and 2 2 2
3 3 2( )F k u u  .

 Altogether, the 8 equations determining the 4 displacement components 1
1u , 1

2u , 2
2u , 2

3u

and the 4 force components 1
1F , 1

2F , 2
2F , 2

3F  are given by

1 1 1
1 1 2( )F k u u  , 2 1 1

1 2 1( )F k u u  , 2 2 2
2 2 3( )F k u u  , 2 2 2

3 3 2( )F k u u  .

1
1 0u  , 1 2

2 2u u , 2
3u a ,

1 2
2 2 0F F  .
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 The linear equation system can be solved, e.g., by considering the equations in a proper

order (to be discussed later in more detail), by Gauss elimination, by Mathematica, …

1
1 0u  , 1

2
1
2

u a , 2
2

1
2

u a , 2
3u a , 

1
1

1
2

F ka  , 1
2

1
2

F ka , 2
2

1
2

F ka  , 2
3

1
2

F ka . 

The example and exercise problems of MEC-8001 can be solved either by hand calculation

(above) or by representing the problem in the two-table form used by the FE-code of the

course.
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1.3 FINITE ELEMENT ANALYSIS

Displacement and stress analysis according to the linear elasticity theory may not entirely

explain the behavior of a structure!

w

l

h h h h

t

d
X

Y

Z
1

3

4

591317

8121620

7111519

F

26101418

buckling?

vibration?

strength?

displacement?
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WHY FINITE ELEMENTS ?

Design of machines and structures: Solution to stress or displacement by analytical

method is often impossible due to complex geometry, heterogeneous material etc.  Lack of

the “exact solution” to an “approximate problem” is not an issue in engineering work.

Finite element method is the standard of solid mechanics: Commercial codes in common

use are based on the finite element method. A graphical user interface may make living

easier, but a user should always understand what the problem is and in what sense it is

solved!

Finite element method has a strong theory: Although approximate solution is acceptable,

knowing nothing about the numerical error is not acceptable.
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NUMERICAL ERROR

Numerical method replaces the original problem (solution û ) by a numerically convenient

problem (solution u ). In FEM the error ˆe u u    can be made as small as wanted by

increasing the numerical work.

Error is usually of the form ˆ ee u u C n    , in which n  characterizes the size of

numerically convenient problem (typically the number of linear equations) and eC  and 

are positive constants.

Numerical work (number of arithmetic operations needed) depends on the details of the

recipe, but it grows typically at a polynomial rate ww C n   (hence ( / )1 /e w   )
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DISPLACEMENT FEA

  Model the structure as a collection of elements (solid, plate, beam). Derive the element

contributions int exteW W W     in terms of the nodal displacement and rotation

components of the structural coordinate system.

  Sum the element contributions to end up with the virtual work expression of the structure
e

e EW W  . Re-arrange to get the “standard” form T ( ) 0W    a Ka F .

  Use the principle of virtual work 0W   a  and the fundamental lemma of variation

calculus for n a   to deduce the linear equations 0 Ka F .

  Solve the equations for displacements and rotations a .
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EXAMPLE 1.2 A connector bar is welded at its ends to rigid walls. Assuming linearly

elastic behavior and the right end wall displacement a, determine the displacements of nodes

1, 2 and 3. Model the structure as a collection of two bar elements of cross-sectional area A

and Young’s modulus E.

Answer 2
1
2Xu a

a

X

L

1 321 2

LZ
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In finite element analysis, the conditions related with the integrity of the structure are

(usually) satisfied ‘a priori’ to eliminate the internal forces automatically. Structure needs

to modelled as a set of elements but exploded structure, with all kinematic and kinetic

quantities in it, is not needed. Let us follow the recipe:

 First, virtual work expressions of the elements in terms of the displacement components

in the structural coordinate system

T
1

2 2
2 2

0 01 1
1 1 X X

X X

EA EAW u u
u uL L

 


    
           

,

T
2 22

2 2
1 1

( )
0 1 1
X X

X X
u uEA EAW u u a

aL L


 
     

             
.
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 Second, virtual work expression of the structure in its “standard” form

1 2
2 2 2 2 2 2( ) (2 )X X X X X X

EA EA EAW W W u u u u a u u a
L L L

              .

 Third, principle of virtual work 0W   a  and the fundamental lemma of variation

calculus for n a   imply a linear equation to the unknown 2Xu and, thereby, the

solution

2(2 ) 0X
EA u a
L

   2
1
2Xu a . 

The recipe works no matter the complexity of the structure, analysis type, and method of

calculation (hand or FE-code) with slight modifications depending mainly on the analysis

type.
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VIBRATION FEA

  Model the structure as a collection of elements (solid, plate, beam). Derive the element

contributions int ext ineeW W W W       in terms of the nodal displacement and

rotation components of the structural coordinate system.

  Sum the element contributions to end up with the virtual work expression of the structure
e

e EW W  . Re-arrange to get T ( )W    a Ma Ka F .

  Use the principle of virtual work 0W   a  and the fundamental lemma of variation

calculus for n a   to deduce the ordinary differential equations 0  Ma Ka F .

  Solve the equations for the natural angular speeds of vibrations and the corresponding

modes ( , )i a  or for displacements and rotations as the functions of time ( )ta .
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EXAMPLE 1.3 A connector bar is welded at its ends to rigid walls. If the welding fails at

(time) 0t   when the right end wall displacement is a, determine the displacement of the

midpoint 2 as the function of time. Model the structure as a collection of two bar elements

of cross-sectional area A, Young’s modulus E, and density  .

Answer 2 22
1 6 1 6(1 2)cos( (5 3 2) ) ( 2 1)cos( (5 3) 2) )
4 7 4

(
7X

Ea t a t
L

u t
L 




    

a

X

L

1 321 2

LZ
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STABILITY FEA

  Model the structure as a collection of beam, plate, etc. elements. Derive the element

contributions int ext staeW W W W       in terms of the nodal displacement and

rotation components of the structural coordinate system.

  Sum the element contributions to end up with the virtual work expression of the structure
e

e EW W  . Re-arrange to get T ( )W   a R a  and use the principle of virtual

work 0W   a  and the fundamental lemma of variation calculus for n a   to

deduce the (non-linear) equilibrium equations ( ) 0R a .

  Find the values of the control parameter values and the corresponding modes ( , )ip a  for

non-unique solutions of the equilibrium equations. The smallest of the control parameter

values is the critical one.
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EXAMPLE 1.4 A connector bar is welded at its ends to rigid walls. Determine the

displacement a at which the buckling of structure occurs. Model the structure as a collection

of two beams of cross-section moments ,A I , Young’s modulus E  and shear modulus G.

Answer 20a
AL
I

 

a

X

L

1 321 2

LZ
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NON-LINEAR FEA

  Model the structure as a collection of beam, plate, etc. elements by considering the initial

geometry. Derive the element contributions int exteW W W     in terms of the nodal

displacement and rotation components of the structural coordinate system.

  Sum the element contributions to end up with the virtual work expression of the structure
e

e EW W  . Re-arrange to get T ( )W   a R a  and use the principle of virtual

work 0W   a  and the fundamental lemma of variation calculus for n a   to

deduce the equilibrium equations ( ) 0R a .

  Find a physically meaningful solution a  by using any of the standard numerical methods

for non-linear algebraic equation systems.
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EXAMPLE 1.5 A connector bar is welded at its ends to rigid walls. Determine the axial

displacement of midpoint 2 according to the large displacement theory when the right end

wall displacement is a. Model the structure as a collection of two bar elements of cross-

section area A and Young’s modulus E . Use the problem parameter values 1mL  ,
20.01mA  , 2100 N/mE  , and /10a L  .

Answer 2 0.05Xu    ( 2 0.05 1.31Xu i   , 2 0.05 1.31Xu i   )

a

X

L

1 321 2

LZ
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THERMO-MECHANICAL (MULTI-PHYSICS) FEA

  Model the structure as a collection of beam, plate, etc. elements. Derive the element

contributions eW and eP   in terms of nodal displacements/rotation components of the

structural coordinate system and temperature.

  Sum the element contributions to end up with the variational expression for the structure.

Re-arrange to get T T( , ) ( )W P      a R a b b R b  (  is a dimensionally correct

but otherwise arbitrary constant). Use the principle 0W P   ,  a b  and the

fundamental lemma of variation calculus to deduce ( , ) 0R a b  and ( ) 0R b .

  Solve the linear algebraic equations for the nodal displacements, rotations, and

temperatures (due to the one-sided coupling of the stationary problem, solving the

temperature first is always possible).
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EXAMPLE 1.6 A connector bar is welded at its ends to rigid walls. Determine the

stationary displacement 2Xu and temperature 2 at node 2, when the temperature of the

right end is increased to 2 and the right end wall displacement is a,  Model the structure

as a collection of two bar elements of cross-section area A, Young’s modulus E, thermal

conductivity k , and thermal expansion coefficient  . Stress in the bar vanishes, when the

temperature in the wall and bar is  and 0a  .

Answer 2
1 (4 )
4Xu a L    , 2

3
2

  

a

X

L

1 321 2

LZ
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MATHEMATICAL REPRESENTATIONS

 Small displacement analysis ( ) 0  R a Ka F

 Vibration analysis 0( ) 0 t t    R a Ma Ka F , 0 0t t a a  , 0 0t t a a

 Eigenfrequency analysis 2( , ) ( ) 0    R a M K a

 Stability analysis ( , ) ( ) 0p p   R a F K a

 Large displacement analysis ( ) 0R a

 Thermo-mechanical analysis ( , ) 0R a b
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PREREQUISITE; MATRIX ALGEBRA I

Addition  C A B ij ij ijC A B 

Multiplication (scalar) C A ij ijC A

Multiplication (matrix) C AB {1 }k nij ik kjC A B 

Unit matrix I 1ij i j   , 0ij i j  

Symmetric matrix TA A ij jiA A

Skew symmetric matrix T A A ij jiA A 

Positive definite matrix T 0x Ax 0 x
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PREREQUISITE; MATRIX ALGEBRA II

Transpose TA T
ij jiA A

Inverse 1 1  AA A A I 1
{1 }k n ik kj ijA A 

 

Derivative x /i ix dx dt

Linear equation system  Find x  such that Ax b

Eigenvalue problem Find all ( , ) x  such that ( ) 0 A I x

Eigenvalue composition 1A X X , where 1[ ]nX x x and 1[ ]ndiag  λ 

Matrix function If 1A X X , then 1( ) (f f A X X
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EXAMPLE 1.7 Determine the eigenvalues 1 , 2  and the corresponding eigenvectors 1x ,

2x  of the 2×2 matrix A . Write down also the eigenvalue decomposition 1A XλX  when

3 0
2 1

 
   

A .

Answer
1 0 3 0 1 0 3 0

1 1 0 1 1 1 2 1
        

               
A
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 In an eigenvalue problem of matrix A , the goal is to find all pairs ( , ) x  such that

( ) 0 A I x . As the equation is homogeneous, a non-zero solution to x requires that

the matrix is singular, i.e., det( ) 0 A I . Hence

3 0
det (3 )(1 ) 0

2 1


 


 
      

 1 3     or 2 1  .

 After finding the possible values of  , the corresponding vectors (eigenvectors) are

given by the original equation ( ) 0 A I x . Solution to x  is not unique and any non-

zero solution suffices (in practice one may choose one or more components of x  and

solve the equation for the remaining)

1  : 1

2

3 3 0
0

2 1 3
x
x

   
      

 1
1

2

1
1

x
x

   
    

  
x ,



1-39

2  : 1

2

3 1 0
0

2 1 1
x
x

   
      

 1
2

2

0
1

x
x

   
    

  
x .

 Matrix of eigenvalues λ , matrix of eigenvectors X  and its inverse 1X  are now

1

2

0 3 0
0 0 1



   

    
  

λ ,  1 2
1 0

1 1
 

   
 

X x x   and 1 1 0
1 1

  
  
 

X .

 Eigenvalue decomposition 1A XλX  is a very useful representation of the original

matrix (for example 1
1( ) [ ( ) ( )]nf diag f f  A X X )

1 0 3 0 1 0 3 0
1 1 0 1 1 1 2 1
        

               
A . 



1-40

1.4 FE-CODE OF MEC-E8001

“Structure is a collection of elements connected by nodes. Geometry, displacement,

temperature etc. of the structure are defined by the nodal values of coordinates, translation,

rotation, temperature etc. of which some are known and some unknown.”

DATA STRUCTURE

{ , }prb ele fun   where

1 2{ , , }ele prt prt     ........................................................................................... elements

1 2{ , , }fun val val     ................................................................................................ nodes
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Element

{ , , }prt typ pro geo   where

BAR | TORSION | BEAM | RIGID| |typ    ............................................................ model

1 2{ , , , }npro p p p   ..........................................................................................properties

1 1 2 1 2 3Point[{ }] | Line[{ , }] | Polygon[{ , , }] | |geo n n n n n n   ............................... geometry

Nodes

{ , , } |{ , , , }val crd trn rot crd trn rot tmp   where

{ , , }crd X Y Z  ................................................................................. structural coordinates

{ , , }X Y Ztrn u u u  .......................................................................... translation components

{ , , }X Y Zrot    ............................................................................... rotation components

tmp    .......................................................................................................... temperature
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DISPLACEMENT ANALYSIS

Constraint

1{JOINT,{}|{{ , , }},Point[{ }]}X Y Zu u u n  ...................................... displacement constraint

1 2{JOINT,{},Line[{ , }]}n n  ............................................................ displacement constraint

1{RIGID,{} |{{ , , },{ , , }},Point[{ }]}X Y Z X Y Zu u u n    ... displacement/rotation constraint

1 2{RIGID,{},Line[{ , }]}n n  ......................................................................... rigid constraint

1{SLIDER,{ , , },Point[{ }]}X Y Zn n n n  ........................................................ slider constraint

Force

1{FORCE,{ , , },Point[{ }]}X Y ZF F F n  ................................................................ point force

1{FORCE,{ , , , , , },Point[{ }]}X Y Z X Y ZF F F M M M n  .......................................... point load

1 2{FORCE,{ , , },Line[{ , }]}X Y Zf f f n n  .................................................... distributed force

1 2 3{FORCE,{ , , },Polygon[{ , , }]}X Y Zf f f n n n  ......................................... distributed force
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Beam model

1 2{BAR,{{ },{ },{ , , }},Line[{ , }]}X Y ZE A f f f n n  ..................................................bar mode

1 2{TORSION,{{ },{ },{{ , , }}},Line[{ , }]}X Y ZG J m m m n n  ............................  torsion mode

1 2{BEAM,{{ , },{ , , },{ , , }},Line[{ , }]}yy zz X Y ZE G A I I f f f n n  .................................... beam

1 2{BEAM,{{ , },{ , , ,{ , , }},{ , , }},Line[{ , }]}yy zz X Y Z X Y ZE G A I I j j j f f f n n  ............... beam

Plate model

1 2 3{PLANE,{{ , },{ },{ , , }},Polygon[{ , , }]}X Y ZE t f f f n n n  ........................ thin slab mode

1 2 3 4{PLANE,{{ , },{ },{ , , }},Polygon[{ , , , }]}X Y ZE t f f f n n n n  ................... thin slab mode

1 2 3{PLATE,{{ , },{ },{ , , }},Polygon[{ , , }]}X Y ZE t f f f n n n  ......................... bending mode

1 2 3{SHELL,{{ , },{ },{ , , }},Polygon[{ , , }]}X Y ZE t f f f n n n  ........................................ plate

Solid model

1 2 3 4{SOLID,{{ , },{ , , }},Tetrahedron[{ , , , }]}X Y ZE f f f n n n n  ................................... solid
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1 2 3 4 5 6 7 8{SOLID,{{ , },{ , , }},Hexahedron[{ , , , , , , , }]}X Y ZE f f f n n n n n n n n  ............... solid

1 2 3 4{SOLID,{{ , },{ , , , , , }},Tetrahedron[{ , , , }]}X Y Z X Y ZE f f f m m m n n n n  ............... solid

Operations
REFINE[ ]prb prb  ........................................................... refine structure representation

Out FORMATTED[ ]prb  ...................................................... display problem definition

Out STANDARDFORM[ ]prb  ..................................... display virtual work expression

sol SOLVE[{DISP}, ]  |  SOLVE[ ]prb prb   ...................................... solve the unknowns

VIBRATION ANALYSIS…

STABILITY ANALYSIS…

NON-LINEAR ANALYSIS…
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THERMOMECHANICAL ANALYSIS…
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EXAMPLE 1.1 A connector bar is welded at its ends to rigid walls. If the right end wall

displacement is a , determine the displacements of connection points 1, 2, and 3 and the

forces acting on structural parts 1 and 2. Cross sectional area A and Young’s modulus of the

material E are constants and the displacement force relationship of a bar is the same as that

of a spring with coefficient /k EA L .

Answer 1
1 0u  , 1 2

2 2
1
2

u u a  , 2
3u a , 1 2

1 2
1
2

F F ka   , 1 2
2 3

1
2

F F ka  .

a

L

X

LZ

1 321

EA EA

2
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 Problem description for the FE-solver uses duplicate node at the center point. Solution

to the problem uses the replacement rule concept of Mathematica.


