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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems related with displacement analysis:

O Engineering paradigm in FEM, elements and nodes, nodal quantities and sign

conventions.

O Displacement analysis of simple structures by using the virtual work expressions of the

elements.

O Calculations of the element contributions of force, solid, beam, and plate elements out

of virtual work density of the model and element approximation.
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BALANCE LAWS OF MECHANICS

Balance of mass (def. of a body or a material volume) Mass of a body is constant

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. €

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular
momentum within a material volume equals the external moment resultant acting on the

material volume. €
Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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PREREQUISITE: FUNDAMENTAL LEMMA OF VARIATION CALCULUS

The fundamental lemma of variation calculus in one form or another is an important tool in
FEM. The lemma tells how to deduce the equilibrium equations of a structure using a virtual

work expression and the principle of virtual work:

O uvelR - vu=0 Vv < u=0

O uveR" - viu=0 Vv = €«

I
o

O U,VECO(Q) : IQ uvdQ2=0 Vv < u(xy,...)=0 in Q

In mechanics of the materials, variable or function v is (usually) chosen as the kinematically

admissible variation of displacement Su.
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2.1 LINEAR ELASTICITY

Assuming equilibrium of a solid body (a set of particles) inside domain €2, the aim is to find

displacement G of the particles, when external forces or boundary conditions are changed

In some manner: -
0Q  1dA

Equilibrium equations V-6+f =0 in Q,

| 4

Hooke’s law & = [V-u+&) in Q,

1+v 1-2v

Boundary conditions ni-&=t or t=g on 0Q,

The balance law of angular momentum is satisfied ‘a priori’ by the form of Hooke’s law.
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PRINCIPLE OF VIRTUAL WORK

Principle of virtual work oW = oW ™ + sW ! =0 Vv su is a concise representation of the

boundary value problem. In terms of virtual work densities sw'™ , sw& , and sw&

. _ 0Q  1dA
Internal forces: oW '™ :IQ SWtdv

External forces: oW = IQ swetdV + Iag SWRdA

Although the two representations are equivalent, principle of virtual work combines the
equations in a way which is the key for multiple important applications in mechanics. Finite

element method is just one of them.
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DENSITY EXPRESSIONS

Virtual work densities (virtual work per unit volume or area) of the internal forces, inertia

forces, external volume forces, and external surface forces are

e N T e N (5 N T e N
Oy Oy V' xy Oxy
int
OW~ =—10y 1 10y r—1%yz( 10yz (»
0627 ) (022 (V) (O]
e N T e N e N T e N
OUy fy ouy | |ty
5\/\&6/Xt:<5uy> 4 fy>and 5WZXt:<5uy> <ty>.
ouz ) (T, ouz (17

The terms of the expressions consist of work conjugate pairs of kinematic and Kinetic
quantities.
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GENERALIZED HOOKE’S LAW

The model g(&,u) =0 for isotropic homogeneous material can be expressed, e.g., in its

compliance form as

fgxx\ 1 _ 1 _V _V_ KGXX\ f7/xy\ 1 KGXy\
Strain-stress: |y, p=—|-v 1 v =[E] "oy ¢ and {7y, =510 |
(€22 ) v 1 (Ozz ) [V 2x ) (O zx
(gxx“ (aux / ox | ry/xy“ (Ou, /oy +0uy, | OX)
Strain-displacement: | &y, r=<0uy /oy, and <y, r=q0uy/0z+0u, /oy
€, ) | OU, /0] (7 ) |OUy [ox+0uy oz

Above, E is the Young’s modulus, v the Poisson’s ratio, and G =E /(2+2v) the shear

modulus. Strain and stress are symmetric (the matrix of components is symmetric).
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2.2 DISPLACEMENT ANALYSIS

Model the structure as a collection of elements (solid, plate, beam). Derive the element
contributions oW & = SW ' + SW® in terms of the nodal displacement and rotation

components of the structural coordinate system.

Sum the element contributions to end up with the virtual work expression of the structure
oW = ZeeE SW €. Re-arrange to get the “standard” form SW = —5aT(Ka— F)=0.

Use the principle of virtual work 6W =0 Voa and the fundamental lemma of variation

calculus for sa e R" to deduce the linear equation system Ka—F =0.

Solve the equations for displacements and rotations a.
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FINITE ELEMENT ANALYSIS

A complex structure is modelled as a collection of structural parts (or elements) modelled

as rigid bodies, beams, plates, or solids. Elements are connected by nodes.
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KINEMATIC AND KINETIC QUANTITIES

The primary quantities of analysis are displacements, rotations, forces and moments at the
connection points of the structural parts. The components of the vector quantities

(magnitude and direction) are taken to be positive in the directions of the coordinate axes.

uY:FY ey,MY

i
}%f/z X _e' Ox, My

07, My uy, F,

Vector quantities are invariants in the sense a =a,i +a,j+a,k =ax I +ayJ+azK, and

can be transformed from one coordinate system to another using the property.
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SIGN CONVENTIONS AND NOTATIONS

Displacements, rotations, forces and moments are vector quantities whose components are
positive in the directions of the chosen coordinate axes. The convention may differ from

that used in mechanics of materials courses (be careful with that).

Displacement Force Rotation Moment
Material Uy, Uy, U, o Fy R 0y, 0y.0, My, My, M,
Structural Uy ,Uy,Uz Fv. R, F; Oy , 6,65 My,My,M5

The basis vectors of the material and structural systems are (i’,j,k) and (I,J,K),
respectively!
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e In a typical step of calculations, one needs to express a displacement or rotation
component of the material coordinate system. With the aid of the relationship (the matrix
elements are deduced using the relative orientations of the two coordinate systems) and

coordinate system invariance of vector a=a,i +a,j+a,k =ay I +ayJ +azK

() — . - - —_ ( = ) ( \T (= ) r \T ( — )
| Iy & 1z || ay | ax I
SJr=lix v Jz |RJ ¢t and <ay><j>:<aY><J>:>
k| [kx ky kz_ K] a, | k| laz ) K]
( h [ = N ( N [ _T ( h
X Ix W& Iz ||8x ax Ix N Iz X
@y er=|Ix Iy Jz|ya porqay (=|IJx W Iz | 3y, €
a‘Z _kx kY kZ U a.Z ) L aZ ) kx kY kZ i az

In many cases (like with planar problems) it is enough to deduce only some of the
components of the transformation matrix.
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INTERACTION MODELS

name symbol equations
F
— A _ o =
force \ =F, M, =M
MA%Q: A~ AT
fixed N L Up =0, Op =0
Q‘% o
. . o A _
JOlnt UAIO, MAZO
- Y.
slider N M-ty =0, Fo —(Fa-MM=0, M,y =0
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jOint :A& UBIUA,MAZO,MBZO
. B L
f|Xed A é, UB:UA’HBZHA
. A PAB _ I,
rigid B Up =U0a +O0p X Dpap, O =0
g — . B =Ua +0A*pPpB: U =UA

Interaction models define a kinematic quantity (displacements and rotations) or its work
conjugate (forces and moments). In practice, only the kinematic conditions need to be

Imposed explicitly.
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BEAMS, PLATES AND SOLIDS

Elements of the structure may be modelled as rigid bodies, beams, plates, or solids or their
simplified versions considering only the active loading modes, i.e., bar, torsion, and bending

modes for the beam model and thin slab and bending modes for the plate model:

Beam: OW = oWy, + OWigr + OWyypng + 5ny-bnd

Plate: oW = é\Nslb +5\and

The simple expressions above assume a clever positioning of material coordinate system
and, thereby, uncoupling of the loading modes. Then one may treat the modes in the same
manner as the elements of the structure (virtual work expression is obtained as the sum over

the elements and the loading modes of them).
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BAR MODE

(ot S ek
U [ “h -1 1|lun| 2 11

Above, f,, E,and A are assumed to be constants. In terms of the unit vector in the direction

of the x—axis u, =1 -U =iyUy +iyUy +iyU> and Su, =i -O0U =iy Suy +iySuy +izSUy.

2-17



BENDING MODE

Y
(Suy )’ 12 -6h|{-12 -6h](uy, 6
50 El,, | -6h 4h®i 6h 2n%||0 ~h
OW = —4 i > ( W 0 0 <-mX% >—-fz h< ------- )
Su,|[ "R |-12 6h i 12  6h ||u,| 12
06y | —6h 2h? | 6h 4h%||Oy2 Lh

Above, f,, Iy, and E are assumed to be constants. In terms of the basis vectors of the Xyz —
system u, =k -0, 6u, =K-8U, 6,=7-0,and 56, =]-50.
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FORCE ELEMENT

External point forces and moments are assumed to act on the joints. They are treated as
elements associated with one node only. Virtual work expression is usually simplest in the

structural coordinate system:

fguX\TfEX\ f&gx\Tfo
OW =<0Uy ¢ <K t+106y ¢+ { My ¢
louz ) |Ez) (o6z) Mz,

Above, Fy, R/, F, and My, My, M, are the given external force and moment
components. A rigid body can be modeled as a particle at the center of mass connected to

the other joints of the body by rigid links!
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EXAMPLE 2.1 A bar truss is loaded by a point force having magnitude F as shown in the
figure. Determine the nodal displacements. Cross-sectional area of bar 1-2 is A and that for

bar 3-2 +/8A. Young’s modulus is E and weight is omitted.

u -1
Answer X1 E
U1 EA|?2
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For element 1, the relationships between the nodal displacement components in the
material and structural systems are u,; =0 and u,, = uy,. Element contribution SWto

the virtual work expression of the structure is

T
0 1 —1]( 0 (0
oWt =— (E‘ - )=—E\Ux25ux2-
5Ux2 L|1-1 1 Uy 2 0 L

For element 2, u,3 =0 and Uy, = (Uyx o +Uz>5) /\/2.. Element contribution takes the form

e B TS -
- \/E 5Ux2+5U22 \/EL -1 1 \/E Uy o +Uz»o 0

EA
SW 2 =~ (0Uxz +0Uzp)(Ux 2 +Uz2).

Virtual work expression of the point force follows from the definition of work
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éVVB :5U22F.

e Virtual work expression of the structure is obtained as the sum of the element

contributions. Then

EA EA
oW = —T5Ux 2Ux 2 —T(5Ux2 +0Uz5)(Ux o +Uzo) +0UzF <

T
o 2 1

oW =— X2 (E‘ X2 0 ). “standard” form
5UZZ L1 1 Uz 2 F

e Using the principle of virtual work oW =0 ¥ ¢a and the fundamental lemma of variation

calculus
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£ 1 o s B S i o= )

e The Mathematica description of the problem and solution are given by

model properties geometry
1 BAR {{E}, {A}} Line[ {1, 2}]
2 | BAR [{E}, {22 A}} Line[{3, 2}]
3 FORCE (0,0, F} Point[{2}]
{X:Y:Z} {UX:UYJUZ} {@X:@Y:@Z}
1 {0, 0, L} {0, 0, 0} {0, 0, 0}
2 {L, 0, L} {uxX[2], 0, uzZ[2]} {0, 0, 0}
3 {0, 90, 0} {0, 0, 0} {0, 0, 0}

FL 2F L
{uxm S, uZ[2] - —}
AT AT

2-23



EXAMPLE 2.2 Consider the beam truss shown. Determine the displacements and rotations
of nodes 2 and 4. Assume that the beams are rigid in the axial directions so that the axial

strain vanishes. Cross-sections and lengths are the same and Young’s modulus E is

constant.
X
e —— X ¢
@ =
X z—]?:
Z N -
©  oF
3 fL? 19 L3 5 fL3
Answer Uy, =Uyg=———, =" _— and - - =
x2=Uxa =10 2= 008 B %4=1008 EI
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Only the bending in XZ-plane needs to be accounted for. The displacement and rotation
components of the structure are uy,, &, and &,. As the axial strain of beam 2

vanishes, axial displacements satisfy uy 4, =uy 5.

(0 VT 12 6L {-12 —-6L|¢ 0 )
0 El|-6L 4L | 6L 2L%]|| O
oWh=—J > 3 > U, =Uy o, Byo =
<5Ux2 (L3 12 6L 12 6L UXZ) (Uz2 X2 %y2 & 2)
|08 7 | 6L 2L° | 6L 4L® |(&2)
(0 VT [ 12 6L {-12 —-6L]¢ 0 )
56| EIl-6L 412 6L 2L%||&,
oW? =41zl . > 6, = , Oy =
170 (L3 B VI AT il s ) (Byo =62, 6ys=64)
(08 4 6L 2% | 6L 4L° | (&4
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T [12 -6L|-12 —6L7 (.. (6 )

—oUyx 7 —Uy 2
S5 6L 412 6L 212 L
SW3 = — &4 > (EI 3 %4 >—E< -------- *) (Uyq =—Ux o)
0 13112 6L | 12 6L 0 12 6
. 0 6L 21% 6L 42|l O L)

e Virtual work expression of the structure is

r5UX2\T EI _24 6L 6L_ ruxz\ fL (_6\
OW =W+ W2+ W3 =—{ 56/, | (F 6L 8L% 2L° X &, =151 0 )
|08 4 | 6L 21° 8L |l&a) -LJ

e Principle of virtual work oW =0 Va and the fundamental lemma of variation calculus

give
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EI _24 6L 6L } ruxzw fL (—6\ ruXZ\ fL3 (—27L\
= |6L 8L 2L%|{G,'+——10+t=0 & {8, = I 19 |\ €&
13 > 12 %[~ 1008El

6L 21° 8L (%4 L) (&) S

In the Mathematica code calculation, horizontal displacements of nodes 2 and 4 are

forced to be same (uy 4 = Uy ,)

model properties geometry
1 BEAM {{E, G}, {A, I, I}} Line[{1, 2}]
2 BEAM {{E, G}, {A, I, I}} Line[{2, 4}]
3 BEAM {{E, G}, {A, I, T}, {-f,0,0}} Line[ {4, 3}]
{XJYJZ} {UXJUYJUZ} {eXJeYJeZ}
1 [0, 0, L} {0, 9, O} [0, 9, 0}
2 {0, 0, 0} {uxX[2], @, 0} {0, 6Y[2], 0}
3 {L, 9, L} {0, 0, 0} {0, 0, 0}
4 {L, 0, 0} {uxX[(2], @, 0} {0, 6Y[4], 0}
3fL? 19 f L3 5f L3
{uxme— , 6Y[2] - , OY[4] - }
112 E T 1008 E T 1008 E I
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2.3 ELEMENT CONTRIBUTIONS

Virtual work expressions for the solid, beam, plate elements combine virtual work densities

representing the model and a case dependent approximation. To derive the expression for
an element:

O Start with the virtual work densities Swiht and Sw&® of the formulae collection (if not

available there, derive the expression in the manner discussed in MEC-E1050).

O Represent the unknown functions by interpolation of the nodal displacement and

rotations (see formulae collection). Substitute the approximations into the density

expressions.
O Integrate the virtual work density over the domain occupied by the element to get oW .
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ELEMENT APPROXIMATION

Approximation of a function is a polynomial interpolant of the nodal displacement and
rotations in terms of shape functions. In displacement analysis, shape functions depend on

(X,Y,2) and the nodal values are parameters to be evaluated by FEM.

Approximation u=N'a always of the same form!
Shape functions N ={N;(X,y,z) No(x,y,z) ... Ny(XV, )}
Parameters a={a; a, .. ay}

Nodal parameters ae{ux,uy,uz,HX,Hy,Hz} may be just displacement or rotation

components or a mixture of them (as with the Bernoulli beam model).
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ELEMENT GEOMETRY
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QUADRATIC SHAPE FUNCTIONS

Piecewise quadratic approximation is continuous in Q and second order polynomial inside

the elements. In a typical element Q° U
-~ ?/lz
e
. . T “\s\ ?/l3
Approximation: u=N"a RN
T s * *
Nodal values: a={u; u, us} 1 5 3
(N]  [1-3&+2£7
. X XN R4
Shape functions: N=<N, =49 4£(1-¢&) +, §=E AN N3 SN
/l \\\\ /,,, \\\
\N3) L g(zg_l) ) ‘:- \\,‘\/’ \.

- -~ -
e m e a==" S

More nodes can be used to generate higher order approximations!
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LINEAR SHAPE FUNCTIONS

A piecewise linear approximation is continuous in Q and linear inside each element of

triangle shape. In a typical element

Approximation: u= N'a

Nodal values: a={u; u, us}

Shape functions: N=| X X, X3 | {X¢
Y1 Y2 Y3] LY

Triangle element is the simplest element in two dimensions. Division of any 2D domain into

triangles is always possible, which makes the element quite useful.
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CUBIC SHAPE FUNCTIONS

Piecewise cubic approximation has continuous derivatives up to the first order in QQ and is

a third order polynomial inside the elements.

Approximation: u=N'"a U1 u "~ J
Sso 20
‘Uzl
odal values: a={u u/dx), iu u/ dx
Nodal val {up (du/dx); {uy, (du/dx)s,}
1 2
: , v e--_ N Noo -
(Ny|  |@-8)7@+2¢)
N \v/
_ N h(l— £)2 11 7
Shape functions: N=dttl_, (d-o)¢ > e LT T poY
Nao | (3-2¢)¢2 e —
N > . TTT===77
O U 1 (R

In xz —plane bending u =u,, du/dx =-6, and in Xy —plane bending u=uy, du/dx =6,.
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SOLID MODEL

The model does not contain assumptions in addition to those of linear elasticity theory.

(osulox)'  [aulex) (osuloy+asviox)'  (ouldy+oviox)
owiit = —Jasvioy ! [EJavidys—Lasvioz+aswloys Glovioz+ow/ oy,
|0ow /[ 0z | ow/oz| |dow/ox+oouloz]  |ow/ox+ouloz
(su)' [f, (su)' [t (1 oy
owal =1 ovy {f,rand owsy ={ov; qt,rinwhich [E]=E|—v 1 -v
oW | f, oW t, | v —v 1]

The solution domain can be represented, e.g, by tetrahedron elements with linear

interpolation of the displacement components u(X,y, z), v(X,Y,z), and w(X, Y, 2)
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EXAMPLE 2.3 A tetrahedron of edge length L, density p, and elastic properties E and v

Is subjected to its own weight on a horizontal floor. Calculate the displacement u, 5 of node
with one tetrahedron element and linear approximation. Assume that uy ; =uy3; =0, and

that the bottom surface is fixed.

24 52
nswer: uz3:—%’0gEL L : 2v
—V

BRI et
; o

O R
e i e
L R e

e
R e o R S S
HEEE s
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Linear shape functions can be deduced directly from the figure Ny =x/L, N, =y/L,
Ny=z/L,and N, =1-x/L-y/L-z/L.However, only the shape function of node 3
IS needed as the other nodes are fixed. Approximations to the displacement components
are

o

OX

u=0, v=0, and W=Euz3, giving
Z

:a—\N:O and —:_UZB'
oy L

When the approximation is substituted there, the virtual work densities of the internal

and external forces simplify to

(0" (1-v v v [ 0] s
5\/\&I/nt:—< 0 ; 5 E v 1-v v KO0 >:(1_E)(1'1_V2) )UZB 2“23
— +1v)1-2v
5,4 L“(1+v)(1 21/)_ L v 1ov | |ugs L
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su)T(f,] (0 ) [0)
5\/\/6Xt:<5v> 1fyp=9 0 ¢ E< 0 >:—Epg5uz3.
ow) | f,] dUzz)  [-p9)

e Virtual work expressions are obtained as integrals of densities over the volume:

- - - 3 _
oW = | switdy —swit £ -1 1-v ¢
Q 6 6(1+v)1-2v)

Luz30Uzs,

3
SW X = jQ SwEdV = —i PYSU 3.

e Finally, principle of virtual work SW =0 V&a with oW =oW'™ +sW® and the

fundamental lemma of variation calculus imply

2-37



_ 1pglfl-v-2v°

Uyq =— &
237 4 B 1-v

For the Mathematica code of the course, the problem description is given by

| model properties geometry
1 | SOLID {{E, v}, {0, 0, -g0}} Tetrahedron[ {1, 2, 3, 4} ]

{X:Y:Z} {UX:UY:UZ} {Qx,@v:@z}
1 {L, 9, 0} {0, 9, 0} {0, 0, 0}
2 {0, L, 0} {0, 0, 0} {0, 0, 0}
3 {0, 0, L} {uX[3], uY[3],uZ[3]} {0, 9, 0}
4 {0, 0, 0} {0, 0, 0} {0, 0, 0}

gL2<—1+v+2v2)p
4F (-1+v) }

{uxm 50, uY[3] -0, uz[3] > -
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BEAM MODEL

In the beam model, the displacement and rotation components to be interpolated on a line

segment of x—axis are u(x), v(x), w(x), and ¢(x). Virtual work densities are given by

(dou/dx )" [ A -s, -s,]( duf/dx
St =1 d%sv i L E|-S, 1, Iy |{d2/dd >—%Glp%,
d%ow/dx?]  |=Sy 1y, ly |[d®w/dx?)

- NT (¢ ) - 3 (

ou fy oP my
oWl =16v <y tri-dow/dxy {my .
owj) | f,| (dévidx | |m,

J

In what follows, the first and cross moments of the cross-section are assumed to vanish to

disconnect the bar, torsion, and bending modes of the beam (S, =S, =1, =0).
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BAR MODE

Assuming a linear interpolation to u(x) in terms of the end point displacements u,q, Uy»,

virtual work expressions of the internal and external forces take the forms
T

swint — _ ouy | EA| 1 —1|juyg

SUyr| h|-1 1 /||Uy]|

T
é\/\/ext: 5UX1 M 1 .
5UX2 2 |1

Above, f,, E, and A are assumed to be constants. The relationship between the axial

displacement component and the displacement components in the structural coordinate

systemis Uy, =1 -0 =iyUy +iyUy +izU5.
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e First, element interpolant u = NTa and its variation 5u=N'sa=s5a"N are substituted

into the virtual work expression to get (here Q=]0,h[ and dQ = dx)

h
oW = | AU AN s i =
0 dx dx

.
—j saT N g N~ dx+jh sa'Nf, dx <
dx dx 0

h NT
dN dd

SW =—5a (j o

h
- jo Nf,dx). €

e If the interpolant is taken to be linear, shape functions and the nodal values are given by

h— -1
N=1 X , iN=1 a= i “and Sa = olx
h X dx hl1 Uyo 5UX2
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e If Young’s modulus E, cross-sectional area A, and the distributed force f, are constants,
Integration over the element domain gives (the expressions of the shape functions need

to be substituted now)
T
o) -1
e K LR
§UX2 1 UX2
Suyi )" 1 -1 1
OUy» h|{-1 1 ||Ugp 2 |1

Derivation out of virtual work densities works also when Young’s modulus E, cross-

h 1|h-X
jo h{ ) }fxdx) N

sectional area A, and the distributed force f, are not constants. Also, approximation to axial

displacement u(x) may be chosen in various ways.
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TORSION MODE

Assuming a linear interpolation to ¢#(x) in terms of the end point rotations 6,, and 6,,,

virtual work expressions of the internal and external forces take the forms
- 5041 Gl,[1 -1](6
SW Int _ X1l ~'p x1
{59x2} h {_1 1 :HQXZ}’
T
Swext = 06y m_xh 1
00,5 2 1]

Above, m,, E, and I, are assumed to be constants. The relationship between the axial

rotation component and the rotation components in the structural coordinate system is
HX =T-U:iX¢9X +iy® +izez.
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BENDING MODE (xz-plane)

Assuming a cubic approximation to w(x) in terms of the end point displacements u,;, u,,
and rotations 6\, and 6y, virtual work expressions of the internal and external forces

(Suq )T 12 6h-12 —6h|[u,,’
syint 9% | Ely|-6h 4h® eh 2n?)|On|
Su,, [ h3 |-12 6h i 12 6h ||uy
(002 _6h 2h? | 6h 4h?||fy2] ;
I
oUyz 12 | 6 . | u
00y | Uy vl
Z <t

Above, f,, |y, and E are assumed to be constants.
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BENDING MODE (xy-plane)

Assuming a cubic approximation to v(x) in terms of point displacements uy, Uy, and

rotations &,; and 6, ,, virtual work expressions of the internal and external forces

(Suy; 12 6h {12 6h

Sy int _ ] | Ely 6h 4h?  —6h 2h?
SUyo h® |-12 —6h | 12 —6h
56,5 | | 6h  2h®  —6h 4h?
(§uy1\ (6 ]

é\/\/ext ) 5921 X fy h h [
§Uy2 12 6
50,,] O]

Above, fy , I, and E are assumed to be constants.
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EXAMPLE 2.4 The Bernoulli beam of the figure is loaded by its own weight f = pgA and
a point force F acting on the right end. Determine the displacement and rotation of the right
end with the Mathematica code of MEC-E8001. The x-axis of the material coordinate
system is placed at the geometric centroid of the rectangle cross-section. Beam cross-section

propertiesA, 1y, 1,,, and material properties E, p are constants.

pgA

AL F

_ 1 pgAl’
48 El,,

Answer: szZ% and & -
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e Bernoulli beam element of the Mathematica code requires the orientation of the y —axis
unless y—axis and Y —axis are aligned. Orientation is given by additional parameter

defining the components of j in the structural coordinate system:

| model properties geometry
1 BEAM ({E, G}, {A, Iyy, Izz, {0,0,1}}, {0, f, 0}} Line[ {1, 2}]
2 FORCE {-F, 9, 0) Point[{2}]
{X,Y,Z} {ux,uy,uz} {Ox,6y,67}
1 {0, 0, 0} {0, 0, 0} {0, 0, 0}
2 {L, 9, 0} {uX[2], 0, 0} {0, 6Y[2], O}

FL £1°
{uxtzje_—,eﬂu_} }
AE A48E 127
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PLATE MODEL

Virtual work densities combine the plane-stress and plate bending modes. Assuming that

the material coordinate system is placed at the geometric centroid

\ f (A2 2
( asuléx T ou | &x 0“ oW/ OX

| 3
swilt—_l  asviey b HELY  aviey =] o®swray? | ;—Z[E]Gx
(00U [0y + 06V 0oX ouloy+oviox] |282s5w/ OXOY
( 2 2 ) - \T ( A . \T e p
0" / X oul’ |f, oul’ [ty
x1 0°wloy® b, swyl=1svy {f,f, and SwES =1dvy {ty .
26°W | OXy OW] | f, ) OW) |t,

Approximation to the displacement components u(X,y), v(x,y), w(x,y) should be

continuous and W(X, y) should also have continuous derivatives at the element interfaces.
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EXAMPLE 2.5. Consider the thin triangular structure shown. Young’s modulus E,
Poisson’s ratio v, and thickness t are constants. Distributed external force vanishes. Assume
plane-stress conditions, XY —plane deformation and determine the displacement of node 1

when the force components acting on the node are as shown in the figure.

y,Y

y —2v) [1
Answer: 19Xt __F @+v)d-2v)
Uy1 Et 1—v 1
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e Nodes 2 are 3 are fixed and the non-zero displacement components are uyq and uy.
Linear shape functions N;=(L—x-y)/L, N, =x/L and N;=y/L are easy to

deduce from the figure. Therefore

u =|_—X—y Ux1 N ou | Ox =_1 Ux1 and 8u/8y =_£ Ux1
v L Uy 1 ov | Ox L | uyq ov | oy L|uyq |

e Virtual work density of internal forces is given by

N T - T

(

5“)(1 1 v 0 Ux1
int 1 tE
OWH = —- 5UY1 > ?1_]/2 v 1 0 < qu >
\é‘qu-i_é‘qu, _O 0 (1—1/)/2_ \qu+qu,

e Integration over the triangular domain gives (integrand is constant)

2-50



5T - -

(

5“)(1 1 v 0 Uy 1
1 1 tE
OW ™ = —< 5UY1 > E 5 v 1 0 < qu > e
\é‘qu_i_é‘qu, 1-v _O 0 (1—V)/2_ kqu+qu,

é\/\/]':— 5Ux1 Tl tE 3—-v 1+v Uy 1 |
5UY1 41—1/2 1+v 3—-v Uy1
e Virtual work expression for the point forces follows from the definition of work
T
ou —F
SW2 = X1 |
5UY1 —F

e Principle of virtual work in the form oW = SW!+6W? =0 Véda and the fundamental

lemma of variation calculus give
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-
ou 3—v 1+v||u 1 ou
SW = _J o X1 1tk X1, e y=0 vioUxil
5UY1 41—1/2 1+v 3-v Uy1 1 5UY1
3-v 1 u 1
1k pemvimviial et o

41-1/2 1+v 3-v qu 1

lof ey €
Uy 1 tE 1

The point forces acting on a thin slab should be considered as “equivalent nodal forces” i.e.

just representations of tractions acting on some part of the boundary. Under the action of an
actual point force, displacement becomes non-bounded. In practice, numerical solution to

the displacement at the point of action increases when the mesh is refined.
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e In Mathematica code of the course, the problem description is given by

model properties geometry
1 PLANE {{E, v}, {t}} Polygon[{1, 2, 3}]
2 FORCE {-F, -F, 0} Point [{1}]

{X)YJZ} {UXJUYJUZ} {QXJQYJQZ}
1 {0, 0, 0} {uX[1], uY[1], @} {0, 0, 0}
2 {L, 0, 0} {0, 0, O} {0, 0, 0}
3 {0, L, 0} {6, 0, 0} {0, 0, 0}

F(-1+v) (1+V) F-Fv?
{uXLlje ,uY[1] - - }
tE tE
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EXAMPLE 2.6 Consider a plate strip loaded by pressure p acting on the upper surface.
Determine the deflection w at the center point according to the Kirchhoff model. Thickness,
length and width of the plate are t, L, and H, respectively. Young’s modulus E, and

Poisson’s ratio v are constants. Use the one parameter approximation
w(x) =ag(L—x/L)*(x/ L)%,

2,

Answer: w=—i(k)3ﬂ(1—v2)
32't" E
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Approximation satisfies the displacement boundary conditions “a priori’ and contains a
free parameter a, (not associated with any node) to be solved by using the principle of
virtual work:

0°W 2 X X 82W 0°W

X\2,X\2 2
— — — - = — 11 —-—H— - O
W ao (1 |_) (L) — X2 a.O L2 [l 6 ] + 6(|_) ] and 5 = y

When the approximation is substituted there, virtual work densities (formulae collection)

simplify to

Et3
31-v )L4

W' =—-agdag L - 6— +6(> )]
ext__ X2, X\2
Swg =—6ag(1 L) (L) p

2-55



e Integrations over the domain Q =]0,L[x]0,H[ give the virtual works of internal and

external forces

1 HEt
15131 -v?)

swint = o SWItdQ = —ag5a,

1
W = [ swSdQ =—5ag— pLH.
_[Q Q 03, P
e Principle of virtual work sW = W™ + sW® =0 V§a and the fundamental lemma of

variation calculus give finally vo&a,

1 HEt® 1 1 pL?
15|_3(1_V2)a0 30

OW =53
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The problem can be solved numerically also by using the Reissner-Mindlin plate model
and plate bending element of the Mathematica code. For example, assuming parameter
values p(L/t)*/E =10, v=0.33, H/L=0.3, and t/L=0.01 (a thin plate), the one
parameter approximation to displacement gives w/L =-0.278 at the centerpoint
whereas the solution on a regular (rough) mesh of about 300 unknown
displacement/rotation components gives w/L=-0.278 (a fine mesh gives
w/ L =-0.289)

0.30
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0.20 |
0.15f
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0.05
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