
MEC-E8001 Finite Element Analysis, week 3/2022

1. Determine the nodal displacements when force F is acting
on the structure as shown. The cross-sectional area of bars
1,2,3 and 4 is A and the cross-sectional area of bars 5 and
6 is 2 2A . Young’s modulus of the material is E. Use the
principle of virtual work.

 Answer 2
1
3X

FLu
EA

  , 2
2
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FLu
EA

 

2. Joint between the beams of the figure is frictionless.
Force F acting on the joint and displacement of the beam
are restricted to the XZ-plane. Determine the rotations
and displacement at the joint. Use two beam elements.
The second moment of area I and Young’s modulus of
the material E are constants.
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3
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2

3
2
9Y
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EI

   (long).

3. Determine the rotation 2Y  at node 2 of the structure loaded by
a point moment (magnitude M) acting on node 2. Use beam ele-
ments (1) and (2) of equal length and a point moment element
(3). Assume that the beams are inextensible in the axial direc-
tions. Young’s modulus of material E and the second moment of
area I  are constants.

Answer 2
1
8Y

LM
EI

  

4.  Frame of the figure consists of a rigid body (2) and
beam elements (1) and (3). Determine the non-zero
displacements and rotations. The beams are identical
and can be assumed rigid in the axial directions. Dis-
placements are confined to the XZ-plane. Young’s
modulus E, second moment of area I , and distributed
force f  acting on element 1 are constants.
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2
1
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fLu
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5. Consider a bar of length L loaded by its own weight (figure). Determine the
displacement 2Xu  at the free end. Start with the virtual work density ex-
pression ( / ) ( / ) xw d u dx EA du dx uf       and approximation

1 2(1 / ) ( / )x xu x L u x L u   . Cross-sectional area A, acceleration by grav-
ity g, and material properties E and  are constants.

Answer
2

2 2X
g Lu
E




6. The XZ-plane structure shown consists of two massless
beams and a homogeneous disk considered as a rigid
body. Determine the displacement 2Zu  and rotation

2Y  at node 2. Young’s modulus E of the beam material
and the second moment of area I   are constants.

Answer
3

2
1
24Z

mgLu
EI

   and 2 0Y 

7.  A long dam of homogeneous, isotropic, linearly elastic mate-
rial, is subjected to water pressure on one side. Material prop-
erties E  and   are constants. Determine the displacement
components 1Xu  and 1Yu  of node 1. Nodes 2 and 3 are fixed.
Use a three-node element and assume plane strain conditions.
Consider a slab of thickness t  in calculations. The peak value
of the linearly varying pressure is p .

Answer 1
2 (1 )
3X

pLu
E

  , 1 0Yu 

8. A thin slab (1) of square shape is loaded by a point force (2) as
shown in the figure. Derive the relationship between the force F
and the displacement 4Xu  of its point of action. Young’s mod-
ulus E, Poisson’s ratio  , and thickness of the slab t are con-
stants. The external distributed forces are zeros. Assume plane-
stress conditions and use bilinear approximation.
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9. A structure, consisting of a thin slab and a bar, is loaded by a
horizontal force F acting on node 1.  Material properties are E
and ν, thickness of the slab is t and the cross-sectional area of the
bar is A. Determine displacement of node 1 1Xu  and 1Yu  by using
a linear bar element and a linear plane-stress element.

Answer 1
(1 )4
4 (1 )X

L Fu
Lt A E





 

 
   and 1 0Yu 

10. A plate, loaded by point force F acting at the free
corner, is simply supported on two edges and free
on the other two edges as shown in the figure. De-
termine the parameter 0a  of approximation

0( , ) ( / )( / )w x y a x L y L  and displacement at the
center point. Use the virtual work density of the
plate bending mode with constant E,  , ρ and t.

Answer 0 3

2
6 (1 )Fa

t
L

E
  ,

2

3
3( , ) ( )

2
1

2 2
FL Lw L
Et

 

X

Y

L

L

2 3

1F L

4

x,X

y,Y
L

F

L



Determine the nodal displacements when force F is acting on
the structure as shown. The cross-sectional area of bars 1,2,3
and 4 is A and the cross-sectional area of bars 5 and 6 is
2 2A . Young’s modulus of the material is E. Use the prin-
ciple of virtual work.

Solution
Element and node tables contain the information needed in displacement and stress analysis of the
structure. In hand calculations, it is often enough to complete the figure by the material coordinate
systems and express the nodal displacements/rotations in terms symbols for the nodal displacements
and rotations and/or values known a priori. The components in the material coordinate systems can
also be deduced directly form the figure (in simple cases). Virtual work expression of the bar element
is given by

T
1 1int ext

2 2

1 1 1
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1 1 12
x x x

x x

u u f hEAW W W
u uh


  


      
                

.

Nodal displacements/rotations of the structure are zeros except 2Xu  and 2Zu . Element contributions
in their virtual work forms are (nodal displacements of the material coordinate system need to be
expressed in terms of the structural system components)

Bar 1: 1 0xu  , 2 2x Xu u : 1
2 2X X

EAW u u
L

   ,

Bar 2: 2 2x Zu u , 3 0xu  : 2
2 2Z Z

EAW u u
L

   ,

Bar 3: 4 0xu    and 3 0xu  : 3 0W  ,

Bar 4: 1 0xu    and 4 0xu  : 4 0W  ,

Bar 5: 1 0xu    and 3 0xu  : 5 0W  ,

Bar 6: 4 0xu   , 2 2 2
1 ( )
2x X Zu u u  : 6

2 2 2 2( ) ( )X Z X Z
EAW u u u u
L

     

Force 7: 7
2ZW u F   .

Virtual work expression of the structure is sum of the element contributions
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2 2 2 2 2 2 2 2 2a 0 0 0 ( ) ( )X X Z X Z X Z Z
EA EA EAW u u u u u u u u F
L L L

               

T
2 2

2 2

2 1 0
( )

1 2
X X

Z Z

u uEAW
u u FL
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Principle of virtual work 0W   a  and the fundamental lemma of variation calculus in the form
T 0 0    a R a R imply
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Joint between the beams of the figure is frictionless.  Force
F acting on the joint and displacement of the beam are re-
stricted to the XZ  plane. Determine the rotations and dis-
placement at the joint. Use two beam elements. The second
moment of area I and Young’s modulus of the material E are
constants.

Solution
Only the displacement in Z  direction and rotation in Y  direction matter in the planar beam bend-
ing problem. Rotation may not be continuous at the joint and, therefore, a double node with labels 2
and 3 are introduced there. At the joint, displacement is continuous and therefore 3 2Z Zu u .

For element 1, the non-zero displacement/rotation components of the material coordinate system are

2 2z Zu u  and 2 2y Y  . The element contribution of a xz plane beam in bending (formulae col-
lection) takes the form (the

T
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.

For element 2, the non-zero displacement/rotation components of the material coordinate system are

2 3 2z Z Zu u u   and 2 3y Y  . The element contribution is

T
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Element 3 is a point force whose virtual work expression follows from the definition of work
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.

Virtual work expression of a structure is the sum of the element contributions
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.

Principle of virtual work 0W   a and the fundamental lemma of variation calculus imply the
linear equation system
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.

Solving a system of linear equations is one of the basic tasks in FEM (reduction to a triangular sys-
tem by row operations works well in hand calculations). Multiply the first row by 4 and the third
row by 3/L to get

2
2

23
3

108 48 12 4
12 8 0 0 0

2 9 0 12 0

Z

Y

Y

L L u F
EI L L
L L




     
          

        

.

Add the last row to the first row to get

2
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Y
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L u F
EI L L
L L




     
          

        

.

Then multiply the second row by 6 / L
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and add the second row to the first row to get
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After these steps, the matrix is a lower diagonal one, and solution follows by considering the equa-
tions in a proper order one at a time:

3

2
8
27Z

FLu
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2
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L EI

     and
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Determine the rotation 2Y  at node 2 of the structure loaded by a
point moment (magnitude M) acting on node 2. Use beam elements
(1) and (2) of equal length and a point moment element (3). Assume
that the beams are inextensible in the axial directions. Young’s mod-
ulus of material E and the second moment of area I  are constants.

Solution
In a planar problem, torsion and out-plane bending deformation modes can be omitted. As beams are
assumed to be inextensible in the axial direction and there are no axial distributed forces, the bar
mode virtual work expression vanishes. Virtual work expressions of the beam xz plane bending el-
ement and point force/moment elements are given by
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.

Nodal displacements/rotations of the structure are clearly zeros except those for node 2. Displacement
at node 2 vanishes also as both beams are inextensible in the axial directions. Therefore, the only non-
zero displacement/rotation component of the structure is 2Y .

Beam 1: 1 0zu  , 1 0y  , 2 0zu  ,  and 2 2y Y 

T
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.

Beam 2: 1 0zu  , 1 2y Y  , 2 0zu  ,  and 2 0y 
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Point moment 3:
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Virtual work expression of the structure is sum of the element contributions

1 2 3e
eW W W W W        

2 2 2 2 2 2 24 4 0 (8 )Y Y Y Y Y Y Y
EI EI EIW M M
L L L

               .

Principle of virtual work 0W   a  and the fundamental lemma of variation calculus in the form
T 0 0    a R a R imply
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The frame of the figure consists of a rigid body (2) and
beam elements (1) and (3). Determine the non-zero dis-
placements and rotations. The beams are identical and can
be assumed rigid in the axial directions. Displacements are
confined to the XZ  plane. Young’s modulus E, second
moment of area I , and distributed force f acting on element
1 are constants.

Solution
As element 2 is a rigid body and the other beam are rigid in the axial directions, only the horizontal
displacement components 3 2Z Zu u  are non-zeros. Element contributions to the virtual work ex-
pression are
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Virtual work expression of the structure is the sum of element contributions
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Principle of virtual work 0W  a  and the fundamental lemma of variation calculus imply
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Consider a bar of length L loaded by its own weight (figure). Determine the
displacement 2Xu  at the free end. Start with the virtual work density ex-
pression ( / ) ( / ) xw d u dx EA du dx uf       and approximation

1 2(1 / ) ( / )x xu x L u x L u   . Cross-sectional area A, acceleration by grav-
ity g and material properties E and  are constants.

Solution
The concise representation of the element contribution consists of a virtual work density expression
and approximations to the displacement and rotation components. Approximations are just substituted
into the density expression followed by integration over the domain occupied by the element (line
segment, triangle etc.). Here the two building blocks are

x
d u duw EA uf
dx dx
       and 1 2(1 ) x x

x xu u u
L L

   .

The quantities needed in the virtual work density are the axial displacement, variation of the axial
displacement, and variation of the derivative of the axial displacement
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.

When the approximation is substituted there, virtual work density expression of the bar model takes
the form

T TT
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Finally, integration over the element gives the virtual work expression of the bar element
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Finding the displacement of the free end follows the usual lines. Here, xf gA , 1 1 0x Xu u  , and

2 2x Xu u

T
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1 1 12 2X X
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The XZ  plane structure shown consists of two massless
beams and a homogeneous disk of mass m considered as a
rigid body. Determine the displacement 2Zu  and rotation

2Y  at node 2. Young’s modulus E of the beam material
and the second moment of area I  are constants.

Solution
Only the displacement in the Z  direction and rotation in the Y  direction matter in the planar beam
bending problem. From the figure, the non-zero displacement and rotation components are 2Zu  and

2Y . For element 1, the non-zero displacement/rotation components of the material coordinate sys-
tem are 2 2z Zu u  and 2 2y Y  . The element contribution of a plane beam in bending (formulae
collection) is
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.

For element 2, the non-zero displacement/rotation components of the material coordinate system are

2 2z Zu u  and 2 2y Y  . The element contribution of a xz-plane beam in bending is

T
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.

Element 3 is a rigid body. In static displacement analysis, only the weight acting at the mass centroid
matters. Virtual work expression of the point force of magnitude mg  follows from the definition of
work
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Virtual work expression of a structure is the sum of the element contributions
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Principle of virtual work 0W   a and the fundamental lemma of variation calculus imply the
linear equation system
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A long dam of homogeneous, isotropic, linearly elastic material,
is subjected to water pressure on one side. Material properties E
and   are constants. Determine the displacement components

1Xu  and 1Yu  of node 1. Nodes 2 and 3 are fixed. Use a three-node
element and assume plane strain conditions. Consider a slab of
thickness t  in calculations. The peak value of the linearly varying
pressure is p .

Solution
Under the plane strain conditions, the virtual work densities of thin slab are
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.

The external forces xt  and yt  (force per unit length in this case) acting on the element edges can be
taken into account by a separate force element with the density expression (per unit length)

T
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tu
w tv





        
    

although the expression is actually part of the thin slab model. The approximation on the boundary is
just the restriction of the element approximation to the boundary.

Only the shape function for node 1 is needed as the other nodes are fixed (displacement vanishes). In
terms of the displacement components 1Xu  and 1Yu  of node 1, element approximations of the dis-
placement components and their derivatives are
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When the approximation is substituted there, the virtual work densities simplify to
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Integrations over the element and edge 2-1 give the virtual work expressions (notice that the virtual
work density of internal forces is constant)
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Principle of virtual work int ext 0W W W      a  and the fundamental lemma of variation
calculus give
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A thin slab (1) of square shape is loaded by a point force (2) as shown
in the figure. Derive the relationship between the force F and the
displacement 4Xu  of its point of action. Young’s modulus E, Pois-
son’s ratio  , and thickness of the slab t are constants. The external
distributed forces are zeros. Assume plane stress conditions and use
bilinear approximation.

Solution
Let us start with the shape functions of element 1 and approximations. As nodes 1, 2, and 3 are fixed,
it is enough to deduce the shape function of node 4

4 2
xyN
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 .

Approximations to the displacement components and their derivatives with respect to x and y are
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.

When the approximations are substituted there, the virtual work density of thin slab model simplifies
to (plane stress conditions, only the internal part is needed)
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Integration over the domain occupied by the element gives the element contribution
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Virtual work expression of the point force (element 2) follows from the definition of work
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Virtual work expression of a structure is the sum of element contributions
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Finally, principle of virtual work in the form 0W  a and the fundamental lemma of variation
calculus imply that
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A structure, consisting of a thin slab and a bar, is loaded by a hori-
zontal force F acting on node 1.  Material properties are E and ν,
thickness of the slab is t, and the cross-sectional area of the bar A are
constants. Determine displacement components 1Xu  and 1Yu  of
node 1 by using a linear bar element and a linear plane-stress ele-
ment.

Solution
Under the plane stress conditions, the virtual work densities (virtual works per unit area) of the thin
slab model
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take into account the internal forces (stress) and external forces acting on the element domain. Notice
that the components xf  and yf  are external forces per unit area. Forces acting on the element edges
can be taken into account by separate force elements.

Element contribution for the thin slab needs to be derived from approximation and virtual work den-
sities. Approximations to the displacement components depend only on the shape function associated
with node 1 as the other nodes are fixed (displacement vanishes). In terms of the displacement com-
ponents 1Xu  and 1Yu
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Virtual work density of the internal forces simplifies to (when the approximations are substituted
there)
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Virtual work expression is the integral of density over the domain occupied by the element (note that
the virtual work density is constant in this case). Therefore
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Virtual work expression of the bar element is given in the formula collection with 1 1x Xu u  and

2 0xu 

TT
1 11 12

1 1

1 1 1 0
0 1 1 0 0 0

X XX X

Y Y

u uu uEA EAW
u uL L





           

                       
.

Virtual work expression of the point force follows e.g. directly from the definition (force multiplied
by the virtual displacement in its direction)
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Virtual work expression of the structure is the sum of element contributions
1 2 3W W W W     
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Principle of virtual work 0W   a and the fundamental lemma of variation calculus give
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and 1 0Yu  . 



A Kirchhoff plate, loaded by point force F acting at the free
corner, is simply supported on two edges and free on the other
two edges as shown in the figure. Determine the parameter 0a
of approximation 0( , ) ( / )( / )w x y a x L y L  and displacement
at the center point. Use the virtual work density of the Kirch-
hoff plate model with constant E,  , ρ and t.

Solution
Assuming that the material coordinate system is chosen so that the plate bending and thin slab modes
decouple, it is enough to consider the virtual work densities of the bending mode only
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in which the elasticity matrix of plane stress
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In the present case, distributed force vanishes i.e. 0zf   and the point force is taken into account by
a point force element.

Approximation to the transverse displacement is chosen to be ( 0a  is not associated with any point
but it just a parameter of the approximation)

0( , ) x yw x y a
L L

 
2

2 0w
x





,

2

2 0w
y





, and

2

02
1w a

x y L



 

.

When the approximation is substituted there, virtual work density of internal forces simplifies to
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Virtual work expression of the plate bending element (element 1 here) is integral of the virtual work
density over the domain occupied by the element
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Virtual work expression of the point force (element 2 here) follows from the definition of work (notice
the use of virtual displacement of the point of action x y L  )
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Principle of virtual work and the fundamental lemma of variation calculus give
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Displacement at the center point
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