Microwave engineering I (MiWE I)

Interactive lecture 2 of Topic 1 Transmission line theory January 20, 2022

The main learning outcome of the course is to create readiness to work in microwave engineering related tasks and projects and enable further studies and continuous learning in microwave engineering.

Topic 1: Learning outcomes and content

- The student can
- explain the wave propagation of a radio-frequency signal in transmission lines (such as signal propagation, attenuation, reflection),
- calculate and simulate (AWR) related circuit parameters (such as voltage, current, power, characteristic impedance, loss, reflection coefficient) related to transmission lines,
- design transmission lines (such as microstrip lines) with calculations and AWR simulations.
- Transmission line model, wave equations and its solution (Pozar Chapter 2.1)
- Wave propagation along a transmission line and characteristic impedance (2.1,2.7) \} AGO
- Connection of the transmission line theory and EM field theory (2.2)
- Microstrip line (3.8)
- Voltage reflection from an impedance discontinuity and standing wave along a transmission line (2.3) TODAY

These lecture slides and notes are not designed for self-study. Please, use the course book chapters 2 and 3 for self-study.

Recap of the last week session on one slide

Wave equations:

$$
\begin{aligned}
\frac{d^{2} u(z)}{d z^{2}} & =\gamma^{2} u(z) ; \frac{d^{2} i(z)}{d z^{2}}=\gamma^{2} i(z) \\
\gamma & = \pm \sqrt{(R+\mathrm{j} \omega L)(G+\mathrm{j} \omega C)} \\
\quad= & \alpha+\mathrm{j} \beta
\end{aligned}
$$

$$
\left\{\begin{array}{c}
u(z)=\left(u^{+} e^{-\gamma z}\right. \\
i(z)=+u^{-} e^{\gamma z} \\
i^{+} e^{-\gamma z}+i^{-} e^{\gamma z}
\end{array}\right.
$$

forward wave
reverse
wave

$$
\begin{aligned}
& \text { Characteristic impedance }(\Omega): \\
& Z_{0}=\frac{\text { voltage }}{\text { current }}=\frac{u^{+}}{i^{+}}=\ominus \frac{u^{-}}{i^{-}} \\
& \left.Z_{0}=\sqrt{\frac{R+\mathrm{j} \omega L}{G+\mathrm{j} \omega C}} \quad \begin{array}{l}
R=0 \\
G=0
\end{array}\right\} Z_{0} \cdot \sqrt{\frac{L}{C}} \quad \frac{d B}{m} \\
& \quad i(z)=\frac{u^{+}}{Z_{0}} e^{-\gamma z}-\frac{u^{-}}{Z_{0}} e^{\gamma z} \quad \text { neg. Z } \\
& \text { direction }
\end{aligned}
$$

In-class task final answer:

$$
P(z)=\underbrace{\frac{1}{2}\left|u^{+}\right|^{2} \mathcal{R} e\left\{\frac{1}{Z_{0}{ }^{*}}\right\}}_{P(z=0)=P_{0}} \cdot e^{-2 \alpha z}
$$

Previous in-class task: the power decays as $e^{-2 \alpha z}$ along the line

$$
\begin{aligned}
& P(z)=\frac{1}{2} \mathcal{R} e\left\{u(z) \cdot i^{*}(z)\right\}=\frac{1}{2} \mathcal{R}\left\{u^{+} e^{-\gamma z} \cdot\left(i^{+} e^{-\gamma z}\right)^{*}\right\} \\
& P(z)=\frac{1}{2} \mathcal{R} e\left\{u^{+} e^{-\gamma z} \cdot\left(\frac{u^{+}}{Z_{0}}\right)^{*}\left(e^{-\gamma z}\right)^{*}\right\} \quad a \cdot a^{*}=|a|^{2} \\
& P(z)=\frac{1}{2} \mathcal{R} e\{\underbrace{u^{+}\left(u^{+}\right)^{*}}_{\left|u^{+}\right|^{2}} \frac{1}{Z_{0}{ }^{*}} \underbrace{e_{\text {val }}^{-\alpha z} e^{-\alpha z}}_{\text {purely }} \underbrace{e^{-j \beta z} e^{+j \beta z}}_{1}\} \quad \operatorname{Re}\left\{\frac{1}{z_{0}^{*}}\right\} \neq \frac{1}{\operatorname{Re}\left\{z_{0}^{*}\right\}} \\
& P(z)=\underbrace{\frac{1}{2}\left|u^{+}\right|^{2} \mathcal{R} e\left\{\frac{1}{\left.Z_{0}{ }^{*}\right\}}\right.}_{P_{0}=P\left(z^{c} 0\right)} \cdot e^{-2 \alpha z}=\frac{1}{2}\left|u^{+}\right|^{2} \frac{\mathcal{R} e\left\{Z_{0}\right\}}{\left|Z_{0}\right|^{2}} \cdot e^{-2 \alpha z}
\end{aligned}
$$

$1 \mathrm{~Np}=8.6859 \mathrm{~dB}$

$$
\begin{aligned}
& P(z=1 m)=P_{\uparrow} e^{-2 \alpha \cdot 1 m} \quad L(d B)=-10 \log _{10} \frac{P(z=1 m)}{P_{0}}=-10 \log e^{-2 \alpha \cdot 1 m} \\
& p(z=0) \quad=\alpha \cdot 10 \cdot 2 \cdot 1 \mathrm{~m} \log _{10} e=\alpha \cdot \underbrace{20 m \cdot \log e}_{1 N p=8,6859 \cdot d B} \\
& L(d B)=\alpha\left[\frac{1}{n}\right] \cdot 8,6859 \quad d B \quad\left(\frac{d B}{m}\right)
\end{aligned}
$$

Q1: What does the given power P mean physically?

forward wave

$$
Z_{0}=\frac{U^{+}}{I^{+}} \downarrow U^{+} \quad \downarrow U^{-} \quad Z_{0}=\frac{U^{-}}{=I^{-}}
$$

 wave
reverse

Z

0% 1. Total loss power due to the resistive losses on the line. 7% 2. Peak power of the wave propagating in the positive $+z$ direction.

$$
\begin{aligned}
& U^{+}=\text {peale voltage } \\
& U_{\text {RMs }}=\frac{u^{+}}{\sqrt{2}}
\end{aligned}
$$

67% (3.) Average power flow of a wave propagating in the positive $+z$ direction. $\%$
13% 4. Instantaneous power propagating in the positive $+z$ direction when $z=0$.
$10 \% 5$. Net power flow (= forward power - reverse power) on the line.
$0 \% 6$. Reflected power from the mismatched load impedance $\left(Z_{\mathrm{L}} \neq Z_{0}\right)$. ID N 3%

[^0]
Wave travelling in the $+z$ direction with constant magnitude

- = charge (electron)
red colour $=$ positive potential
impedancematched load
- no reflection!
blue colour $=$ negative potential

Standing wave is a superposition (interference) of two opposite-travelling waves

- Blue curve $=$ forwand-propagating wave $\quad\left|U_{\text {max }}\right|=u^{+}+u^{-}$
- Red curve = reverse - - Il- -ll-

$$
\left|U_{\min }\right|=0
$$

- Black curve = sum of waves
$V S W R=\frac{\left|U_{\max }\right|}{\left|U_{\min }\right|} \subset \frac{u^{+}+u^{-}}{O}=" \infty^{\prime \prime}$
- Red dots - nodes
- The "dome" between the red dots = antinode $\quad V S W R=\frac{\left|\left.\right|_{\max }\right|}{\left|U_{\min }\right|}<\frac{}{0}=\infty$ " "extrema" / supremum

Forward propagating wave in a $50-\Omega$ microstrip line - matched load impedance

Forward propagating wave in a $50-\Omega$ microstrip line - matched load impedance

Stationary standing wave in a $\mathbf{5 0} \mathbf{\Omega}$ microstrip line - short circuit as the load impedance

Q2. What is the value u^{-}of the reverse-propagating voltage wave when $u^{+}=+1 \mathrm{~V}$?
2. vote

$$
\downarrow 7 \% \text { 1. } u^{-}=+2 \mathrm{~V}
$$

$6 \% .47 \% 2 . u^{-}=+1 \mathrm{~V}$
3% 3. $u^{-}=0 \mathrm{~V}$
$94 \% 40 \%$ (4.) $u^{-}=-1 \mathrm{~V}$
3\%. 5. $u^{-}=-2 \mathrm{~V}$

$$
\begin{aligned}
& u(z)=u^{+} e^{-\mathrm{j} \beta z}+u^{-} e^{+\mathrm{j} \beta z} \\
& u(z=0)=u^{+} e^{-j 0}+u^{-} e^{j 0}=u^{+}+u^{-}=0 V
\end{aligned}
$$

6. I don't know

$$
u^{-}=-u^{+}=-1 v
$$

Q3. Interface of two unequal characteristic impedances at $z=0$. What kind of wave takes place in the region $z<0$?

13%. A pure forward (to positive z) propagating wave - i.e., $u^{-}=0 \mathrm{~V}$.
$0 \% 2$. A pure reverse (to negative z) propagating wave - i.e., $u^{+}=0 \mathrm{~V}$.
$\mid 3 \% 3$. A stationary standing wave - i.e., the net power flow is zero, $\left|u^{+}\right|=\left|u^{-}\right|$
チケ.(4.) A partial standing wave - i.e., net power flow forward (to positive z), $\left|u^{+}\right|>\left|u^{-}\right|$.
$3 \fallingdotseq$ 5. I don't know

Partial standing wave in a $50-\Omega$ microstrip line -150Ω as the load impedance

Voltage reflection coefficient Γ is defined as the ratio of the reflected and incident waves

Q4. $u^{+}=+1 \mathrm{~V}$. What is the voltage reflection coefficient Γ at $z=0$?

$$
\begin{aligned}
& +1 \mathrm{~V} \\
u(z \leq 0) & =u^{+} e^{-\mathrm{j} \beta z}+u^{-} e^{+\mathrm{j} \beta z} \\
u(z>0) & =u^{T} e^{-\mathrm{j} \beta z} \quad \Gamma=\frac{u^{-}}{u^{+}} \\
& +0.4 \mathrm{~V}
\end{aligned}
$$

$3 \% 1 . \quad \Gamma=0$
2.vote 9%
2. $\Gamma=-1$

$$
\downarrow
$$

$$
\text { 3. } \Gamma=1
$$

$$
21 \% 35 \% .4 . \quad 0<\Gamma<1
$$

$$
79 \% 50 \% \text { (5.) }-1<\Gamma<0
$$

$$
\begin{array}{r}
u(z=0)=u^{+} e^{-j \beta \cdot 0}+u^{-} e^{+j \beta D}=u^{+}+u^{-}=0.4 \mathrm{~V} \\
u^{-}=0.4 \mathrm{~V}-1 \mathrm{~V} \\
u^{-}=-0.6 \mathrm{~V} \\
r=\frac{u^{-}}{v^{+}}=\frac{-0.6 \mathrm{~V}}{+1 v}=-0.6 \quad(<0)
\end{array}
$$

3Y. 6. I don't know

Voltage and current are continuous in the interface ($z=0$)

voltage is continuous: $u_{1}=u_{2}$
current $-11-\quad: i_{1}=i_{2}$
kirch hold's (I) current law
Faraday's law: $\nabla \times \bar{E}=-\overbrace{j \omega}^{d \omega \bar{B}} \Leftrightarrow \oint \bar{E} \cdot d \bar{l}=-j \omega \iint \bar{B} \cdot d \bar{S} \ll \begin{aligned} & \text { current law } \\ & \text { select integration }\end{aligned}$ path/area freely

$$
\begin{aligned}
& \oint \bar{E} d \bar{l}= \\
& E_{1} \Delta l-E_{2} \Delta l \xrightarrow{-j \omega} \overbrace{E_{1} \Delta l}^{U_{1}}-\overbrace{E_{2} \Delta l}^{U_{2}}=0 \Leftrightarrow U_{1}=U_{2}
\end{aligned}
$$

$$
\iint \bar{B} d \bar{s}=B \cdot \Delta z \cdot \Delta l \xrightarrow[s \rightarrow 0]{\Delta z \rightarrow 0} 0
$$

Voltage and current are continuous in the interface ($z=0$)

$$
\begin{aligned}
& \xrightarrow[\text { for. rev. }]{\stackrel{0}{0} Z} Z \quad u(z=0)=u^{+} e^{-\mathrm{j} \beta \theta}+u^{-} e^{+\mathrm{j} \beta \theta}=u^{T} e^{-\mathrm{j} \beta \theta} \\
& Z_{1} u^{+} \downarrow \downarrow u^{-}: \downarrow u^{T} \quad Z_{2} \\
& I(z=O)=\frac{u^{+}}{Z_{1}} e^{-\mathrm{j} \beta \odot} \bigodot_{\uparrow} \frac{u^{-}}{z_{1}} e^{+\mathrm{j} \beta \odot}=\frac{u^{T}}{Z_{2}} e^{-\mathrm{j} \beta \theta} \\
& \Gamma=\frac{u^{-}}{u^{+}} \quad\left\{\begin{array}{l}
u(z=0)=u^{+}+u^{-}=u^{\top} \leftarrow \\
i(z=0)=\frac{u^{+}}{z_{1}}-\frac{u^{-}}{z_{1}}=\frac{u^{\top}}{z_{2}}
\end{array}\right. \\
& \frac{u^{-}}{u^{-1}}=\Gamma=\text { voltage redl.colt. } \\
& r=\frac{z_{2}-z_{1}}{z_{2}+z_{1}} \\
& T=\frac{u^{T}}{u^{+}} \\
& T=\frac{u^{\top}}{u^{+}}=\frac{\text { transmitted voltage }}{\text { incidut voltage }}=\frac{u^{+}+u^{-}}{u^{+}} \quad \Gamma \text { is complex number/phasor } \\
& =\frac{u^{+}}{u^{+}}+\frac{u^{-}}{u^{+}}=1+\Gamma=T
\end{aligned}
$$

Q5: $\boldsymbol{\Gamma}=\mathbf{- 0 . 6}$ and $\boldsymbol{V}^{+}=\mathbf{1} \mathrm{V}$. What is the maximum instantaneous voltage of the standing wave in $\mathbf{z} \leq \mathbf{0}$?

$1322 \% 1.0 .4 \mathrm{~V}$
$31 / 2.0 .6 \mathrm{~V}$
$6 \% 3.1 \mathrm{~V}$
$9 \% 4.1 .4 \mathrm{~V}$
$88 \% .56 \%$. 5.1 .6 V
$3 \% 6$. I don't know

$$
\begin{aligned}
& \begin{array}{l}
u(z \leq 0)=u^{+} e^{-\mathrm{j} \beta z}+u^{-} e^{+\mathrm{j} \beta z} \\
u(z>0)=u^{T} e^{-\mathrm{j} \beta z} \\
u^{+}=1 \mathrm{~V}, \Gamma=-0.6, u^{T}=0.4 \mathrm{~V} \\
\hline \Gamma=\frac{u^{-}}{u^{+}}=\frac{Z_{2}-Z_{1}}{Z_{2}+Z_{1}} \quad T=\frac{u^{T}}{u^{+}}=1+\Gamma
\end{array} \\
& \hline
\end{aligned}
$$

$$
u(z=0)=u^{+}+u^{-}=u^{\top}=0.4 \mathrm{v} \Leftrightarrow u^{-}=-0.6 \mathrm{~V}
$$

$$
z \leq 0 \quad u(z)=1 v \cdot \underbrace{e^{-j \beta z}}_{+1}-0.6 v \underbrace{e^{+j \beta z}}_{-1}
$$

$$
\left|U_{\text {max }}\right|=1 \mathrm{~V} \cdot 1-0.6 \mathrm{~V}(-1)=1 \mathrm{~V}+0.6 \mathrm{~V}=1.6 \mathrm{~V}
$$

Envelope of the standing wave has a $\lambda / 2$ periodicity

$$
\begin{aligned}
& \xrightarrow[\text { form. rev. }]{\substack{0 \\
Z_{1} \\
u^{+} \downarrow \\
\text { for. } \\
\text { for } \\
u^{-} \\
\downarrow u^{T} \\
\mathrm{Z}_{2} \\
\hline}} \\
& \Gamma=\frac{u^{-}}{u^{+}}=\frac{Z_{2}-Z_{1}}{Z_{2}+Z_{1}} \\
& T=\frac{u^{T}}{u^{+}}=1+\Gamma \\
& u(z)=u^{+} e^{-j \beta \cdot z}+u^{-} e^{+j \beta \cdot z}=u^{+} e^{-j \beta z}+\Gamma \cdot u^{+} e^{-j \beta z}=u^{+} e^{-j \beta z}\left(1+\Gamma e^{j 2 \beta z}\right) \\
& |u(z)|=\left|u^{+} e^{-j \beta z}\right|\left|1+\Gamma e^{j 2 \beta z}\right|= \pm\left|u^{+}\right|\left|1+\Gamma e^{j 2 \beta z}\right| \\
& i(z)=\frac{u^{+}}{Z_{1}} e^{-j \beta \cdot z}-\frac{u^{-}}{Z_{1}} e^{+j \beta \cdot z}=\frac{u^{+}}{z_{1}} e^{-j \beta z}-\frac{\Gamma u^{+}}{z_{1}} e^{+j \beta z}=\frac{u^{+}}{z_{1}} e^{-j \beta z}\left(1-\Gamma e^{j 2 \beta z}\right) \\
& |i(z)|= \pm\left|\frac{u^{t}}{z_{1}}\right|\left|1-r e^{j 2 \beta z}\right|
\end{aligned}
$$

In-class task

$$
u(z)=u^{+} e^{-\mathrm{j} \beta \cdot z}+u^{-} e^{+\mathrm{j} \beta \cdot z}
$$

$$
I(z)=\frac{u^{+}}{Z_{1}} e^{-\mathrm{j} \beta \cdot z}-\frac{u^{-}}{Z_{1}} e^{+\mathrm{j} \beta \cdot z}
$$

$$
\Gamma=\frac{Z_{2}-Z_{1}}{Z_{2}+Z_{1}}
$$

Determine the numerical values of the

1) voltage of the forward-propagating wave u^{+},
2) transmitted voltage amplitude $u^{T}=u(z=l)$ in region $z \geq l$,
3) total voltage $u(z=0)$ and total current $i(z=0)$,
4) input impedance $Z(z=0)=\frac{u(z=0)}{i(z=0)}$ looking into $+z$ direction.
5) Answer the question: why the input impedance $Z(z=0) \neq Z_{1}$?

The teachers will be circleing in the breakout rooms for help.
Return your effort in the return box in MyCourses at the end of the session, latest at 12:30 pm.

In-class task

$$
z=0
$$

$$
z=l
$$

Determine the numerical values of the

1) voltage of the forward-propagating wave u^{+},
2) transmitted voltage amplitude $u^{T}=u(z=l)$ in region $z \geq l$,
3) total voltage $u(z=0)$ and total current $i(z=0)$,
4) input impedance $Z(z=0)=\frac{u(z=0)}{i(z=0)}$ looking into $+z$ direction.
5) Answer the question: why the input impedance $Z(z=0) \neq Z_{1}$?
6) At $z=0$, the forward-propagating wave sees only the impedance Z_{1} of the first transmission line. Hence, we have a voltage division of U between Z_{1} and Z_{0}. See further details in Chapter 2.8 ("Transients of transmission lines"). $u^{+}=U \frac{Z_{1}}{Z_{0}+Z_{1}}=1 \mathrm{~V}$
7) First, we determine the value of the voltage reflection coefficient at $z=l: \Gamma=\frac{u^{-} e^{+j \beta \cdot l}}{u^{+} e^{-\mathrm{j} \beta \cdot l}}=\frac{u^{-} e^{+\mathrm{j} \frac{2 \pi}{\lambda} \cdot \frac{\lambda}{2}}}{u^{+} e^{-\mathrm{j} \frac{2 \pi \cdot}{\lambda} \cdot \frac{1}{2}}}=\frac{u^{-} e^{+\mathrm{j} \pi}}{u^{+} e^{-\mathrm{j} \pi}}=\frac{u^{-}(-1)}{u^{+}(-1)}=\frac{u^{-}}{u^{+}}=\frac{Z_{2}-Z_{1}}{Z_{2}+Z_{1}}=\frac{1}{3}$.

Then we can calculate the voltage $u^{T}=u\left(z=\frac{\lambda}{2}\right)=u^{+} e^{-\mathrm{j} \frac{2 \pi}{\lambda} \cdot \frac{\lambda}{2}}+u^{-} e^{+\mathrm{j} \frac{2 \pi}{\lambda} \cdot \frac{\lambda}{2}}=u^{+} e^{-\mathrm{j} \pi}+\Gamma u^{+} e^{+\mathrm{j} \pi}=u^{+}\left(-1-\frac{1}{3} \cdot 1\right)=-\frac{4}{3} u^{+}=-\frac{4}{3} \mathrm{~V}$
3) Total voltage at $\mathrm{z}=0, u(z=0)=u^{+} e^{-\mathrm{j} 0}+u^{-} e^{+j 0}=u^{+}+\Gamma u^{+}=u^{+}(1+\Gamma)=\frac{4}{3} \mathrm{~V}$

Total current at $\mathrm{z}=0, i(z=0)=\frac{u^{+}}{Z_{1}} e^{-\mathrm{j} 0}-\frac{u^{-}}{Z_{1}} e^{+\mathrm{j} 0}=\frac{u^{+}}{Z_{1}}-\Gamma \frac{u^{+}}{Z_{1}}=\frac{u^{+}}{Z_{1}}(1-\Gamma)=\frac{1}{15} \mathrm{~A}$
4) The input impedance looking into $+z$ direction $Z(z=0)=\frac{u(z=0)}{i(z=0)}=\frac{\frac{4}{3} \mathrm{~V}}{\frac{1}{15} \mathrm{~A}}=20 \Omega$.
5) The total input impedance is affected by the reflected wave, too. This is more discussed in the next lecture on 27.1.

[^0]: $p(t)=u(t) \cdot \lambda(t)$ instantaneous power

