
MEC-E8001 Finite Element Analysis, week 4/2022

1. Determine the eigenvalue decomposition 1A XλX   and A  when
4 0

1 1

 
  
  

A .

Answer 1
3 0 4 0 1/ 3 0

1 1 0 1 1/ 3 1


      
       

          
A XλX  and

2 0

1/ 3 1

 
   

  
A

2. Derive the consistent mass matrix M  of a two-node beam element (bending in xz-plane). Assume
that density is constant, cross section is constant, and the beam element is thin in the sense

/ 1t h , so that inew w Aw      .

Answer
2 2

2 2

156 22 54 13

22 4 13 3

420 54 13 156 22

13 3 22 4

h h

h h h hAh
h h

h h h h



 
 
   
 
 
 
  

M

3. The XZ-plane structure shown consists of two massless
beams and a homogeneous disk considered as a rigid
body. Derive the equations of motion in terms of dis-
placements 2Zu  and 2Y . Young’s modulus of the
beam material and the second moment of area are E
and I , and the mass and moment of inertia of the disk
are m and J , respectively.

Answer
2 2

3 2
2 2

24 0 0
0

0 8 0

Z Z

Y Y

u umEI
L L J 

                
            





4. The rotor of the machine shown rotates with angular
speed . Determine the bending stiffness EI  so that
the angular speed (free vibrations) of the foundation-
machine system coincides with . The foundation is
modeled as two massless beams and the machine as a
particle of mass M. Assume that 1 3Y Y    and

2 0Y  .

Answer 3 21
6

EI mL 
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5. XZ-plane structure shown consists of a beam and a homogeneous disk
considered as a rigid body. Derive the equations of motion in terms of

2Zu , 2Y  and determine the angular speeds of free vibrations. Assume
that mass of the beam is negligible compared to that of the disk and
that the beam is inextensible in the axial direction. Young’s modulus E
of the beam material and the second moment of area I are constants.
Mass and moment of inertia of the disk are m and 21

5 mLJ I ,  re-
spectively.

Answer 1 1 32 EI
mL

   , 2 2 330 EI
mL

  

6.  Node 4 of a thin rectangular slab (assume plane stress
conditions) is allowed to move horizontally and nodes 1,
2, and 3 are fixed. Derive the initial value problem giv-
ing as its solution the horizontal displacement 4 ( )Xu t of
node 4 as function of time, if 4 (0)Xu U  and

4 (0) 0Xu  . Use just one bilinear element. Material pa-
rameters E , 0  ,  and thickness h  of the slab are
constants.

Answer 4 42
9 0
2X X

Eu u
L 

  0t  , 4 (0)Xu U , 4 (0) 0Xu 

7.  The beam of the figure is subjected to moment M when
0t  . At 0t  , the moment is suddenly removed and the

beam starts to vibrate. Derive the initial value problem giv-
ing 2 ( )Y t  for 0t  . The beam is thin so that the rotational
part of the inertia term is negligible. The geometrical quan-
tities of the cross-section are A, I and the material constants
E and ρ.

Answer
3

2 24 0
105Y Y

EI AL
L

   0t  , 2
1(0)
4Y

ML
EI

  , 2 (0) 0Y 

8. Node 1 of a thin rectangular slab (assume plane stress
conditions) is allowed to move horizontally at node 1
whereas nodes 2, 3 and 4 are fixed. Derive the expression
of horizontal displacement 1( )Xu t of node 1 as function
of time, if 1(0)Xu U  and 1(0) 0Xu  . Use two linear
triangle elements. Material parameters E ,  ,  , and
thickness h  of the slab are constants.

Answer 1 2 2
3 3( ) cos( )
2 1

X
Eu t U t
L
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9. Bars 1 and 3 of the structure shown are massless and bar 2 is
rigid. Force F is acting on node 2. Determine the displace-
ment 2 ( )Zu t  of node 2 for 0t  , if the force is removed at

0t  . Young’s modulus of bars 1 and 3 is E and density of
bar 2 is ρ. Cross-sectional area is constant A.

Answer 2
2( ) cos( )

2Z
L t Eu t F

EA L 
 0t 

10. A plate is simply supported on two edges and free on the
other two edges as shown. Use the approximation

2( , , ) ( ) /w x y t a t xy L  to determine the transverse dis-
placement as function of time 0t  . Material properties
E,  , and   are constants and thickness of the plate is
h . At 0t  , initial conditions are ( , ,0) 0w x y   and

2( , ,0) /w x y Uxy L . Assume that the plate is thin so that
the rotation part of the inertia term is negligible.

 Answer 2 2( , , ) cos( 3 )G h xyw x y t U t
L L

 0t 

L

L

1

3

2

F

3

X

Z

4

2

1

4

x,X

y,Y
L

L

E, ν, ρ



Determine the eigenvalue decomposition 1A XλX   and A  when
4 0

1 1

 
  
  

A .

Solution
Let us solve for the eigenvalues first from det( ) 0 A I

  
4 0

det 4 1 0
1 1


 



 
    

   
 1    or 4  .

The corresponding eigenvectors x  follow from ( ) 0 A I x  when the eigenvalues are substituted
there

1
4 1 0 a

1 :  0
1 1 1 1


        

       
 a 0  1

0

1

    
  

x ,

2
4 4 0 a

4 :  0
1 1 4 1


        

       
 a 3   2

3

1

    
  

x .

Therefore

1
0 3 1 0 1/ 3 1

1 1 0 4 1/ 3 0


     
       

          
A XλX . 

Let us use the definition:  if 1A XλX   then 1( ) ( )f f A X λ X . When applied to the present case
of a square root

  1
0 3 1/ 3 1 2 01 0

1 1 1/ 3 0 1/ 3 10 4


       
            
               

Α X λ X . 



Derive the consistent mass matrix M  of a two-node beam element (bending in xz-plane). Assume
that density is constant, cross section is constant, and the beam element is thin in the sense / 1t h ,
so that inew w Aw      .

Solution
The starting is the virtual work density of inertia forces and the element approximation of the beam
model (see the formulae collection)
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   (here x
h

  ).

Virtual work expression of the inertia forces consists of terms taking into account translation and
rotation of the cross-section. Here, rotation part is assumed to be negligible so that

inew w Aw      .

When the approximation is substituted there, virtual work density takes the form

2 2

2 2

2 2

2

e

2

TT
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1 1in

2 2

2 2

(1 ) ((1 ) 2 (1 ) 2

(1 ) (1 )

(3 2 ) (3 2 )

( 1) ( )

)

1

1z z

y y

z z

y y

h h

h h

u u

w A
u u



 
 

   

   

   

 



  



     
     
                  

      
   

   

   

 

  
  

           









.

Integration over the spatial domain gives (use Mathematica in this step)

T
1 1

1 1ine

2 2

2

2 2

2
2 2

156 22 54 13

22 4 13 3
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13 3 2 4

420
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.

Therefore, the mass matrix



2 2

2 2

156 22 54 13

22 4 13 3

54 1 54 3 1 6 22

13 3 2

20

2 4

h h

h h h hA
h

h
h

h h h h



 
 
 
 
 
 
 



 



 





Μ . 



The XZ-plane structure shown consists of two massless
beams and a homogeneous disk considered as a rigid body.
Derive the equations of motion in terms of displacements

2Zu  and 2Y . Young’s modulus of the beam material and
the second moment of area are E and I , and the mass and
moment of inertia of the disk are m and J , respectively.

Solution
The non-zero displacement/rotation components of the structure are 2Zu  and 2Y . Let us start with
the element contributions. Since the beam is assumed to be massless, only the virtual work expres-
sions of the internal forces (available in the formulae collection) is needed.

T

T2 2
2 21

3 3 2
2 2 2 2

2 2
2 2

0 012 6 12 6

0 06 4 6 2 12 6

12 6 12 6 6 4

6 2 6 4

Z Z

Z Z Y Y

Y Y

L L
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L Lu uL L L L

L L L L




  

 

      
    
                             

               
    
        

,
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.

Element contribution of the rigid body (formulae collection) simplifies to

T T
T

2 23
2 2

2 2
2 2

0 0 0 0
0

0 0
0

0 0

Z Z
Y Y

Y Y
Z Z

u um
W m J

J
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.

Virtual work expression of structure is the sum of element contributions.

T
2 2 21 2 3

3 2
2 2 2

24 0 0
( )

0 8 0

Z Z Z

Y Y Y

u u umEIW W W W
L L J


   

  

                          
                




.

Finally, principle of virtual work and the fundamental lemma of variation calculus imply a set of
ordinary differential equations:

2 2
3 2

2 2

24 0 0
0

0 8 0

Z Z

Y Y

u umEI
L L J 

                
            




. 

The angular speeds of free vibrations can be deduced from the stiffness and mass matrix of the equa-
tion system

L

Z

L

1
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Xxx
z z



0

0

m

J

 
  
  

M    and 3 2

24 0

0 8
EI
L L

 
  

  
K  2 1

3 2

24 / 0

0 8 /

mEI
L L J

  
   

  
Ω M K .

The angular speeds of free vibrations are the eigenvalues of Ω . Let us start with the eigenvalues of
2 1Ω M K

3 32

24 / 0 1 0
det( ) (24 )(8 ) 0

0 8 / 0 1

mEI EI EI
JLL mLL J

  
   

       
      

 3{24 ,8 }EI EI
JLmL

 .

Eigenvalues of Ω   are square roots of eigenvalues of 2Ω

1 1 324 EI
mL

      and 2 2 8 EI
JL

   . 



The rotor of the machine shown rotates with angular speed
. Determine the bending stiffness EI  so that the (small-
est) angular speed of free vibrations of the foundation-ma-
chine system coincides with . The foundation is modeled
as two massless beams and the machine as particle of mass
M. Assume that 1 3Y Y    and 2 0Y  .

Solution
The non-zero displacement/rotation components of the structure are 2Zu , 1Y , and 3 1Y Y   . Let
us start with the element contributions. Since the beam is assumed to be massless, only the virtual
work expressions of the internal forces (available in formulae collection) is needed.

T

T2 2 2
1 11 11

3 3
2 22 2

2 2

0 12 6 12 6 0

6 4 6 2 4 6
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.

Element contribution of the rigid body (formulae collection) simplifies to

T T
T

1 13
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0 0 0 0
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0
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Y Y
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.

Virtual work expression of structure is the sum of element contributions.

T 2
1 1 11 2 3

3
2 2 2

0 08 12
( )

012 24

Y Y Y

Z Z Z

L LEIW W W W
Lu u m uL

  
   



                          
               




 .

Finally, principle of virtual work and the fundamental lemma of variation calculus imply a differential
algebraic system (DAE):

2
1 1

3
2 2

0 08 12
( 0

012 24

Y Y

Z Z

L LEI
L u m uL

                 
           




.

Let us eliminate the rotation from the differential equation by using the algebraic equation
2

1 28 12 0Y ZL Lu    1 23 / (2 )Y Zu L   . Therefore

L

Z,z

X,x

L

1

1

2

3

2

3
, M



1 2 23 (12 24 ) 0Y Z Z
EI L u mu
L

     2 23 6 0Z Z
EI u mu
L

      or 2 236 0Z Z
EIu u

mL
  .

The angular speed of free vibrations should match the angular speed of rotor (the condition of reso-
nance and increasing amplitude in vibrations)

36 EI
mL

     3 21
6

EI mL  . 



The XZ-plane structure shown consists of a beam and a homogeneous disk
considered as a rigid body. Derive the equations of motion in terms of 2Zu
, 2Y  and determine the angular speeds of free vibrations. Assume that
mass of the beam is negligible compared to that of the disk and that the
beam is inextensible in the axial direction. Young’s modulus E of the beam
material and the second moment of area I are constants. Mass and moment
of inertia of the disk are m and 21

5 mLJ I ,  respectively.

Solution
Virtual work expressions of the beam and rigid body elements are given by (inertia contribution is
omitted from the beam contribution and rigid body has only the inertia part)

T

T2 2 3 22 21
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2 2 2 2
22 2

2 2
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.

Principle of virtual work 1 2 0W W W     a  gives

T 3 22 2 2
2

2 2 2
2

12 6
0

( ) 0
0 / 56 4
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u u umL L
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3 2 2 2
2
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2

012 6

0
06 4 5
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EI EI m
u uL L

mLEI EI
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. 

The angular speeds 1  and 2 of free vibrations can be obtained (as square roots of the eigenvalues)
from the eigenvalue decomposition 2 1 2 1  Ω M K Xω X  . Let us start with

1
3 23 2

2 1
2

2 4 3

0 12 612 6

0 6 4 30 205

EI EIEI EIm
mL mLL L

mL EI EI EI EI
LL mL mL





                            

Ω M K .

and continue with the characteristic equation

L 1

2

X,x

Z,z 1

2



2
3 3 2 4det( ) (12 )(20 ) 180 0EI EI EI EI

mL mL mL mL
       Ω I

giving the eigenvalue solutions

1 32 EI
mL

       and 2 330 EI
mL

  .

Finally, the angular speeds are square roots of the eigenvalues

1 1 32 EI
mL

        and 2 2 330 EI
mL

   . 



Node 4 of a thin rectangular slab (assume plane stress con-
ditions) is allowed to move horizontally and nodes 1, 2, and
3 are fixed. Derive the initial value problem giving as its so-
lution the horizontal displacement 4 ( )Xu t of node 4 as func-
tion of time, if 4 (0)Xu U  and 4 (0) 0Xu  . Use just one
bilinear element. Material parameters E , 0  ,  and
thickness h  of the slab are constants.

Solution
Let us use the xy  coordinate system of the figure as the material coordinate system for the thin slab
element 1. Only the shape function of node 4 is needed in the approximations:

4X
x yu u
L L

 , 4
1

X
u y u
x L L





, 4
1

X
u x u
y L L





, 4X
x yu u
L L

    and 0v  .

When the approximations are substituted there, virtual work densities of internal and inertia forces
simplify to (here 0  )

T

4 42 2

int 2 2
4 4 4

4 42 2

2 0 0
10 0 2 0 0 ( )

2 2
0 0 1

X X

X X

X X

y yu u
L L

hE hEw u u y x
L

x xu u
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,

T
T
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.

Virtual work expressions are obtained by integrating the densities over the domain occupied by the
element

int int
4 40 0 2

L L
X X

hEW w dydx u u      ,

ine ine 2
4 40 0

1
9

L L
X XW w dxdy u u h L        .

Virtual work expression is the sum of the terms

int ine 2
4 4 4

1( )
2 9X X X

hEW W W u u h L u          .

Principle of virtual work 0W   a  and the fundamental lemma of variation calculus
T 0 0    a F a F  imply the ordinary differential equation

X,x

Y,y

1 2

43

L

L

1



2
4 4

1 0
2 9X X

hE u h L u  .

Initial value problem consists of the second order ordinary differential equation above and additional
conditions at 0t 

4 42
9 0
2X X

Eu u
L 

  0t     and 4Xu U , 4 0Xu    at 0t  . 



The beam of the figure is subjected to moment M when 0t  .
At 0t  , the moment is suddenly removed and the beam starts
to vibrate. Derive the initial value problem giving 2 ( )Y t  for

0t  . The beam is thin so that the rotational part of the inertia
term is negligible. The geometrical quantities of the cross-sec-
tion are A, I and the material constants E and ρ.

Solution
Virtual work expression consists of parts coming from internal
and inertial forces. Finding the equation of motion is the first thing to do. The beam element contri-
butions needed in the problem are (the term having to do with rotational inertia is omitted)

T

2 2
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2 23

2 2
2 2
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giving

3
1

2 2 2(4 )
105Y Y Y

EI ALW
L

       .

In terms of moment ( )P t  (positive in the positive direction of Y-axis) which is piecewise constant in
time so that ( )P t M 0t    and ( ) 0P t  0t  , the element contribution of the moment is

2
2YW P  .

Virtual work expression is the sum of element contributions:

3
1 2

2 2 2(4 ) 0
105Y Y Y

EI ALW W W P
L

            .

Principle of virtual work and the fundamental lemma of variation calculus imply the ordinary differ-
ential equation

3

2 2 2(4 ) 0
105Y Y Y

EI ALW P
L

       
2Y 

M

L X

Z

1

2

xz

1



3

2 24 0
105Y Y

EI AL P
L

    . 

When 0t  , external moment P M  is acting on node 2 and the system is at rest. Therefore, the
equation of motion becomes an equilibrium equation giving as its solution the initial rotation

2
1
4Y

ML
EI

  .

When 0t  , external moment is zero and acceleration does not vanish. The initial value problem
giving as its solution 2 ( )Y t  for 0t   takes the form

3

2 24 0
105Y Y

EI AL
L

   0t  , 2
1(0)
4Y

ML
EI

  , and 2 (0) 0Y   . 



Node 1 of a thin rectangular slab (assume plane stress con-
ditions) is allowed to move horizontally at node 1 whereas
nodes 2, 3 and 4 are fixed. Derive the expression of horizon-
tal displacement 1( )Xu t of node 1 as function of time, if

1(0)Xu U and 1(0) 0Xu  . Use two linear triangle ele-
ments. Material parameters E ,  ,  and thickness h  of the
slab are constants.

Solution
Let us use the xy  coordinate system of the figure as the material coordinate system for the thin slab
elements 1 and 2. Only the displacement 1( )Xu t  of node 1 in the X  direction matters.

Shape functions of element 1 can be deduced from the figure. However, only the shape function

1 1 /N y L   is needed as the other nodes are fixed. Approximations to the in-plane displacement
components are 0v   and

1(1 ) X
yu u
L

   0u
x





, 1
1

X
u u
y L


 


 ,   and 1(1 ) X
yu u
L

   .

When the approximations above are substituted there, virtual work densities of internal and inertia
forces simplify to

T
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1 1
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0 0
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 .

Integration over the domain occupied by the element gives the virtual work expression. The limits of
the double integral over a triangle are not constants (equation of the tilted edge is y x )

1 int ine
0

( )
L L

x
W w w dydx      

1 3
1 1 1 120

[ ( ) (1 ) ]
32 (1 )

L
X X X X

hE L xW u u L x u h u dx
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1 1 1(3 + )

12 1X X X
h EW u u L u  


 


 .

In the same manner, shape functions of element 2 can be deduced from the figure. Only 1 1 /N x L 
is needed as the other nodes are fixed. Approximations to the in-plane displacement components are

0v   and
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L

   .

When the approximations are substituted there, virtual work densities of internal and inertia forces
simplify to

T
1 1

int
1 12 2 2

/ 1 0 /
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X X
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u L u L
hE hEw u u

L

 

  
 





      
               

     
         

,

T
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X X
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 .

Integration over the domain occupied by the element gives the virtual work expression (notice the
limits of the double integral and the order of the integrations)

2 int ine
0 0

( )
L x

W w w dydx      

2 2
1 1 1 12 20

1[ (1 ) ]
(1 )

L
X X X X

hE xW u u x u h u x dx
L LL

   


   
  

2 2
1 1 12(6 )

12 1X X X
h EW u u L u  


  


 .

Virtual work expression of a structure is sum over the element contributions

1 2 2 2
1 1 1 1 1 12(3 + ) (6 )

12 1 12 1X X X X X X
h E h EW W W u u L u u u L u      

 
     

 
  

2
1 1 12

3( 3 +2 )
12 1X X X
hW u Eu L u  




 


 .

Principle of virtual work 0W   a  and the fundamental lemma of variation calculus
T 0 0    a F a F  imply

2
1 12

3 3 +2 0
1 X XEu L u 







    or 2
1 1 0X Xu u    in which 2

2 2
3 3
2 1

E
L


 


 


.

What remains, is solving for the displacement from the ordinary differential equation above for 0t 
and the initial conditions 1(0)Xu U  and 1(0) 0Xu  . Solution to equations is (this can be shown,
e.g., by substituting the solution in the equations above)

1 2 2
3 3( ) cos( )
2 1

X
Eu t U t
L


 





0t  . 



Bars 1 and 3 of the structure shown are massless and bar 2 is rigid.
Force F is acting on node 2. Determine the displacement 2 ( )Zu t
of node 2 for 0t  , if the force is removed at 0t  . Young’s mod-
ulus of bars 1 and 3 is E and density of bar 2 is ρ. Cross-sectional
area is constant A.

Solution
Only the displacement of nodes 2 and 3 in the Z-direction matter. As bar 2 is known to be rigid,
vertical displacements of nodes 2 and 3 coincide i.e. 2 3Z Zu u .  Bar element contributions of the
formulae collection are
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From the figure, the nodal displacement and length of bar 1 are 1 0xu  , 2 2 / 2x Zu u  and 2h L
. As the bar is assumed to be massless, inertia term vanishes and
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.

The relationships for bar 2 are 1 2x Zu u , 2 2x Zu u  and h L . As the axial displacements coincide,
internal part vanishes and
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.

The relationships for bar 3 are 1 0xu  , 2 2 / 2x Zu u   and 2h L . As the bar is assumed to be
massless
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Point force ( )P t  acting on node 2 is piecewise constant in time so that ( )P t F 0t   and ( ) 0P t 
0t  .  Virtual work expression is

4
2ZW u P  .

Virtual work expression of the structure is the sum of element contributions
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Principle of virtual work 0W   a  and the fundamental lemma of variation calculus
T 0 0    a F a F  imply that

2 2 0
2 Z Z

EA u ALu P
L

   .

When 0t  , 2Zu does not depend on time and therefore 2 2 0Z Zu u   . As the second derivative
vanishes and P F , the ordinary differential equation simplifies to an algebraic one giving

2 0
2 Z

EA u F
L

   2
2

Z
Lu F

EA
   when 0t  .

When 0t  , 0P   and the initial value problem for the displacement becomes (notice that the initial
conditions are taken from the solution for 0t  )

2 2 0
2 Z Z

EA u ALu
L

  0t  , 2
2(0)Z

Lu F
EA

   and 2 (0) 0Zu  .

Solution to the equations is given by
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A plate is simply supported on two edges and free on the
other two edges as shown. Use the approximation

2( , , ) ( ) /w x y t a t xy L  to determine the transverse dis-
placement as function of time 0t  . Material properties
E,  , and   are constants and thickness of the plate is h
. At 0t  , initial conditions are ( , ,0) 0w x y   and

2( , ,0) /w x y Uxy L . Assume that the plate is thin so that
the rotation part of the inertia term is negligible.

Solution
Only the bending mode of the plate matters. When the approximation 2( ) /w a t xy L  is substituted
there, virtual work densities of internal and inertia forces (without the rotation part) of the plate sim-
plify to (shear modulus / (2 2 )G E   )
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in which h  is thickness of the plate. Integration over the domain occupied by the element gives the
virtual work expressions
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Virtual work expression of the structure consists of the internal and inertia parts
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Principle of virtual work 0W   a  and the fundamental lemma of variation calculus
T 0 0    a F a F  imply
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What remains, is solving for the displacement from the initial value problem
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L
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  0t  , (0)a U , (0) 0a  .

Solution to equations is (this can be shown e.g. by substituting the solution in the equations above)

2( ) cos( 3 )G ha t U t
L

 0t  .

Finally, substituting the solution to parameter ( )a t  into the approximation gives

2 2( , , ) cos( 3 )G h xyw x y t U t
L L

 . 


