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Today

• Robot motion planning problems.

• Graph search and discretization of continuous space.

• Sampling methods.

• A little bit about optimization based methods.



 

Learning goals

• Understand problems of motion planning as planning of 
trajectories in search space. 

• Understand how discretization can be used to solve 
planning problems in continuous search space. 
– Especially sampling based discretization approaches.

How to move a robot from A to B?



 

Motion planning (re-cap)

• Problem: Find actions that result in a 
path between two configuration space 
points while avoiding work space 
obstacles.

• Configuration (state) space: set of all 
transformations that can be applied to 
the robot. 

• Work space (world): Space that robot 
occupies. Obstacles usually represented 
as Cartesian space regions.

•



 

Example: 
Workspace vs configuration space



 

Recap: Path vs motion planning

• Path planning: Find a collision free path in configuration 
space from start to end configuration.

• Motion planning: Find actions (control inputs), possibly 
with constraints on controls, duration, motion.

• Paths created by path planning can be turned into 
feasible trajectories by a trajectory planner.

• Trajectory planner determines time scale (velocity) over 
the path.



 

Discretization of configuration space

• Combinatorial vs sampling-based approaches

• Combinatorial: Divide free space and represent as 
graph.
– Common in mobile robotics. Today a little bit of this.

 
• Sampling-based: Create a search tree incrementally by 

doing collision detection.
– Can handle typically higher dimensions. Today mostly about 

this.



 

Continuous space planning by 
discretization
• Discretization builds a roadmap.

– Roadmap graph: a set of routes in free 
space.

• After discretizing a continuous space, 
use discrete planning approaches such 
as Dijkstra, A*. 

• How to discretize?
– Does discretization affect solution in terms 

of feasibility/optimality?



 

Discretization approaches for polygonal 
obstacles in planning space

Visibility graph
• Shortest path length

Voronoi diagram
• Maximal clearance



 

Discretization by cell decomposition

Exact cell decomposition
• Divide space into cells
• Determine which are 

adjacent

Approximate cell decomposition
• Divide space into cells of 

predefined shape
• Determine if each cell is free



 

Pros and cons of 
combinatorial approaches
• Complete approaches.

• Cannot handle well high-dimensional configuration 
spaces.
– Combinatorial explosion (exponential number of states).

• Cannot handle easily non-linearities.
– Obstacles cannot be easily represented with e.g. polygons.



 

Sampling based search

• Idea: Build search graph iteratively.
– Draw random samples of configuration space.
– Use collision detection to determine if a state is free.

• Two common approaches:
– Probabilistic roadmaps (Kavraki 1992)
– Rapidly exploring random trees (LaValle & Kuffner, 1999)

Offline

On-line



 

Probabilistic roadmaps

• Idea: Build search graph (roadmap) iteratively (off-line).
– Draw random samples of configuration space.
– Check if they are free, and add to search graph if they are. 
– Try to connect nearby nodes using local planner.
– Continues until roadmap dense enough.

• Local planner checks if straight-line trajectory is free.

• On-line operation: 
– Find paths from start and end configurations to nearby roadmap 

nodes using local planner. 

– Use the roadmap for the rest of the path.

How many nodes?



 

How many nodes are needed?
Sampling dense sequences
• Sampling has to be dense to allow each part of 

configuration space to be reachable from the roadmap.

• Denseness – getting arbitrarily close to any point in 
space.
– Can you give an example?

• Random sequences are often dense with probability 1.
• Random sampling of e.g. orientations requires care.

– Is it better to sample in configuration or workspace?



 

Local planner

• Check path between two points 
for collisions.
– Number of points infinite.

• Local planner typically only 
checks discrete points along the 
path.

• What would be a good order to 
check the points?



 

Connecting nodes

• Try to connect to points in a neighborhood using local 
planner.
– K-nearest or inside a radius



 

PRM pros and cons

• Pros:
– Probabilistically complete.
– Applicable to high-dimensional 

configuration space.

• Cons:
– Does not work well for some problems, 

e.g. narrow passages.
– High-dimensional configuration space 

requires very many samples.

• Many extensions of PRMs exist.



 

Rapidly exploring random trees (RRT)

• Idea: Explore configuration incrementally from starting 
state.
– Builds a tree rooted at starting state.



 

Rapidly exploring random trees (RRT)

• Begin by choosing a random

state.
– Sample from bounded region 

around starting state.

– Other sampling strategies also 
possible.



 

Rapidly exploring random trees (RRT)

• Choose the nearest point in 
existing tree.
– Choice of distance function 

affects.
– Other similar strategies also 

possible.



 

Rapidly exploring random trees (RRT)

• Check for collision free path 
using local planner.
– If it exists, connect nodes.
– It not, connect to last state 

before obstacle. 

Check in linear order!



 

Rapidly exploring random trees (RRT)

• From time to time, choose 
goal state instead of the 
random, to check if a 
solution can be found.



 

Rapidly exploring random trees (RRT)

• Many extensions available.
– For example, expand both from 

starting and goal states (BiRRT).

• Easy to implement.
• Probabilistically complete.

• Unknown rate of convergence.

• Widely used.
• Narrow corridors still 

problematic.



 

RRT*

When a new node is added, tree can be locally rewired 
in small area around added node.

This will optimize path lengths. 



 

RRT*



 

Kinematic vs dynamic planning

• So far planning considered as finding a state-space path, 
without considering constraints on dynamics.

• If inverse dynamics is available, it can be used to solve 
actions for a path.

• RRTs can be turned into control-based planners by 
substituting sampling of state by sampling of control. 

• How to sample controls is a central question.

• This approach can be used for general continuous space 
planning problems.

Do inverse dynamics
always exist?

With dynamic planning, more constraints
and optimization criteria are relevant.



 

Motion planning as optimization

• Motion planning can be solved as nonlinear optimization

• Optimal paths, fast computation when good initial 
guess available, possible local minima.

inputs, 
e.g. joint torques

cost function,
e.g. path length

motion
constraints collision

constraints



 

Motion planning as optimization

• Methods e.g. TRAJOPT, CHOMP.

• Typical solution uses sequential convex optimization. 
– Iterate solving convex approximations of non-convex problem 

around current solution.

– For example, handle constraints by turning into penalties.

minu , q JTOT (u ,q)
J TOT (u ,q)=J SOL(u ,q)+μ JCONSTR(u ,q)

Solution cost,
e.g. trajectory
length

Constraint cost,
e.g. penetration depth

Large enough
factor



 

Software

• Open motion planning library (OMPL) encapsulates 
many motion planning algorithms.

• In robotics, ROS MoveIt uses OMPL.

• https://vimeo.com/58709589
• https://www.youtube.com/watch?v=eUpvbOxrbwY

https://vimeo.com/58709589
https://www.youtube.com/watch?v=eUpvbOxrbwY


 

Summary

• Kinematic motion planning searches for admissible state 
space trajectories.

• Search in continuous state space requires discretization.

• In high dimensional state spaces stochastic discretization 
often applicable.

• Controls can be sampled instead of states to solve more 
general planning problems.



 

Next time: Motion control

• Readings:
– Lynch & Park, Chapter 11-11.3.2



 

Note: Non-holonomic motion planning

• Robot is underactuated, if control space has fewer 
dimensions than configuration space.
– E.g. a car.

• Robot is nonholonomic, if its motion is constrained by a 
non-integrable equation of form  
– What’s the constraint for a car?

f (q ,q̇ )=0
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