
Vector space models for words
and documents

Statistical Natural Language Processing
ELEC-E5550
Jan 25, 2022

Tiina Lindh-Knuutila D.Sc. (Tech)
Lingsoft Language Services & Aalto University

tiina.lindh-knuutila -at- lingsoft dot fi
Material also by Mari-Sanna Paukkeri

(mari-sanna.paukkeri -at- utopiaanalytics dot com)

Today’s Agenda

● Short introduction to Lingsoft
● Vector space models

○ word-document matrices
○ word vectors
○ stemming, weighting, dimensionality reduction
○ similarity measures
○ Count models vs. predictive models
○ Word2vec
○ New models

● Information retrieval (Briefly)

● Course book: Speech and Language Processing. Daniel Jurafsky &
James H. Martin. Draft of December 2021. Chapter 6 - Vector
semantics and embeddings https://web.stanford.edu/~jurafsky/slp3/

https://web.stanford.edu/~jurafsky/slp3/

Lingsoft

A Full Service Language

Management Company

Lingsoft in a Nutshell

Founded in 1986

Offices in Turku, Helsinki, Stockholm

Revenue ~12 million € (2020)

On top 100 largest language service providers in the world

About 150 employees

More than 2000 partners

Nearly 1 000 end customers

Regular collaborations with national and international
organisations in research projects

Language Service Solutions for: Accessibility, Discoverability,
Productivity, Interoperability

Experienced

innovation partner

for the analysis,

production and

management of

spoken and written

language.

Speech and Language Technology
Assisted Service Design

Core Services

Translation &

Localisation

Subtitling

Medical Transcription

Transcription

Proofing

Terminology

Metadata

Lingsoft Process Design Model

Customer

Interface

CustomisationCustomer Data Background Data

Language

Technology

Development

Automatic

Language

Processing

Professional Human

Post-Processing
Deployment

Lingsoft’s Core Technologies

Customer/Service

Integration

Lingsoft API

Lingsoft Language Factory

3rd Party

Cloud API

● Current main functionalities:

○ Automatic speech recognition and

subtitling

○ Neural machine translation

○ Spelling and/or grammar checking

○ Text analysis (lemmatization, named entity

recognition, terminology recognition, …)

● Core languages: Finnish and Swedish (and

translation to/from those languages)

● Easy extension to new languages and functionality

● Easy integration of open source and 3rd party

components

● Easy integration to customer solutions via

industry standard APIs

● Language services

○ Freelance translator

○ Freelance transcriber

○ Translation coordinator

● Language solutions

○ Project management

○ Solution design

○ Development (software/linguistic)

○ Support

Contact: Jobs@lingsoft.fi

Career opportunities at Lingsoft

Vector semantics

You shall know the word
by the company it keeps

● Language is symbolic in nature
○ Surface form is in an arbitrary relation with the meaning of the

word
○ Hat vs. cat

■ One substitution: Levenshtein distance of 1
■ Does not measure the semantic similarity of the words

● Distributional semantics
○ Linguistic items which appear in similar contexts in large

samples of language data tend to have similar meanings

Firth, John R. 1957. A synopsis of linguistic theory 1930–1955. In Studies in linguistic analysis, 1–32. Oxford:

Blackwell.

George Miller and Walter Charles. 1991. Contextual correlates of semantic similarity. Language and Cognitive Processes,

6(1):1–28.

Word similarity and relatedness

● Words tend not to have many ‘true’ synonyms but
○ Words have many words that are ‘similar’
○ Cat and dog vs. cat and democracy
○ How do we know? - Ask people

● Relatedness: Words are somehow related to each other
○ association
○ part-whole relation
○ belonging to same thematic domain

● How to use?
○ Similarity and association databases such as SimLEX-999
○ Used to evaluate the quality of the vector space models

Count vs. Predict

● Count-based methods

○ compute the word co-occurrence statistics with its neighbor

words in a large text corpus

○ followed by a mapping (through weighting and dimensionality

reduction) to dense vectors

● Predictive models

○ try to predict a word from its neighbors by directly learning a

dense representation

Vector space models (VSM)

● The use of a high-dimensional space of documents (or
words)

● Closeness in the vector space resembles closeness in the
semantics or structure of the documents (depending on
the features extracted).

● Makes the use of data mining possible
● Applications:

○ Document clustering/classification/…
■ Finding similar documents
■ Finding similar words

○ Word disambiguation
○ Information retrieval

■ Term discrimination: ranking keywords in the
order of usefulness

Vector space models (VSM)

Steps to build a vector space model

1. Preprocessing
2. Defining word-document or word-word matrix

a. choosing features
3. Dimensionality reduction

a. choosing features
b. removing noise
c. easing computation

4. Weighting and normalization
a. emphasizing the features

5. Similarity / distance measures
a. comparing the vectors

Preprocessing

Word-word matrix

• Example from Europarl corpus (Koehn, 2005):

Word-word matrix

• Choosing features for word meaning
• First-order co-occurences: collected for target word ("fruits")

by counting the frequencies of context words

• Second-order co-occurrences: words that co-occur with the
same target words

• e.g. "trees" which also co-occurs with both "oranges" and "citrus"
-> second-order similarity between "fruits" and "trees"

Word-document matrix

• Choosing features for document contents
• A document may be

– text document
– e-mail message
– tweet
– paragraph of a text
– sentence of a text
– phrase

Word-word/document matrix

• The values to word-word or word-document matrix can be
collected in many ways:

• Sliding window
• n words before and after the target

• Using word order

• word order taken into account

• Using syntactic information

• Bag-of-words

• word order not taken into account

• N-grams

• unigrams, bigrams, trigrams, n-grams

Word-document
matrix

Word-word
matrix

Dimensionality reduction

• Choosing features, removing noise, easing computation

• Feature selection

– Choose the best features (= representation words) for your
task, remove the rest

– Can be mapped back to the original features

• Feature extraction: reparametrization

– Calculate a new, usually lower-dimensional feature space

– New features are (complex) combinations of the old features

– Mapping back to the original features (representation words)
might be difficult

Dimensionality reduction

• Feature selection

– excluding very frequent and/or very rare words

– excluding stop words ('of', 'the', 'and', 'or, ...)

• Words which are filtered out prior to processing of natural
language texts, in particular, before storing the documents in
the inverted index. A stop word list contains typically words
such as “a”, “about”, “above”, “across”, “after”, “afterwards”,
“again”, etc. The list reduces the size of the index but can
also prevent from querying some special phrases like “it
magazine”, “The Who”, “Take That”.

– remove punctuation, non-alphabetic characters

– keyphrase extraction

Dimensionality reduction

• Feature extraction: reparametrization

– Stemming and lemmatizing

– Singular value decomposition (SVD), Latent semantic
indexing/analysis (LSI/LSA)

– Principal component analysis (PCA)

– Independent component analysis (ICA)

– Random projection (random indexing)

Dimensionality reduction -> Feature extraction

-> Stemming and lemmatizing
• Lemmatizing: Finding the base form of an inflected word

(requires a dictionary)
– laughs -> laugh, matrices -> matrix,
– Helsingille -> Helsinki, saunoihin -> sauna

• Stemming is an approximation for morpological analysis (a
set of rules is enough). The stem of each word is used
instead of the inflected form.

• Examples:

Stem Word forms

laugh- laughing, laugh, laughs, laughed

galler- gallery, galleries

yö- yöllinen, yötön, yöllä

öi- öisin, öinen

saun- saunan, saunaan, saunoihin, saunasta, saunoistamme

Stemming is a simplifying solution
and does not suit well for
languages like Finnish in all NLP
applications. For one basic word
form there may be several stems
for search (e.g. "yö-" and "öi-" in
the table refer to the same base
form "yö" (night))

VSM: (3) Dimensionality reduction -> Feature extraction

-> Singular value decomposition (SVD)

• Latent Semantic Indexing (LSI) finds a low-rank approximation to the original
term-document matrix using Singular Value Decomposition (SVD).

• W is a document-word matrix, the elements of which contain a value of a
function based on the number of a word in a document

– E.g., using normalized entropy of words in the whole corpus

– Often tf-idf weighting is in use.

• A singular value decomposition of rank R is calculated:

SVD(W): (W) = USVT

in which S is a diagonal matrix which contains the singular values in its
diagonal, U and V are used to project the words and documents into the latent
space (T: matrix transpose).

• SVD calculates an optimal R-dimensional approximation for W.

• A typical value of R ranges between 100 and 200.

http://xieyan87.com/2015/06/stochastic-gradient-descent-sgd-singular-value-decomposition-svd-algorithms-notes/

VSM: (3) Dimensionality reduction -> Feature extraction

-> Random projection

• A random matrix is used to project data vectors into a lower dimensional
space while the distances between data points are approximately preserved.

– ni - original document vector for document i

– R - random matrix, the columns are normally distributed unit vectors.
Dimensionality is rdim × ddim, in which ddim is the original dimension
and rdim the new one, rdim << ddim

– xi - new, randomly projected document vector for document i, with vector
dimension rdim.

xi = Rni

• It is essential that the unit vectors of the projection matrix are as
orthogonal as possible (i.e. correlations between them are small). In R, the
vectors are not fully orthogonal but if rdim is sufficiently large, and the
vectors are taken randomly from an even distribution on a hyperball, the
correlation between any two vectors tends to be small.

• The values used for rdim typically range between 100 and 1000.

Weighting and normalization

(Positive) pointwise mutual information

● Alternative to tf.idf weighting

● What is the probability of word w occuring in context c, P(w,c)

compared to the probability of word w P(w) and context c P(c) if

they occur independently of each other?

● Pointwise mutual information:

● Negative values are unreliable unless corpora is enormous

○ Positive pointwise mutual information by setting all negative

values to zero

Weighting and normalization

• Length Normalization
– Vector length affects e.g. Euclidean distance calculation

– L1 Norm: Divide every item of a vector with the Manhattan distance i.e. City Block
distance

– L2 Norm: Divide every item of a vector with the Euclidean length of the vector

– Not required for cosine distance

Word vectors

● Words represented by their context as vectors

● Proximity in vector space indicates semantic or functional similarity

dog

cat

hat

Vector similarity

such as cosine

Similarity / distance measures

Comparison of similarity / distance measures

• Application: document classification accuracy (on y axis) when using
dimensionality reduction to 2-1000 dimensions (on x axis) on two data sets
CLASSIC and REUTERS

Paukkeri, Kivimäki, Tirunagari, Oja,
Honkela 2011: Effect of Dimensionality
Reduction on Different Distance Measures
in Document Clustering. LNCS 7064.

Group discussion in breakout rooms

• What are the benefits of the distributional semantics?

• What kind of problems there might be?

• What kind of applications can you come up with?

Distributional semantics - benefits and
problems

● What are the benefits of distributional semantics?
○ Easy to make calculations if you have enough data
○ Many application areas

● What kind of problems might arise?
○ Polysemy may be an issue if the different senses are not

taken into account separately, the representation may be a
mix of all senses or might just represent one sense and not
necessarily the most relevant in general usage

○ The symbol grounding problem: we are still stuck at the level
of words. Knowing X and Y are similar does not tell us
anything about what X and Y are unless we know what
something similar to them is.

Applications?

● Document clustering / classification
○ Finding similar documents
○ Finding similar words

● Word disambiguation
● Information retrieval
● Term discrimination
● Sentiment analysis
● Named entity recognition
● Even brain research: See for example Kivisaari et al. 2019.

○ https://www.nature.com/articles/s41467-019-08848-0

https://www.nature.com/articles/s41467-019-08848-0

Predict(ive) models

● Based on neural language modeling
● Language model: Predict the next word from a sequence of words

○ P(𝘸n |𝘸1,𝘸2,𝘸3,…𝘸n-1)

● Language modeling is used for example in speech recognition,
machine translation, part-of-speech-tagging, handwriting
recognition

● Represent the ‘meaning‘ of the word with a vector for which the
features are learned from data

● Predictive vector space models are usually called ‘embeddings’

Neural language modeling (briefly)

• Replace word with continuous-

valued vector representation

• Parameters are the values in the

vector, shared across words

• The NN learns to map a sequence

of features to a prediction of

interest

• Generalizes to unseen examples

http://www.scholarpedia.org/article/Neural_net_la

nguage_models,
Creative Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License

http://www.scholarpedia.org/article/Neural_net_language_models
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US

Word2Vec

• Computationally efficient algorithm family for learning dense word
embeddings
• dimensionality of vector usually [100...1000]

• Readily available in good Python and C packages

• Two architectures: skip-gram and continuous bag of words (CBOW)
• Computational example:

• Skipgram model
• Finnish Internet corpus
• 2B words in little over 10 hours
• with 4 cores

Word2vec demo

• http://epsilon-it.utu.fi/wv_demo/
Thanks to Turku NLP group, especially Assistant Prof. Filip Ginter

• Examples in Finnish and English

• Nearest neighbors and similarity
• Analogy

• Try it out yourself! Post suggestions in the chat
• Let me know about online demos in other languages

• Compare Google News English results with Danish State Library
demo on Project Gutenberg corpus

• http://labs.statsbiblioteket.dk/dsc/

http://epsilon-it.utu.fi/wv_demo/
http://labs.statsbiblioteket.dk/dsc/

Word2vec architecture(s)

• Continuous Bag-Of-Words (CBOW):
Predict target word given context

• Skip-gram: Predict each context word
given the target word

• Negative sampling: Learn to
distinguish correct target from noise
words

• Computationally less intensive:
calculate logistic regression instead
full probabilistic model

CBOW architecture

https://www.tensorflow.org/tutorials/word2vec/
Creative Commons Attribution 3.0 License

https://www.tensorflow.org/tutorials/word2vec/
http://creativecommons.org/licenses/by/3.0/

Algorithms

Negative sampling

• Minimize the log-likelihood of the negative

instances

• Distinguish target word wt from k draws

from the noise distribution Pn(w) using

logistic regression

• k negative samples for each data sample

• Small data sets: k = [5..20]

• Large data sets: k = [2..5]

Hierarchical softmax

• Softmax to calculate the log-

likelihood computationally

infeasible

• Hierarchical approximation

• Calculate only log2(W) instead of

W nodes in NN

• Word2vec uses binary Huffman

tree

Maximize the log-likelihood for skipgram:

Subsampling

• Another way to speed up the process
• Imbalance between the most frequent and the rarest words

• ‘a’, ‘an’, ‘the’ vs. ‘broccoli’
• Do not use all of the instances in the training corpus
• Discard a word with probability

t = threshold, f(x), f(x) =the frequency of the word

Performance

● architecture: skip-gram (slower, better for infrequent words) vs
CBOW (faster)

● the training algorithm: hierarchical softmax (better for infrequent
words) vs negative sampling (better for frequent words, better
with low dimensional vectors)

● sub-sampling of frequent words: can improve both accuracy and
speed for large data sets (useful values are in range 1e-3 to 1e-5)

● dimensionality of the word vectors: usually more is better, but not
always (usually range of 100-1000 is used)

● context (window) size: for skip-gram usually around 10, for CBOW
around 5

Ref: https://code.google.com/archive/p/word2vec/

Beyond single words

• Extended to phrases that occur often together but rarely separate

• ‘Toronto Maple Leaves’

• ‘New York Times’

• Add into lexicon as individual items

• Analogy tasks (work at least in English)

• ‘King’ - ‘man’ + ‘woman’ = ‘queen’

• Word2vec works surprisingly well with element wise addition

• ‘French + actress’ = ‘Juliette Binoche’

• ‘Vietnam + capital’ = ‘Hanoi’

• Models for phrases, sentences etc: Simple averaging of vectors in a

sentence, doc2vec, Word Movers Distance etc..

Other word-level models

● GloVe:
○ Not only local context
○ takes global word-word co-occurrence statistics into account

● FastTEXT:
○ Based on skipgram model
○ subword level

■ for example n = 3
■ “where”: “wh”, “her”, “ere”, “re”
■ n=3...6, but different segmentations are possible

○ Word vector is the sum of character ngram vectors
○ Representations for unseen words are possible

Contextualized representations

● Word2vec and other such models are context-independent at
word level:
○ one single representation for an single word
○ do not capture polysemy well

● Enter contextualized representations
○ ULMFit, GPT and GPT2, ELMo and BERT (among others)
○ Based on transfer learning
○ Details will be covered at a later lecture

BERT

● Bidirectional Encoder Representations from Transformers
● Huge models - you basically can’t train your own base model

○ Finnish model: 3.3 B tokens trained on Puhti supercomputer at CSC on 8
Nvidia V100 GPUs for 12 days per model

○ Finnish Sentence BERT demo: http://epsilon-it.utu.fi/sbert400m

● Base models available for fine tuning!
○ Google: English, Chinese (simplified) and multilingual BERT
○ Turku NLP: FinBERT in Finnish
○ CamemBERT in French
○ Deepset.ai: German BERT
○ Russian and Slavic BERT

● Tools:
○ For example: Huggingface Transformers

■ many model architectures available in addition to BERT: GPT, GPT2,
Transformer-XL, XL-Net,XLM, RoBERTa, DistilBERT, CTRL, ALBERT, T5,
XLM-RoBERTa, MMBT, …

○ BERT as a service

http://epsilon-it.utu.fi/sbert400m
https://github.com/google-research/bert
http://turkunlp.org/FinBERT/
https://camembert-model.fr/
https://deepset.ai/german-bert
http://docs.deeppavlov.ai/en/master/features/models/bert.html
https://github.com/huggingface/transformers
https://github.com/hanxiao/bert-as-service

Information retrieval (IR)

• A traditional research area, currently part of NLP research
• Information retrieval from a large document collection
• Produce an indexed version (e.g. vector space) of the collection
• User provides a query term/phrase/document
• Query is compared to the index and the best matching results

are given

• Example: Google search engine

IR: More terminology

• Index term: A term (character string) that is part of an index. Index terms
are typically full words but can also be, for instance, numerical codes or word
segments such as stems.

• (Inverted) index: The purpose of using an index is to optimize speed and
performance in finding relevant documents for a search query. Without an
index, the search engine would scan every document in the corpus, which
would require considerable time and computing power.

• Relevance: How well the retrieved document(s) meet(s) the information
need of the user.

• Relevance feedback: Taking the results that are initially returned from a
given query and to use information about whether or not those results are
relevant to perform a new query. The feedback can be explicit or implicit.

• Information extraction: A type of information retrieval for which the goal
is to automatically extract structured information, i.e. categorized and
contextually and semantically well-defined data from a certain domain, from
unstructured machine-readable documents.

IR Traditionally: Exact match retrieval

• No NLP processing of the query nor index
• Often Boolean queries (AND, OR, NOT) can be used

• e.g. Q = (mouse OR mice) AND (dog OR dogs OR puppy OR
puppies) AND NOT (cat OR cats)

• Works well for small document sets and if the user is experienced with IR
• Problems especially with large and heterogeneous collections:

– Order: The results are not ordered by any meaningful criteria.
– Size: The result may be an empty set or there may be a very large

set of results.
– Relevance: It is difficult to formulate a query in such a manner that

one would receive relevant documents but as small number of non-
relevant ones as possible.

– One cannot know what kind of relevant documents there are that do
not quite match the search criteria.

IR: Ranking of query results

• Most IR systems compute a numeric score on how well each
object in the database matches the query

– Distance in the vector space

– Content and structure of the document collection can be
used

– Number of hits in a document

– Number of hits in title, first paragraph, elsewhere

– Other meta information in the documents or external
knowledge

• The retrieved objects are ranked according to this numeric
score and the top ranking objects are then shown to the user.

• For instance, Google’s PageRank is a link analysis algorithm
that assigns a numerical weighting to each element of a
hyperlinked set of documents. The purpose is to measure its
relative importance within the set.

https://fi.wikipedia.org/wiki/PageRank

IR: Indexing & VSM

• The documents in the document collection are processed in the similar way
as in the vector space modelling

– Preprocessing

• removing punctuation

• removing capitalization

• stemming / lemmatizing

– Defining word-document matrix

– Weighting and normalizing

• Tf.idf

• …

• The queries are then mapped to the same vector space

• The relevance is assessed in terms of (partial) similarity between query and
document.

• The vector space model is one of the most used models for ad-hoc retrieval

IR: Evaluation

• N = number of documents retrieved (true
positive + false positive)

• REL = number of relevant documents
in the whole collection (true positive + false
negative)

• rel = number of relevant documents in the
retrieved set of documents (true positive)

• Precision P: the number of relevant documents retrieved by a search divided by the
total number of documents retrieved by that search,

P = rel/N = true positive / (true positive + false positive)
• Recall R: the number of relevant documents retrieved by a search divided by the

total number of relevant documents
R = rel/REL = true positive / (true positive + false negative)

• An inverse relationship typically exists between P and R. It is not possible to increase
one without the cost of reducing the other. One can usually increase R by retrieving a
larger number of documents, also increasing number of irrelevant documents and
thus decreasing P.

http://en.wikipedia.org/wiki/Precision_and_recall

IR: Evaluation

• F-measure

– Precision and Recall scores can be combined into a single measure, such
as the F-measure, which is the weighted harmonic mean of P and R:

• Accuracy

– Not a good measure if the number of relevant documents is small, which
is the case usually in IR

(true positive + true negative)/(true positive + true negative + false
positive + false negative)

• Method comparison

– Different IR methods are usually compared using precision (P) and recall
(R) measures or the F-measure over a number of queries (e.g. 50), and
the obtained averages are studied.

– A statistical test (e.g. Student’s t-test) can be used to ensure the
statistical significance of the observed differences.

IR: Various data types

• In addition to text documents (in any language) there are also
other types of data to be retrieved, such as

– Pictures (image retrieval)

– Videos (video/multimedia retrieval)

– Audio (speech retrieval, music retrieval)

– Data/Document classifications, tags, categories (e.g. hashtags),
graphs, …

– Cross-language information retrieval

• How can these types of documents be retrieved using previously
seen information retrieving methods?

Required reading for this lecture

● Mikolov, Tomas, et al. "Efficient estimation of word representations
in vector space." arXiv preprint arXiv:1301.3781 (2013).
https://arxiv.org/pdf/1301.3781.pdf

● Mikolov, Thomas, et al. Distributed representations of words and

phrases and their compositionality Advances in neural information

processing systems. 2013. https://papers.nips.cc/paper/5021-

distributed-representations-of-words-and-phrases-and-their-

compositionality.pdf

● Baroni, Marco, Georgiana Dinu, and Germán Kruszewski. "Don't
count, predict! A systematic comparison of context-counting vs.
context-predicting semantic vectors." ACL (1). 2014.
http://anthology.aclweb.org/P/P14/P14-1023.pdf

https://arxiv.org/pdf/1301.3781.pdf
http://anthology.aclweb.org/P/P14/P14-1023.pdf

References
Distributional semantics

Firth, John R. 1957. A synopsis of linguistic theory 1930–1955. In Studies in linguistic analysis, 1–32.

Oxford:Blackwell.

George Miller and Walter Charles. 1991. Contextual correlates of semantic similarity. Language and Cognitive

Processes, 6(1):1–28.

Vector space models and neural language models

Baroni, Marco, Georgiana Dinu, and Germán Kruszewski. "Don't count, predict! A systematic comparison of context-

counting vs. context-predicting semantic vectors." ACL (1). 2014.

Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781

(2013). https://arxiv.org/pdf/1301.3781.pdf

Mikolov, Thomas, et al. Distributed representations of words and phrases and their compositionality Advances in

neural information processing systems. 2013. https://papers.nips.cc/paper/5021-distributed-representations-of-

words-and-phrases-and-their-compositionality.pdf

Yoshua Bengio (2008) Neural net language models. Scholarpedia, 3(1):3881.

Tensorflow Tutorials:

Word2vec https://www.tensorflow.org/tutorials/word2vec/

Other models

Bengio et al: http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Collobert et al: https://ronan.collobert.com/pub/matos/2008_nlp_icml.pdf, and https://arxiv.org/abs/1103.0398

Huang et al. , GloVe: http://nlp.stanford.edu/pubs/HuangACL12.pdf

Turian et al: http://www.aclweb.org/anthology/P10-1040

https://arxiv.org/pdf/1301.3781.pdf
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://www.tensorflow.org/tutorials/word2vec/

References

(Manning, Schütze, 1999): Foundations of Statistical Natural
Language Processing. The MIT Press.

(Koehn, 2005) Europarl: A parallel corpus for statistical machine
translation. MT Summit.

(Paukkeri, 2012) Language- and domain-independent text mining.
Doctoral dissertation, Aalto University.

Figures and tables:
(Paukkeri, 2012) Language- and domain-independent text mining. Doctoral
dissertation, Aalto University.

Online tutorials and demos

● http://www.scholarpedia.org/article/Neural_net_language_
models

● https://www.tensorflow.org/tutorials/word2vec/
● https://rare-technologies.com/word2vec-tutorial/
● https://code.google.com/archive/p/word2vec/
● http://mccormickml.com/2017/01/11/word2vec-tutorial-

part-2-negative-sampling/
● http://epsilon-it.utu.fi/wv_demo/

http://www.scholarpedia.org/article/Neural_net_language_models
https://www.tensorflow.org/tutorials/word2vec/
https://rare-technologies.com/word2vec-tutorial/
https://code.google.com/archive/p/word2vec/
http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/
http://epsilon-it.utu.fi/wv_demo/

