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Systems (NeurlPS 2020), 2020.[1]

» Offline reinforcement learning (RL) algorithms typically suffer
from overestimation of the values

— E——
Aalto University Advanced topics in RL

School of Science January 26, 2022

4/60

and Technology



Highlights

Kumar, Aviral and Zhou, Aurick and Tucker, George and Levine,
Sergey, Conservative g-learning for offline reinforcement
learning, The 34th Conference on Neural Information Processing
Systems (NeurlPS 2020), 2020.[1]

» Offline reinforcement learning (RL) algorithms typically suffer
from overestimation of the values

» Conservative Q-Learning is introduced to learn a conservative
Q-function where the value of a policy under this Q-function
lower-bounds its true value

— E——
Aalto University Advanced topics in RL

School of Science January 26, 2022
Technology 5/60



Highlights

Kumar, Aviral and Zhou, Aurick and Tucker, George and Levine,
Sergey, Conservative g-learning for offline reinforcement
learning, The 34th Conference on Neural Information Processing
Systems (NeurlPS 2020), 2020.[1]

» Offline reinforcement learning (RL) algorithms typically suffer
from overestimation of the values

» Conservative Q-Learning is introduced to learn a conservative
Q-function where the value of a policy under this Q-function
lower-bounds its true value

» Works on both discrete and continuous state and action domains
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Introduction

(a) online reinforcement learning  (b) off-policy reinforcement learning (c) offline reinforcement learning

rollout data {(5i.a:.5}.71)} rollout data {(si, 2,8}, 71)} {(se,ai,80,73)).

update
Tk+1

rollout(s) rollout(s)

data collected ONCe == == == = —
with any policy training phase

Figure 1: Pictorial illustration of classic online reinforcement learning (a), classic off-policy reinforcement
learning (b), and offline reinforcement learning (c). In online reinforcement learning (a), the policy 7y, is updated
with streaming data collected by 7, itself. In the classic off-policy setting (b), the agent’s experience is appended
to a data buffer (also called a replay buffer) D, and each new policy 7 collects additional data, such that D is
composed of samples from 7o, 71, . . ., Tk, and all of this data is used to train an updated new policy mr+1. In
contrast, offline reinforcement learning employs a dataset D collected by some (potentially unknown) behavior
policy 7. The dataset is collected once, and is not altered during training, which makes it feasible to use large
previous collected datasets. The training process does not interact with the MDP at all, and the policy is only
deployed after being fully trained.

Offline reinforcement learning: Tutorial, review, and perspectives on open
problems.[2]
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» Several applications: robotics, healthcare, dialogue agents

— E——
Aalto University Advanced topics in RL
School of Science January 26, 2022

and Technology 9/60



Benefits

» Several applications: robotics, healthcare, dialogue agents

» Removes complexities with active data collection: safety, and
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Benefits

» Several applications: robotics, healthcare, dialogue agents

» Removes complexities with active data collection: safety, and
cost

» Pre-training + Fine tuning
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Preliminaries: Basic RL

> Agent
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Preliminaries: Basic RL

vVvvyVvyVvyyy

Agent

state: s

action: a ~ w(a|s)

reward: r(als)

RL objective: max, /4 Es, an[v!r(st, ar)]

Q-function: Q™(st, a) = Ztr,:tEs@a;wh"—’r(s;, aj)|st, ail
Learn Q-function B*Q™(s, a) = r(s, a) + YEg.[maxy Q(s', d)]
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Preliminaries: Basic RL

» Agent
> state: s
» action: a ~ w(als)
> reward: r(a|s)
> RL objective: max, 374 Es, ar[7'r(st, at)]
» Q-function: Q" (sy, at) = ZtT,:tEsgya;w[fy"—’r(sg,a’t)|st,at]
> Learn Q-function B*Q™(s, a) = r(s, a) + 7Eg ~-[maxy Q(s', &)]
» Enforce Vs, minimize )
i | Q(s,8) — (s, @) +1Egr[max Q(s', &)
y
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Preliminaries: General actor-critic algorithm

» 2 function approximators
» mg(a|st): Input: s;, Output: 7(at|st), given 6
> Qy(s, a): Input: s¢, a, Output: Q(s, a), given ¢

Policy evaluation and policy improvement

. . 2
OF ! «arg Hgn Eg as'~D [((r(s, a) +VEqu ik arjsr) (0%, a)]) — Q(s, a)) ] (policy evaluation)

AT arg max Egp,anrk(als) [QHI(S, a)] (policy improvement)
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Offline RL

> D= {(s,a,r,s)} collected from g
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Offline RL
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Offline RL

D = {(s,a,r,s')} collected from 73
s~ d"5(s)

a~ mg(als)

s’ ~ p(s'|s, a)
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Offline RL

> D= {(s,a,r,s)} collected from g

> s~ d™(s)

> a~ms(als)

> s’ ~p(s'[s, a)

> r

_A Aalto Univergity Am

School of Science Januar y 26, 2022
and Technology 29/60



Offline RL

> D= {(s,a,r,s)} collected from g
> s~ d™(s)
> a~ mg(als)
> s~ p(s']s.a)
> r
» RL objective
A T



Why Offline RL works?

» Good stuff in D
» Generalization
» Stitching
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Why Offline RL does not work?

Overfitting

e This is not a statistical overfitting issue -- performance is bad (and doesn’t

improve) even with infinite data.

1000

750

e This is really about data 50
distribution shift and tackling =
out-of-distribution values. ’

~250 4

=500

Half-cheetah with expert data Y( e

~1000

HalfCheetah-v2: AverageReturn

— n=1000
~— n=10000
= n=100000
— n=1000000

0.
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TrainSteps

© HalfCheetah-v2: log(Q)

— n=1000
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Distribution shift

» Most RL algorithms estimate a “value” “goodness” of the policy
and use this metric to improve
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Distribution shift

» Most RL algorithms estimate a “value”/ “goodness” of the policy
and use this metric to improve

> False optimism can easily arise: can overestimate policy values
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Distribution shift

» Most RL algorithms estimate a “value”/ “goodness” of the policy
and use this metric to improve

> False optimism can easily arise: can overestimate policy values

» Turns out that the resulting policy is significantly worse, due to
the curse of horizon
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Distribution shift

Most RL algorithms estimate a “value”/ “goodness” of the policy
and use this metric to improve

False optimism can easily arise: can overestimate policy values
Turns out that the resulting policy is significantly worse, due to
the curse of horizon

Typically online RL methods based on active data collection can
correct for this issue with carefully designed exploration
strategies

|

E——
Aalto University Advanced topics in RL
School of Science

and Technology



Solutions to mitigate distributional shift

» Policy constraints: constrain the learned policy
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Solutions to mitigate distributional shift

» Policy constraints: constrain the learned policy

» Uncertainty estimation: estimate the epistemic uncertainty of
Q-values, and then utilize this uncertainty to detect distributional

shift
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Policy constraints

Q(Sa a) A r(S, a) + ’YEa’Nrrg(a’|s’)[Q(3,a a/)] (1)
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Policy constraints

Q(Sa a) A r(s, a) + ’YEa’Nrrg(a’|s’)[Q(3,a a/)]

Ty = arg rTJr:;x]EsND’aNﬂg(am)[Q(S, a)] s.t. D(mp, mp) < € (2)
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Policy constraints

Q(s,a) Q(s,a) B
)
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Policy constraints

Q(s,a) Q(s,a) B

Q(s,a)

Action support a “Action support @
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Next

Conservative Q Learning
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Penalize the Q-functions directly

Option 1

Q(s,a) + r(s,a) + VEgny(a1s)[Q(S, &)] — aD(7g, 75) (3)
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Penalize the Q-functions directly

Option 1

Q(s,a) + r(s,a) + VEgny(a1s)[Q(S, &)] — aD(7g, 75) (3)

Option 2
Better way to do it automatically?
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CAQL: Learn lower bound Q-function

cQL-vi
] 1
QCQL(sv a) = arg mén ml?x ]EsN’DIEafvu(a]S)[Q(s’ a)] + E]Es,a,s'N‘D [(Q(S, a) - y(s, a))?]

Vs € D, a, QCQL(S,a) < Q(S7a)
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CAQL: Learn lower bound Q-function

cQL-vi

. 1
QcqL(s,a) := arg rrgn mﬁx Es~pEanp(als)[@Q(s, a)] + E]Es@’sl,\,p [(Q(s,a) - y(s,a))2]

Vs € D, a, QCQL(S, a) < Q(s,a)

Theorem 3.1. For any p(als) with supp j C supp 7, with probability > 1 — §, Q™ (the Q-function
obtained by iterating Equation 1) satisifies:

—1 CT,T,SRmax (S )
(1=7vID|

Thus, if « is sufficiently large, then Q™ (s,a) < Q™ (s,a),Vs € D,a. When B™ = B™, any e > 0
guarantees Q7 (s,a) < Q" (s,a),Vs € D,a € A

(1 =~P7)

Vs € D,a, Q"(s,a) <Q"(s,a)—« {(I — WIP")_1 frﬁ] (s,a)+
B
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CAQL: Learn tighter lower bound Q-function

Qeau(s,8) = 08 o s (Ba-oEan @00, 8)] - B nlQ0, ) + - Eumon [(@(5,0) - (5,80
Vs € D,a, Qcqu(s,a) < Q(s, a)x
VseD, Voquis) <V(s) o
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CQL: Learn tighter lower bound Q-function

caLv Minimize the big Qvalues  Maximize the data Qvalues  Standard TD error

X : S 1 2

Qoau(s,a) = arg minmax  (ByepEavu(us)Q(5:)] ~ Esarn[Q(5,a)) + 5 Enaw~n [(@(6:2) - u(s,))"]
Vs € D7a7 QCQL(S7a) S Q(S, a)x
VseD, Voquis) <V(s) o

Theorem 3.2 (Equation 2 rgsults in a tighter lower bound). The value of the policy under the Q-
function from Equation 2, V™ (s) = Ey(ajs)[Q7 (s,a)], lower-bounds the true value of the policy
obtained via exact policy evaluation, V™ (s) = Eqr(as)[Q" (s, )], when i = 7, according to:
Vs €D, V™ (s) < V(s)—a [(1 — 4P E, {L - 1” (8)+ | (1 = )=t Crits Bmax | ()
g (1 =7)VIPl
" Thus, ifar > S0 maxyep —L—. [50, m(als) (285 — 1)] " vseD, (s) < V(s =
’ T—y s€D 1 /InGs) L& 75 (als)) ’ ’ =

s -
)

! with probability > 1 — 6. When B™ = BT, then any a > 0 guarantees V™ (s) < V™(s),Vs € D.



CaL

Hgn IHSX «@ (ESN’D,awu(a\s) [Q(Sv a)] - Esw’D,a~frg(a|s) [Q(S’ a)])

+3 Buneen |(Qs.) - 870 s) | + 700 (cauR). @)
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CQL: Algorithm

Algorithm 1 Conservative Q-Learning (both variants)

. Initialize Q-function, D¢, and optionally a policy, 7.
for steptin{1,...,N} do
Train the Q- functlon using G gradient steps on objective
from Equation 4
Oy =01 —ngVeCQL(R)(0)
(Use B* for Q-learning, B™¢¢ for actor-critic)
4:  (only with actor-critic) Improve policy 74 via G gradient
steps on ¢ with SAC-style entropy regularization:
Pt = Pr—1 + NrEsp ann,(-1s)[Qo(s, a) —log mg (als)]
5: end for
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Conclusion

» CAQL can prevent overestimation via learning lower-bound

Q-values
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Conclusion

» CAQL can prevent overestimation via learning lower-bound
Q-values

» CQL seems promising to directly apply to real-world tasks.
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Conclusion

v

vvyyypy

CQL can prevent overestimation via learning lower-bound
Q-values

CQL seems promising to directly apply to real-world tasks.
How should we detect overfitting?
How should we perform cross-validation?

How should we integrate offline RL methods with online data
collection?
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