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Highlights

Kumar, Aviral and Zhou, Aurick and Tucker, George and Levine,
Sergey, Conservative q-learning for offline reinforcement
learning, The 34th Conference on Neural Information Processing
Systems (NeurIPS 2020), 2020.[1]

▶ Offline reinforcement learning (RL) algorithms typically suffer
from overestimation of the values

▶ Conservative Q-Learning is introduced to learn a conservative
Q-function where the value of a policy under this Q-function
lower-bounds its true value

▶ Works on both discrete and continuous state and action domains
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Introduction

0Offline reinforcement learning: Tutorial, review, and perspectives on open
problems.[2]
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Benefits

▶ Several applications: robotics, healthcare, dialogue agents

▶ Removes complexities with active data collection: safety, and
cost

▶ Pre-training + Fine tuning
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Preliminaries: Basic RL

▶ Agent

▶ state: s
▶ action: a ∼ π(a|s)
▶ reward: r(a|s)
▶ RL objective: maxπ

∑T
t=1 Est ,at∼π[γ

t r(st ,at)]

▶ Q-function: Qπ(st ,at) =
∑T

t ′=t Es′t ,a
′
t∼π[γ

t ′−t r(s′
t ,a

′
t)|st ,at ]

▶ Learn Q-function B∗Qπ(s,a) = r(s,a) + γEs′∼π[maxa′ Q(s′,a′)]

▶ Enforce ∀s, minimize

∑
i

Qπ(s,a)− r(s,a) + γEs′∼π[max
a′

Q(s′,a′)]︸ ︷︷ ︸
y


2
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Preliminaries: General actor-critic algorithm

▶ 2 function approximators
▶ πθ(at |st): Input: st , Output: π(at |st), given θ

▶ Qϕ(s,a): Input: st ,at , Output: Q(s,a), given ϕ

Policy evaluation and policy improvement
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Offline RL

▶ D = {(s,a, r , s′)} collected from πβ

▶ s ∼ dπβ (s)
▶ a ∼ πβ(a|s)
▶ s′ ∼ p(s′|s,a)
▶ r
▶ RL objective
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Why Offline RL works?

▶ Good stuff in D
▶ Generalization
▶ Stitching
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Why Offline RL does not work?

Overfitting



Advanced topics in RL
January 26, 2022

33/60

Distribution shift

▶ Most RL algorithms estimate a “value”/ “goodness” of the policy
and use this metric to improve

▶ False optimism can easily arise: can overestimate policy values
▶ Turns out that the resulting policy is significantly worse, due to

the curse of horizon
▶ Typically online RL methods based on active data collection can

correct for this issue with carefully designed exploration
strategies
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Solutions to mitigate distributional shift

▶ Policy constraints: constrain the learned policy

▶ Uncertainty estimation: estimate the epistemic uncertainty of
Q-values, and then utilize this uncertainty to detect distributional
shift
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Policy constraints

Q(s,a)← r(s,a) + γEa′∼πθ(a′|s′)[Q(s′,a′)] (1)

πθ = argmax
πθ

Es∼D,a∼πθ(a|s)[Q(s,a)] s.t. D(πθ, πβ) ≤ ϵ (2)
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Policy constraints
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Penalize the Q-functions directly

Option 1

Q(s,a)← r(s,a) + γEa′∼πθ(a′|s′)[Q(s′,a′)]− αD(πθ, πβ) (3)

Option 2
Better way to do it automatically?
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CQL: Learn lower bound Q-function
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CQL: Learn tighter lower bound Q-function
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CQL
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CQL: Algorithm
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Conclusion

▶ CQL can prevent overestimation via learning lower-bound
Q-values

▶ CQL seems promising to directly apply to real-world tasks.
▶ How should we detect overfitting?
▶ How should we perform cross-validation?
▶ How should we integrate offline RL methods with online data

collection?
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▶ https://www.youtube.com/watch?v=qgZPZREor5I

▶ https://www.youtube.com/watch?v=536a-CvHUZ8

▶ https://vitalab.github.io/article/2021/06/09/CQL.html

https://www.youtube.com/watch?v=qgZPZREor5I
https://www.youtube.com/watch?v=536a-CvHUZ8
https://vitalab.github.io/article/2021/06/09/CQL.html
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Thank you for listening!

Questions?
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