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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise
problems about stability FEA:

O Stability of structures and principle of virtual work for large displacements
O Aim of stability analysis and stability FEA

O Beam and plate element contributions for stability analysis
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BUCKLING EXPERIMENT
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BALANCE LAWS OF MECHANICS

Balance of mass (def. of a body or a material volume) Mass of a body is constant

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. €

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular
momentum within a material volume equals the external moment resultant acting on the

material volume. €
Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)

4-4



INITIAL AND DEFORMED DOMAINS

Assuming equilibrium on the initial domain Q°, the aim is to find a new equilibrium on the

deformed domain Q, when e.g., external forces acting on the structure are changed.

tdA

The local forms of the balance laws are concerned with the deformed domain which depends
on the displacement! Precise treatment of large displacements requires modifications in

stress and strain concepts of linear theory.
4-5



4.1 STRAIN MEASURES

A rigid body motion should not induce strains! A proper strain measure with this respect is

always non-linear in displacement components (small strain | h —h° |« h°®)

Linear strain £ = %—1 = 2& =VU+(Vl), epsilon
1. h o _ capital
Green-Lagrange E= E[(F) -1] = 2E=Vi+(VU).+Vu-(Vl), epsilon

Superscript © refers to the initial geometry and subscript ¢ denotes conjugate tensor. At the
Initial geometry, material coordinate system is usually assumed to be Cartesian so that
V=idlox+]joldoy+koloz.
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GENERALIZED HOOKE’S LAW

Under small displacement assumption, the model for an isotropic homogeneous material

can be expressed as

Exx . 1 v v Oyx Exy . Oxy
. . _ _ . -1 _ =
Strain-stress: < &yy ¢ = = v 1 —v|=[E] "{oy and &y, o= oG 10z ¢
(€22 ) v L Oz ) (E2x ) Oz |
Exy ou,, / 6x Exy . Ouy / 0y +0auy / OX
Strain-displacement: q&,, ¢ =40uy /0y and |é&y, (=) ouy oz +aou, oy ¢
£, |Ouyloz | &2x |0u, [Ox+0uy [0z

Above, E is the Young’s modulus, v the Poisson’s ratio, and G =E /(2+2v) the shear

modulus. Strain and stress are assumed to be symmetric.
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GREEN-LAGRANGE STRAIN

A rigid body motion should not induce strains! The proper strain measures with this respect

are non-linear in displacement components

(Qu, 1 3x)% + (6uy 1 6x) + (8u, /%)
-+ =1 (Quy ] 0y)” + (0uy 1 y)? +(0u, | y)?

V

Bz ) (822 (uy 1 62)* +(Quy  62)° +(du, 1 8z2)°

(Quy | OX)(Buy 1 By) +(Buy 1 3x)(Ouy 1 By) +(Bu, / Ox)(u, 1 y))
e =14 &y; (T4 (Quy [ oy)(ouy I dz) +(duy | oy)(ouy / 6z) + (0u, [ dy)(du, | oz) ¢
Ex) |&x] \(aux [ 0z)(duy 1 0x) +(ouy / 6z)(Auy 1 Ox) + (ou, / dz)(ou, /ax))

V

All measures boil down to the definition of linear displacement analysis when strains and

rotations of material elements are small!
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EXAMPLE. Consider a bar whose left end is simply supported (joint) and right end is free

to move. Displacement of the typical particle (x, y) of the bar
Uy | |(@+e&)cosa—-1  —sina ||X
Uy [ | (@+e)sine cosa—1]|y

describes rotation with angle « and length increase Ah = ¢h. Determine the linear strain

component &,, and the Green-Lagrange strain component E,,, .

12

Answer Exx=5+§5 ~¢ when|e|<land ¢, =(1+¢)cosa—1~¢ when |a| <1
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e Partial derivatives of the displacement components are
OUy | OX (1+¢&)cosa —1 ouy / oy —sina
= _ and = :
ouy / OX (1+ &)sina ouy /oy cosa —1
e Linear and Green-Lagrange axial strain components

ou, ou, 1,0u,., 1 0Ouy,

gy =—2=(1+¢g)cosa-1 and E,, =—2+— (D) +=(—D) =¢+=¢°. €
=L =(1+e) o= (4 ()

The former depends strongly on the rotation angle even when ¢ is small although pure
rotation should not cause any strains. The latter does not depend on the rotation at all.
Also, for small length changes, the Green-Lagrange strain is close to the relative change

of length &£ = Ah/h°.
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ELASTIC MATERIAL

Under the assumption of large displacements and small strains the Green-Lagrange strain

measure does not differ much from the linear setting with small displacements and small
strains. Constitutive equations

( A ( 3\ ( A s A

Eyy . 1 v —v||Sy Eyy . Sxy
1By p==|-v 1 v <Syy>and <Eyz>:£<8yz>,
(Ezz ) vV LS, (Ezx [ S2x )

with material parameters C (which replaces E), v, and G=C/(2+2v) are same as those
of the linear case, are assumed to simplify the setting. Also, the uni-axial and two-axial

(plane) stress and strain relationships follows just by using strains instead of engineering
strains and C instead of E.
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STRAIN COMPONENTS FOR BUCKLING ANALYSIS

In buckling analysis of beams and plates, the setting is simplified by using the displacement
assumptions of the small displacement theory and only the most significant terms of the

Green-Lagrange axial strain expressions:

1 dvo 1, dw,o
Beam: E,, ~ &y + (_) _(_) and Syy =CEyy,
s 3 s 3 ( 2 ) s 3 s A
Eyx Exx 1 (ow/x) Sxx Eyx
Plate: < Eyy r=<&y >+E< (8W/(9y)2 cand Sy >:[E]G< Eyw ¢
2By | |7y 2(ow/ ox)(ow/ dy) Syy 2B,y

In large displacement theory, also the displacement assumptions need to be modified to keep

the idea of rigid body motion of cross-sections (beams) or line segments (plates).
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4.2 BUCKLING OF BEAMS AND PLATES

In stability analysis, the goal is to find the critical value p. of parameter p (force, load,

displacement etc.) so that the zero and non-zero bending solutions may co-exist.

Wal




NON-LINEAR COUPLING OF THE MODES

Buckling analysis considers the coupling of the bar/ thin-slab and bending modes. There,
the bending mode is affected by the bar/thin slab mode but not the other way round.
Equilibrium equations for the Bernoulli beam model and Kirchhoff plate model bending

modes change to
Non-linear coupling of the

EIM—W—N@—O X e /thinslabandplatebending
dx* dx? |
modes
4 4 4 2 2 2
D(a—\gv+2 82""2 g . —Nxxa—‘;"—zl\lxya—w—l\lyya—‘;"zo (x,y) € Q,
OX OX“0y* oy OX OXoy oy

assuming that the axial or in-plane stress resultants of the bar mode or thin-slab mode are

constants (as one of the assumptions).
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The simplified buckling analysis also considers the effect of the normal force on

bending. By considering the equilibrium of a beam element in xz —plane

dN

—=0 x€]0,L],

dx <10, LI
M _oiNno o N
dx dx

dQ
ot =0 xelolf

where M =—EIdw/dx® and N = EAdu/dx. The more precise equilibrium equations
couple the bar and bending modes (bending mode is affected by the bar mode but not

the other way around).
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The table by George William Herbert - Own work, after Table C.1.8.1 in Steel

Construction Manual, 8th edition, 2nd revised printing, American Institute of Steel

Construction, 1987, CC BY-SA 2.5, is based on the equilibrium equation

4 2
_El d—‘;"+ Nd—\;V:O x €10, L[,
dx dx

for the xz —plane bending with a compressive N =—p. The different values in the table

are due to different boundary and symmetry conditions imposed on the generic solution

W =a+bx+csin(, /ix) +d cos(, /ix).
El El
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VIRTUAL WORK DENSITIES

The refined virtual work densities contain also the work done by the axial force in bending.
The simplified forms of Green-Lagrange strains in derivation of virtual work densities give

additional contributions (coupling terms)

T
dov/d dv/d
Beam: Swae = — VAL v WhereN:EAd—u,
dow/ dx dw / dx dx
N, | [ oulox
. sl 06w 1 0x) " [ Nxx Nyy |[ow/ ox X
Plate: owg™ =— oswioy[ | N \ oWl oy ’<Nyy>:t[E]0< ov /oy .
v N,y ou/oy+oviox

Coupling affects the bending mode only as the variations are concerned with the transverse
displacements of the bending modes.
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Derivation based on the virtual work of the external axial force, is also possible. The
axial displacement of the free end of a cantilever due to the bending only can be obtained
by considering an inextensible material element of length Ax. The length change in the

direction of the force is given by (Taylor series cos(x) =1— x2 /2 +...)

AL = Ax—AxcosHy —

dL 1 o 1, dwp
—=1-cosb, =0, =—(——
dx c05%%y 2 Y 2( dx)

L 1 dw
u(L):—jO E(&)de =

N

L déw dw X —

5U(L):—J‘O W&dx
4
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Virtual work of the external force due to the bending effect is therefore given by

W = NSu(L) =N/~ dowaw
0 dx dx

In the simultaneous bending in both directions, the length change of an inextensible

material element Ax in the axial direction is given by

1 1 1
AL = AX — AXC0S 0,080, ~ AX —Ax(l—EH)%)(l—EHZZ) ~ sz(eﬁ +6%) =

ALzAxl(dW dw dv dv

N L dowdw dovdv
2 dx dx dxdx

( +
dx dx dx dx

) = 5u(L):—J‘

0 )dx

Hence, the coupling term is the sum of coupling terms of the planar problems!
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4.3 STABILITY FEA

O Model a structure as a collection of beam, plate, etc. elements. Derive the element
contributions oW € = oW + sW &t + sWS? in terms of the nodal displacement and

rotation components of the structural coordinate system.

O Sum the element contributions to end up with the virtual work expression of the structure

oW = ZeeE SW €. Re-arrange to get W = —5aTR(a).

O Use the principle of virtual work sW =0 Va and the fundamental lemma of variation
calculus for saeR" to deduce the equilibrium equations R(a)=0. Finally, find the
values of the loading parameter p making the solution non-unique. In practice, solve for
the bar/thin slab modes from the linear part and use the solution to express the axial and

In-plane stress resultants of the non-linear terms in terms of p.

4-21



BAR MODE

In terms of the nodal axial forces Nyq, Ny» and nodal displacements uy,, uy» Vvirtual work

expressions of the internal and external forces take the forms
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BENDING MODE (xz-plane)

In terms of the shear forces Q;, Q,,, bending moments My;, My, displacements Uy,

transverse displacements Uy, U,,, and rotations 6y, 6y, virtual work expression of internal

forces
0,1
(Suy )" [Qy ) (Q, ] (12 —6h -12 —6h](uy ]
| 50 M M El,, | -6h 4h% 6h 2n?||0
é\N'nt:—< y1> 4 y1> where < yl>:_3yy 3 yl>.
5U22 sz sz h —12 6h 12 6h U,o
50y2] My, My, —6h 2h* 6h 4h® |02
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BENDING-BAR COUPLING (xz-plane)

Assuming a cubic approximation to w(x) of nodal displacements/rotations u,;, U;p, 6y,

and 6,,, and a linear approximation to u(x) of the nodal displacements uyq, Uy»

y2:
Ux1
0,1
(su, )" [36 -3h 36 -3h7|(u,
60 —3h 4h®> 3h -h?||¢ _
swsta )l N < y1>’ where N = EaYx2 ~Ux
Su,,| 30h[-36 3h 36 3h [|u, h
50y2 —3h —h%® 3h  4h%||Oy2

4-24



EXAMPLE 4.1 Consider a simply supported beam loaded by a compressive axial force p
acting on the right end. Assuming that displacement is confined to the xz —plane, use a

single beam element to determine the buckling force p.,. Cross-section properties A, | and

Young’s modulus E are constants.

Answer pg, :12E—2I (exact to the model p., = 72 E—2|
L L
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The non-zero nodal displacements/rotations are &1, &/,, and uy,. Virtual work
expression for the beam SW!=oW'"™ +sWS? and the point force SW? are (here

N = EA(Uy» —Uyq)/h=EAuy, /L)

swl=_su Eu B o6y 1 Tﬂ 4 21|64 - OB 1 T& 4 —11(6
= X 2 L X2 56y - L2 4|\&> S5 5 0(-1 4||&, ,
MZZ_p&UXz.

Virtual work expression is sum of the element contributions

(Suy o) 1‘EA 0 0] n 0 0 0] (uy,) [p)
OW =~ 6y | [7| 0 4EI 2E +%0 4 -1)la,lviol]
S6,] | 0 2B 4E1 0 -1 4] &, |0

Principle of virtual work and the fundamental lemma of variation calculus imply that
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EA 0 0
(% 0 4ElI 2El
0 2El A4El

N EAUX 2
30

0 0 0
0 4 -1
0 -1 4

)<

Ux 2

&1 r 7+ <

\&2) \

The remaining task is to solve the (non-linear) equations for the values of the loading

parameter p and the corresponding modes. Solving for the axial displacements (and

thereby the axial forces) of the beams allowed to buckle as functions of the loading

parameters is always the first step. The first equation gives

%EAUX2+p=O < Uyxo =—

pL
EA

When the solution is substituted there, the remaining equations simplify to the

homogeneous form
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(54 2_p_L4—1)6\(1_
L2 4| 30|-1 4[|6,]

A non-trivial solution (zero rotations satisfy the equations always) is possible only if the
matrix in parenthesis is singular

El|4 2| pL El pL.>
det(T{z 4}30{ 1 4}) “ )_(_ fa0) =0 =

|oL2

e{12,60}.

e The smallest of the values is the critical one

—12E . €&

L2
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e Stability analysis by the Mathematica code gives

| model properties geometry
1 | BEAM ({E, G}, {A, I, I}} Line[{1, 2}]
2 FORCE {-p, 0, 0) Point[{2}]

| {X,Y,Z} {ux,uy,uz} {Ox,6v,07}
1 {0, 0, 0} {0, 9, 0} {0, 6Y[1], @}
2 | {L, ©, 0} {uX[2], 9, 0} {0, 6Y[2], 0}

p(l] - 2 {uxX(2] -0, 6Y[1] -1, 6Y[2] -1}

p[2] - 12L§I [uX[2] =0, 6Y[1] » -1, 6Y[2] > 1)
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EXAMPLE 4.2 Consider the truss shown in which elements 1 and 3 are modelled as bars
and element 2 as a beam. Determine the critical value of force F for buckling of the beam
element. Cross-sectional area of element 1 and 3 are \@A. Cross sectional area of element

2 1s A and the second moment of area I. Young’s modulus of the material is E. Assume that

Gz =—b>.

Answer F, = 36E

L2
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e The non-zero nodal displacements/rotations are & ,, & 3 =—65, Uz,, and u, 3. Virtual

work expressions of the elements are (here the axial force is given by
N = EA(uyp —Uy3)/ L=EA(uzz —uzp) /L)
(Suyz)' 1 0 0]fu
1 —oUz3 ! EVSA[ 1 —1](-uys 231 EA Z3
OoW™ =— — :<5U22> —10 0 O<U22>,
0 JsL|-1 1| o L
L7y 0 0 0]|&>)
( \T B _r 3
5U23 1 EA —-EA 0 Uz3
W2 =—15Uzs (-|-EA EA 0 {Usy b,
O%2) | 0 0 4EI+NL%/3|(&2)
T (Suzz)' [0 0 0](u
OW "~ =— —_— =<5U22> —0 1 O<U22>
~O6Uz5| 8L |-1 1 ||-uy, L
L7y 0 0 0]\ &>
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(5u23\ O\
é\N4=5U22F=<5U22> <F L.
\5@2) \O)

Virtual work expression is the sum of element contributions

(Suzs)'  |[2EA -EA 0
SW = 18Uy, ! (% ~EA 2EA 0
O%2) | 0 0 4EI+NL?/3]

Principle of virtual work and the fundamental lemma of variation calculus imply that

OEA —EA
1 _En 2EA
L

0 0

0 | KUZB\
0 <UZZ
4El +NL? /3| %2 ]

=0 where N :%(uzg—uzz)-

=7

Uz3
uzo




The remaining task is to solve the (non-linear) equations for the values of the loading
parameter F making the solution non-unique (the corresponding modes might be of

some interest also). The first two equations give

E 2 -1 Uz3 B 0 0 o Uz3 B FL |1
L|-1 2 ||uzg| |F uy»| 3EA|2]
When the solution is substituted there, the axial force expression and the remaining third

equation give

EA F 1 FL2
N=—-1(U-2—U =—— = ({4El ———— =0.
2 (Uz3—Uz>) 3 ( 273 )& 2

A non-trivial solution &, , # 0 is possible only if
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2
sE-FE 0 o B o3l €
9 | 2

Stability analysis by the Mathematica code gives

model properties geometry
1 BAR [{E}, {2\/5;’-\}} Line[{1, 3}]
2 BEAM ({E, G}, {A, I, I}) Line[{2, 3}]
3 BAR [{E}, {22 A}} Line[ {4, 2}]
4 FORCE {0, 0, F) Point [{2}]
{XJYJZ} {UXJUYJUZ} {@XJ@YJ@Z}
1 {0, 0,0} {0, 0, 0] {0, 0, 0}
2 | (L,@0,0) {@,0,uZ[2]} {0, 06Y[2],0)
3 {L, 0, L} {0, 0, uZ[3]} {6, -6Y[2], 0}
4 | {0,0,L} {0,0,0) {0, 0, 0)

Fl1] » 25% (uZ[2] -0, uZ[3] >0, 6Y[2] > 1}

L2
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4.4 ELEMENT CONTRIBUTIONS

Virtual work expressions for the beam and plate elements combine virtual work densities of

the model and approximation depending on the element shape and type. To derive the

expression:
O Start with the virtual work densities SwiSt, Swgi, and Sw& of the formulae collection.

O Represent the unknown functions by interpolation of the nodal displacement and
rotations (see formulae collection). Substitute the approximations into the density

expressions.

O Integrate the virtual work density over the domain occupied by the element to get oW .
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ELEMENT APPROXIMATION

In MEC-E8001 element approximation is a polynomial interpolant of the nodal
displacement and rotations in terms of shape functions. In stability analysis, shape functions

depend on x, y, and z.

Approximation u=N'a always of the same form!
Shape functions N ={N{(x,y,z) N»(X,y,z) ... Np(x,y,z)}
Parameters a={a; a, .. ap}

Nodal parameters ae{uy,uy,u;,6y,6y,6,} may be just displacement or rotation

components or a mixture of them (as with the beam model).
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BEAM MODEL

fZ
o, LTI

Uy1>0x1 \ X X
—> |® ) >
Uy1,6)1 l Uz1,0: Uyn,6y0 Y 4225022
h
Z -% -
Coupling term: Swg? __dovydv_dow, dw . where N = eadY
dx dx dx dx dx

The additional coupling term is part of the virtual work density of internal forces
Swigy = (S + Sy ) + Sy and assumes that S, =S, = 1, = 0. The coupling of the bar

and bending modes is the most significant non-linear term.
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The coupling terms of the bending and bar modes follow from the large displacement
virtual work expression and displacement assumptions. For the beam model
Uy =u—zdw/dx—ydv/dx, uy,=v(x), and u, =w(x). Considering only the most
significant terms of the Green-Lagrange axial strain expression

du d°w d®v 1,dv

E.=—-12 +—(—
*odx T gx? yd2 2(dx

1 dw
2 dx

)% + ) and Syx =CEyy,

X
Integration of swht =_s E.Syx OVer the cross-section gives the virtual work densities

of the bar mode, bending modes, and the additional coupling term. Assuming that

Sy =3; =1y, =0, the additional coupling term takes the form

suge = _dV v _dow  dw e N =AY,
dx dx dx dx dx
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BENDING-BAR COUPLING (xz-plane)

Assuming that v=0, ¢=0, a cubic approximation to w(x) in terms of nodal

displacements/rotations u,, U;p, 6y, and 6y, and a linear approximation to u(x) in terms

of the nodal displacements uyq, Uy,

(su, )" [36 -3h 36 -3h|(u,

60 —3h 4h®> 3h -h?||¢ _
swsta =)oyt N ;o L where N = EAZx2 ~Ux

Su,,| 30h[-36 3h 36 3h [|u,

60y2 —3h —h® 3h 4h®||Y2)
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e Virtual work density of the bending-bar mode coupling term in the xz —plane is given
by

SWad — N dowdW  here N = EAY

dx dx dx

and the cross-sectional area A and Young’s modulus E may depend on x. Element

approximations (simplest possible) are du / dx = (uy, —Uyq)/ h and

T

“h(h—-x)? 2 —h(h-3x)(h- 0
W:%< h(h=x)"x 3 y1> = d—W:i3< ( X)( X)> < s g
h (3h—2X)X2 Uz2 dx  h G(h—X)X Uz2
h—x2 | (92 | h(2h=3x)x | |6y,

e Integration over the domain occupied by the element gives
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h
vatadx——NJ‘ Ckﬂd—wd (N:EAd—u is constant here) =
dx dx
(su, )" [36 -3h 36 -3h|(u,
66 —3h 4h?> 3h -h?||O _
i N Jo | where N = EAYX2 "X &
Su,,| 30h[-36 3h 36 3h [|u, h
66y, | —3h —h® 3h 4h®||Y2)
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BENDING-BAR COUPLING (xy-plane)

Assuming a cubic approximation to v(x) in terms of nodal displacements/rotations uy;, Uy,

, 6,1, and 6,,, and linear approximation to u(x) in terms of nodal displacements uy,, Uy»,

r \T [~ r 3

Suyy 36 3h -36 3n](uy,

56 h 4h?® —3h -h%||6 _
swsta — _) 77k N |3 3 1720 \where N _eAx2—Ya

Suyp[ 30h|-36 -3h 36 -3h||uy, h

50, ' 3h -h? —3h 4h? |6,
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PLATE MODEL

Virtual work density combines the thin-slab and plate bending modes. Assuming that the
material coordinate system is placed at the geometric mid-plane, bending mode is affected

by the thin slab mode but not vice versa. The additional coupling term for stability analysis

( A ( A

N &
T XX XX
oow/ox) | N N oW / OX
Coupling: Sw&? :—{ } we { } where < N, >:t[E]G< Eyy 1
aswiay| | Ny Ny |low/oy
[Ny | 7y |

depends on the in-plane stress resultants N,,, Ny, and N, = Ny, of the thin-slab mode.
The additional coupling term is part of the virtual work density of internal forces
OWg = 5w}5‘t + 5\/\/3"" + §w8‘t. As stability term affects only the bending mode, dependence

of the stress resultants on the loading parameter can be obtained from a thin-slab problem.
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The coupling term of the plate bending and thin-slab loading modes follows from the
generic non-linear virtual work density of the internal forces and the kinematic

assumptions of the Kirchhoff plate model u, =u—-zow/ox, u, =v-zow/dy, and

y
u, =w(x,Yy). If only the most significant terms are accounted for, Green-Lagrange strain

and the corresponding second Piola-Kirchhoff stress components

B | [ auix 0°w / ox° (6w / ox)°
VEy (=1 ovldy  p-z4 o°wldy® [+21  (ow/dy)?
2E (ou /oy +ov/ox| 202w/ OXOY 2(ow/ ox)(ow/ oy)

V

LTXY

Syx Eyx
<Syy >:[E]G< Eyy -
%y 2Exy |
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e Assuming that the material coordinate system is placed at the geometric mid-plane,
Integration of the virtual work density gives the virtual work density of the thin-slab

mode, virtual work density of plate bending mode, and the coupling term (considering

only the most significant terms)

T
§Wga=— oow/ox| | Nxx  Nyy |(ow/ox |
06w/dy) | Ny Ny |low/oy

where the in-plane stress resultants

(NXX\ [ ou/ox
<Nyy>:t[E]G< ov /oy -
Ny (ou/oy+ov/ox
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EXAMPLE 4.3 Determine the critical value of the in-plane loading p,, making the plate
of the figure to buckle. Use the approximation w(X,Yy) =ag(xy/ L2)(1—x/ L)(@-y/L).
Assume that the edge conditions are such that solution to the in-plane stress resultants is

given by N,, =—p and N, = N,, =0 (solution to the thin-slab problem).
XX yy Xy

Answer  pg = (exact pgy
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Assuming that the material coordinate system is chosen so that the linear plate bending
and thin slab modes decouple, the plate model virtual work densities of the bending

mode and the coupling term are given by (N,, =—p and Ny, =N,, =0)

T

C%swiad | 1, o 1| Pwiak® ) 3
swit =—J 3%swiey’ | Dlv 1 0 | ®w/ioy? Lwherep=t_E_
1217
20°swioxay| |0 0 (@=v)/2]|25°w/oxey
Syt O0OW [ OX T Ny ny oW [ OX _d6wW _ow
@ T Taswloy[ [Ny Ny |lowiay] ax D ox

When the approximation is substituted there, virtual work expressions of the plate
bending mode and that of the coupling between the thin-slab and bending modes

simplify to
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int _ L L int _ 22
oW _jo .[o OWg dxdy = 5a045 Lzaﬂ’

sta _ (L (L ta _ i
W _J‘o jo SWY dxdy—éaﬂgopaﬂ.

e Virtual work expression is the sum of the two parts

22D 1

SW = SWM 1 5w = _sa (52 = —
4512 90

P)ap.

e Principle of virtual work oW =0V 6a and the fundamental lemma of variation calculus

give

22D 1
4512 90

22D
45 | 2

1
W =—5ay( 9Op)aa=0 Végy = ( pP)ag =0
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For a non-trivial solution a, # 0, the loading parameter needs to take the value

3
o, 44D 11 Et c

1> 3 1%21-v?)

The problem can be solved numerically by using

the Reissner-Mindlin plate model and the

Mathematica code. Assuming parameter values

E=210GPa, v=0.33, L=1m, and t

the one parameter approximation

=1mm,

gives

Per =0.77 Nm™ whereas the solution on the

mesh shown gives p, =0.78 Nm™.
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STABILITY ANALYSIS OF TRUSS SIMPLIFIED

In hand calculations, one may use the fact that the bar model predicts the axial forces
correctly when beams of a truss are connected with joints. Then, the first step is a linear
displacement analysis for finding the displacements of the nodes and thereby the axial forces
N (p) as functions of the loading parameter. After that, the buckling loads of each beam

under compression follows from the buckling criterion (N is negative in compression)

for a simply supported beam. The first beam to buckle (or the smallest p given by the

conditions above) defines the critical load p,.
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EXAMPLE 4.4 A beam truss is loaded by a vertical point force having magnitude F and
acting in the positive or negative direction of the Z-axis. Determine the critical load
magnitude F,, for buckling of beam 1 or 2 of the truss. Cross-sectional area of element 1 is
A and that for element 2 +/8A, Young’s modulus E is constant, and the second moment of

area is | for both beams. The beams are connected by frictionless joints.

2
Answer F —”—E when F <0.

T8 L2
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The relationships between the nodal displacement components in the material and

structural systems are u,; =0 and Uy, =Uy ». Element contribution sW1 to the virtual

work expression of the structure is

T
0 1 -1 0 0
SWi=— (E — ):_EUX25UX2'
5“)(2 L | -1 1 UX2 0 L

For element 2, uy3 =0 and Uy, = (Uy o + uzz)/\/i. Element contribution takes the form

et S LD -
- \/E 5UX2+§UZZ \/EL -1 1 \/E Uy o +Uz9o 0

EA
SW? =—T(5Ux2 +0Uz)(Ux 2 +Uz2).
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Virtual work expression of the point force follows from the definition of work. The

direction may be up or down and hence F may also be negative (which means up)
3 _
oW~ =06uz,F .
Virtual work expression of a structure is obtained as the sum of the element contributions

EA EA
oW = —T5Ux Uy 2 —T(5Ux2 +0Uz5)(Uxp +Uz2)+d0UzoF <

T
ou 2 1|ju 0

Sw = _JoUx2 (E X2, ),
5“22 L1 1 Uz o =

Using the principle of virtual work sW =0 V da and the fundamental lemma of variation

calculus
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Tl e = s

For buckling of beam 1, the axial force should be compression (negative) and therefore

the external force should be acting downwards.

N:%(uxz—uxl):%uxzz—F = FchEZE when F >0.

L2

For buckling of beam 2, the axial force should be compression (negative) and therefore

the external force should be acting upwards. When F <0

E+/8A EA 7% El
N=—(Ux2—Ux3)=\/§T(Ux2+Uzz)=—\/§F = Fcr:ﬁﬁ- €

J2L
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