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Chapter 1

Introduction

1.1 What is deep learning

1.1.1 Learning hierarchical representations

Suppose that you work as a data scientist in a company and you need to solve a
custom machine learning problem. For example, you need to design a classifier
that detects spam emails or you need to extract line item information from
scanned invoices. In many machine learning tasks, you can design a set of
features that could be good input features for your machine learning model.

Data → Feature engineering → Machine learning (e.g. classification)

For example, a useful feature for the spam detector could be counts of certain
words that may appear in an email. To extract line item information, we may
classify each number that appears in a scanned invoice using as features the
position of the number on the invoice and the words that appear in the proximity.

The benefit of feature engineering is that one can use the knowledge about
a particular problem to design features that work well even for cases not seen in
the training data. For example, these features can be designed to be invariant
to various distortions.

What are the problems with feature engineering? The first problem is that
for many tasks, it is difficult to come up with good features. Suppose, for exam-
ple, that we want to classify images into classes ’churches’ and ’other buildings’
using as inputs two-dimensional maps of RGB values. What are useful features
in this task?

Figure 1.1: Example image clas-
sification problem. What are
good features to detect images of
churches?

1



2 CHAPTER 1. INTRODUCTION

Manually designing features for a complex task requires a great deal of hu-
man time and effort. It can take decades for an entire community of researchers
to design good features. An example of manually designed features are SIFT
features for image classification.

The second problem with feature engineering is that handcrafted features are
not perfect. There are always examples that are not processed correctly by a
machine learning model, which motivates engineering of new features. A typical
design loop looks like this. We come up with some features, train a classifier and

Features

Classifier
Misclassified

examples

check how the classifier works on a test set. We analyze misclassified examples
and try to change our features so that we can reduce the number of mistakes.
We train our classifier again using a new set of features, test the classifier and
notice that it is not yet perfect. And we continue this process over and over
again. During this process, features typically get very complex and at some
point they become very difficult to maintain. It can be difficult to understand
why certain features have been created and how important they are.

These problems can be overcome with representation learning.

Data → Features (representation) → Classifier

We can use machine learning not only to discover the mapping from the features
to the output but also to discover the features (representations) themselves. The
benefit of this approach is that a representation learning algorithm can discover
a good set of features much faster: in days instead of decades of efforts of an
entire research community.

Another advantage is that learned representations often result in much bet-
ter performance compared to manually designed representations, especially in
complex machine learning problems. With learned representations, an artifi-
cial intelligence system can rapidly adapt to new tasks, with minimal human
intervention.

Deep learning is about learning hierarchical representations. Deep learn-
ing does representation learning by expressing more complex representations as
combination of simpler representations. For example, we want to classify an
object depicted on the image in Fig. 1.2. In the lowest level, we learn to detect
simple features such as edges with different orientations. On the next level, we
combine the edge feature into more complex concepts such as corners, semicir-
cles and so on. Next, we combine those concepts into more complex features
that represent, for example, wheels or windows of a car.
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Deep Learning = Learning Hierarchical Representations

It's deep if it has more than one stage of non-linear feature transformation

Trainable 
Classifier

Low-Level
Feature

Mid-Level
Feature

High-Level
Feature

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Figure 1.2: A hierarchy of fea-
tures developed in an image clas-
sifcation problem (Zeiler and
Fergus, 2013).

1.1.2 Artificial neural networks

Deep learning is also a field that studies artificial neural networks. Many ideas
in deep learning models have been inspired by neuroscience. For example, the
basic idea of having many computational units that become intelligent only via
their interactions with each other is inspired by the brain. Another example is
the neocognitron model (Fukushima, 1980) which was inspired by the structure
of the mammalian visual system and later became the basis for the modern
convolutional networks.

1940 1950 1960 1970 1980 1990 2000 2010 2020

McCulloch & Pitts
neuron (1943)

Perceptron
(Rosenblatt, 1958)

Backpropagation
(Rumelhart et al., 1986)

Deep belief networks
(Hinton et al., 2006)

AlexNet
(Krizhevsky et al., 2012)

Figure 1.3: Frequency of phrases
”cybernetics”, ”neural networks”
and ”deep learning” according to
Google books.

There have been three waves of interest in artificial neural networks (see
Fig. 1.3). The first wave started when the first models of the brain neuron
function were proposed. Those models were linear classifiers and training was
done using algorithms inspired by neuroscience.

The second wave of interest started in the mid-1980s largely inspired by the
introduction of the backpropagation algorithm for training neural networks with
multiple layers. Several influential neural models were proposed at that time
including Hopfield networks, Boltzmann machines and self-organizing maps.

By the mid-1990s, the interest in neural networks had dropped. New meth-
ods showed same or better performance in supervised learning tasks (such as
support vector machines, random forests). Deep networks (with more than

http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
https://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.2006.18.7.1527
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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two-three hidden layers) did not provide much better results. Artificial neural
networks became unpopular in early 2000s and researchers even avoided to use
terms “neural network” or “multilayer perceptron” in research proposals.

The third wave started in 2006 when Hinton et al. (2006) demonstrated
a better performance of a deep neural network over shallow networks on the
MNIST dataset. At that time, the name “deep learning” was invented to re-
brand artificial neural networks. The deep learning boom started in 2012 when
researchers from Geoff Hinton’s group won the ImageNet competition in com-
puter vision by a large margin. The task in the competition was to train an
image classification model using a training set with millions of labeled images.
Prior to 2012, all winning solutions used handcrafted features which were tra-
ditional for computer vision. The winning solution of 2012, that is often called
AlexNet by the name of the first author, was a deep convolutional neural net-
work. After that, the majority of the proposed models have been based on
neural networks.

Figure 1.4: Classification errors
in the winning solutions (red)
and the runners-up (blue) in the
yearly ImageNet competitions. 2011 2012 2013 2014 2015 2016 2017

2

4

8

16

32

AlexNet

VGG

ResNet

Human

Since 2012, deep learning has entered multiple domains causing a major
boost in performance. Examples include speech recognition (Fig. 1.5) or statis-
tical machine translation (Fig. 1.6) where the state-of-the-art models are based
on neural networks.

Figure 1.5: Progress in speech
recognition. One of the first deep
learning solution was presented
in (Graves and Jaitly, 2014).

Although many ideas in artificial neural networks have been inspired by neu-
roscience, modern deep learning is a more general principle of learning multiple

https://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.2006.18.7.1527
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Figure 1.6: Progress in statistical
machine translation. One of the
first deep learning solution was
presented in (Cho et al., 2014).

levels of composition, which can be applied in machine learning frameworks that
are not necessarily neurally inspired.

1.2 Logistic regression classifier

Linear classifiers are the simplest machine learning models and can be viewed
as elementary components of deep learning models.

Consider a binary classification problem (a classification problem with two
classes). We have a data set which consists of pairs of inputs x(i) and targets
y(i):

(x(1), y(1)), ..., (x(n), y(n))

The inputs x(i) are vectors with m elements and the targets y(i) are binary
variables with two possible values 0 and 1 (which correspond to the two classes).

3 2 1 0 1 2 3

3

2

1

0

1

2

3

Figure 1.7: Training examples
in a toy binary classification
problem. The different colors
represent the two classes.

We can use the training data to build a linear classifier

f(x) = σ

 m∑
j=1

wjxj + b

 = σ
(
w>x + b

)
which contains a linear combination of the elements of the input vector and a
nonlinearity σ that makes the output between 0 and 1. In the popular logistic
regression model, the nonlinearity σ is a logistic function shown in Fig. 1.8. The
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output of the logistic function can be viewed as the probability p(y = 1 | x)
that input example x belongs to class 1.

Figure 1.8: Logistic function.

σ(x) =
1

1 + e−x

We can tune our linear classifier assuming that the labels are distributed
according to the Bernoulli distribution

p(y | x,w, b) = f(x)y(1− f(x))1−y

where f(x) is the output of the model. For n training examples, we can write
the joint probability of all the labels which gives the likelihood function:

p(data | w, b) =

n∏
i=1

p(y(i) | x(i),w, b)

The likelihood is a function of the model parameters w and b. To find the best
values of the model parameters, we can maximize the likelihood function or
minimize minus the logarithm of that:

L(w, b) = − log p(data | w, b) = −
n∑
i=1

y(i) log f(x(i)) + (1− y(i)) log(1− f(x(i))).

This loss function is often called binary cross entropy.
Let us consider a toy binary classification problem with the training set

shown in Fig. 1.7. For visualization purposes, let us use a logistic regression
model with only two parameters w1 and w2 and without the bias term b:

f(x) = σ (w1x1 + w2x2) .

The binary cross-entropy loss is a function of two parameters and it can be
visualized using a contour plot in Fig. 1.9. Each line on this plot connect points
with the same value of the loss. The optimal solution for our toy problem is
located in the middle of the plot at the center of the ellipse-like isolines. In
every location of the parameter space, we can compute the gradient which is a
vector of partial derivatives:

g(w) =


∂L
∂w1

...
∂L
∂wm


The gradient g(w) points in the direction of the greatest rate of increase of
L. We visualize the gradients in Fig. 1.9 with arrows. The magnitude of the
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gradient is the slope of the graph of function L in that direction. Note that
the gradient is orthogonal to the isolines of the contour plot. Note also that
the magnitudes of the gradient are smaller when we get closer to the optimal
solution.

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
w1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

w
2 Figure 1.9: Contour plot of the

binary cross entropy loss in the
toy classification problem. Small
black arrows represent the gradi-
ent of the loss. The large black
arrows illustrate a trajectory ob-
tained with the gradient descent
algorithm.

Since the gradient points in the direction in which the function grows with
the highest rate and we want to minimize it, we can update the parameters w
in the direction which is opposite to the direction of the gradient:

w← w − ηg(w)

We take a step of size η in that direction. Unfortunately, we do not end up at
the optimal solution and we need to iterate this process multiple times

wt+1 = wt − ηtg(wt)

until we converge to the optimum. This optimization algorithm is called gradient
descent. The step size η is often called the learning rate. In Fig. 1.9, we illustrate
the trajectory of the gradient descent algorithm when it is applied to tune the
linear classifier in our toy binary classification problem.

1.2.1 A historical note on early models of neurons

The first linear classifier was proposed as a model of brain function by McCulloch
and Pitts (1943). McCulloch-Pitts neuron was a linear binary classifier for
binary inputs xj ∈ {0, 1}

y = φ

 m∑
j=1

wjxj + b


step function

where φ(·) was a step function. There was no training procedure: to produce
the desired output, the parameters wj , b were set by a human operator.
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The first training algorithm for linear classifiers was proposed by Rosen-
blatt (1958). He designed a machine (not a program) called perceptron that
implemented a binary classifier

ŷ = sign(w>x)

The classifier was trained using examples (x(i), y(i)) with x(i) ∈ Rm, y(i) ∈
{−1,+1}. The training algorithm was inspired by a neuroscientific theory of
Donald Hebb. The training examples were processed one at a time and if ex-
ample x(i) was misclassified, the classifier was adapted to increase the weights
between neurons whose activities were positively correlated:

w← w + y(i)x(i).

The first models were very limited because they were linear classifiers and
could not solve complex classification problems. They could not separate lin-
early inseparable classes, for example, they could not solve the famous XOR
problem. In the XOR classification problem, there are two binary inputs and
we want to train a classifier to implement the XOR function shown on this plot.
This is not possible with a linear model while modeling functions OR or AND
is possible with a linear model.

Figure 1.10: Classical examples
of binary classification problems.
While functions OR and AND
can be implemented by linear
models, function XOR cannot be
implemented by a linear model. 0 1

0

1

0

1

1

1

OR

0 1

0

1

0

0

0

1

AND

0 1

0

1 1

10

0

XOR

This problem was emphasized in the influential book “Perceptrons” by Min-
sky and Papert (1969). They argued that more complex (nonlinear) problems
have to be solved with multiple layers of perceptrons (what we now call multi-
layer neural networks).

1.3 Multilayer perceptron

Let us see how we can solve the XOR problem with a network of perceptrons.
We can construct the model in the following way. First, we introduce a neuron
that can linearly separate the input space as shown below:

0

1

1

0 x1

x2

h1

Then, we can add another neuron h2 which can do another kind of separation
of the input space:
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0

1

1

0
x1

x2

h1

h2

Now we mapped the original two-dimensional data into a new two-dimensional
space where linear separation is possible:

0

1

1

0 0

0

1
x1

x2

h1

h2

y

Finally, we add neuron y on top of neurons h1 and h2 and we solve the classifi-
cation problem.

Now we have a network with two layers of neurons. The first layer contains
neurons h1, h2. Its outputs are not visible from outside the model and therefore
this layer is called a hidden layer. The second layer consists of one neuron y and
this layer is called the output layer. A neural network with this architecture is
called a multilayer perceptron (MLP). The inputs of the MLP are often called
the input layer.

Of course, a multilayer perceptron can have more layers and many more
neurons. Each neuron of an MLP implements a function

y = φ

 m∑
j=1

wjxj + b

 = φ
(
w>x + b

)
which resembles a simple linear classifier that we considered in Section 1.2. The
layers in an MLP are called fully-connected because each neuron is connected to
each neuron in the previous layer. We will often use a more compact represen-
tation of a multilayer network in which one node corresponds to an entire layer
(see Fig. 1.11). In that case we can stack the weight vectors w of all nodes in
the layer into a matrix W and summarise the operation performed by a layer
as the nonlinearity applied to a matrix-vector product.

Nonlinearities φ used after an affine transformation of a neuron’s inputs are
often called activation functions. Popular nonlinearities include

tanh(x) σ(x) = 1/(1 + e−x) relu(x) = max(0, x)

In modern deep learning models, relu(z) is the most popular choice for multilayer
networks without recurrence, such as MLPs. The two other activation functions
tanh(x), σ(x) = 1/(1 + e−x) were more popular in the second wave of artificial
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Figure 1.11: Architecture of a
multilayer perceptron. Left: A
diagram with individual neurons.
Right: A more compact diagram
with one node representing one
layer of neurons.

x1

x2

x3

input layer

hidden layer 1

hidden layer 2

y

output layer

input x

h1 = φ(W1x + b1)

h2 = φ(W2h1 + b2)

y = ψ(W3h2 + b3)

neural networks but they are still widely used in deep learning models, for
example, in recurrent neural networks (see Chapter 5).

What if we do not use any nonlinearity? Then, we simply get a linear model:

h2 = W2h1 + b2 = W2(W1x + b1) + b2

= (W2W1)x + (W2b1 + b2) = W′x + b′

Therefore, using a stack of linear layers without activation functions does not
make much sense: using a single linear layer would have the same representa-
tional power.

If we train a neural network to solve a binary classification problem, then we
can use the same loss function that we used for training a linear binary classifier
in Section 1.2:

L(θ) = −
n∑
i=1

y(i) log f(x(i)) + (1− y(i)) log(1− f(x(i)))

where function f is composed of several functions fi implemented by the differ-
ent layers of the network. For a three-layer network shown in Fig. 1.11,

f(x) = f3(f2(f1(x,θ1),θ2),θ3) ,

where θ1 = (W1,b1), θ2 = (W2,b2), θ3 = (W3,b3). Again, we can tune the
parameters θk of the network by maximizing the log-likelihood, for example,
using gradient descent:

θt+1 = θt − ηtg(θt)

In order to do that, we need to compute the gradient g(θ) = ∂L
∂θ . Backprop-

agation is an algorithm that allows to compute the gradient efficiently for a
multilayer neural network.

1.4 The backpropagation algorithm

Even though the idea of using multilayer perceptrons for solving nonlinear clas-
sification problems existed already in the 1960s (Minsky and Papert, 1969), no
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one knew how to train multilayer perceptrons. Rosenblatt’s learning algorithm
did not work for multiple layers because a training example (x(i), y(i)) only spec-
ifies the correct output for the final output layer. Thus, there was no way to
know how to adjust the weights of the perceptrons in layers before the last one.

How to train MLP networks was well understood only in the mid 1980s after
an influential paper by Rumelhart, Hinton and Williams (1986). In that paper,
they showed how to compute the gradient ∂L

∂θ efficiently using the backpropa-
gation algorithm. Backpropagation is basically the application of the chain rule
of differentiation to models with multiple layers. It was proposed by several
researchers even earlier (Linnainmaa, 1970; Werbos, 1982) but became popular
and well understood after 1986.

Let us review the chain rule to compute the derivative of a composite func-
tion. Suppose that function F is a scalar function of one variable x and it is a
composite of functions f and g. Then, its derivative of F is given by the product
of the derivatives of f and g.

F (x) = f(g(x))

F ′(x) = f ′(g(x))g′(x)

Now suppose that we have a model with two layers that operates only with
scalar signals.

L = L(y)

y = f2(h, θ)

h = f1(x,w) x f1 f2 L

w θ

h y Figure 1.12: A two-layer network
operating with scalar signals.

We can compute the derivatives wrt the model parameters θ, w by applying
the chain rule.

∂L
∂θ

=
∂L
∂y

∂y

∂θ

∂L
∂w

=
∂L
∂y

∂y

∂h

∂h

∂w

We can compute the derivatives efficiently by storing intermediate results. We
start from the end of the network and compute ∂L

∂y . Then, we use the chain rule
to compute

∂L
∂θ

=
∂L
∂y

∂y

∂θ

∂L
∂h

=
∂L
∂y

∂y

∂h

Then, we apply the chain rule again and compute

∂L
∂w

=
∂L
∂h

∂h

∂w

http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
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Figure 1.13: Backpropagation in
a two-layer network operating
with scalar signals.

∂L
∂θ

=
∂L
∂y

∂y

∂θ

∂L
∂w

=
∂L
∂y

∂y

∂h︸ ︷︷ ︸
∂L
∂h

∂h

∂w
x f1 f2 L

w θ

h y

∂L
∂y

∂L
∂h

∂L
∂θ

∂L
∂w

This is illustrated in Fig. 1.13.

To extend these computations to vector signals, we need to use the chain rule
for multi-variable functions. Suppose that we have a multi-variable function F
that is a composite of two functions f and g:

y = F (x) = f(u), u = g(x), y ∈ RM , u ∈ RK , x ∈ RN

Then, the chain rule is written in terms of Jacobian matrices. The Jacobian
matrix of function F is a matrix of the partial derivatives of each output wrt
each input:

JF =


∂y1

∂x1
· · · ∂y1

∂xN

...
. . .

...
∂yM
∂x1

· · · ∂yM
∂xN


Then, the chain rule is

JF (x) = Jf (u)Jg(x)

where Jf , J are the Jacobian matrices of functions f and g respectively. Each
element of the Jacobian JF can be computed by the rules of matrix multiplica-
tion:

∂yj
∂xi

=

K∑
k=1

∂yj
∂uk

∂uk
∂xi

Now let us consider a two-layer model which operates with vector signals
(Fig. 1.14).

Figure 1.14: A two-layer network
operating with multidimensional
signals.

L = L(y)

y = f2(h,θ)

h = f1(x,w)

y ∈ RK , h ∈ RL, x ∈ RN
x f1 f2 L

w θ

h y

We apply the chain rule to compute the derivatives wrt the model param-
eters. We can compute the derivatives sequentially going from the outputs of
the network towards the inputs. We start with computing ∂L

∂yk
and use them to
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compute

∂L
∂θj

=

K∑
k=1

∂L
∂yk

∂yk
∂θj

∂L
∂hl

=

K∑
k=1

∂L
∂yk

∂yk
∂hl

Finally, we propagate the derivatives through the first layer:

∂L
∂wi

=

L∑
l=1

∂L
∂hl

∂hl
∂wi

.

This algorithm for computing derivatives in a multilayer network is called back-
propagation because we propagate the derivatives starting from the outputs of
the network towards the inputs. The computations performed during backprop-
agation are illustrated in Fig. 1.15.

∂L
∂θj

=

K∑
k=1

∂L
∂yk

∂yk
∂θj

∂L
∂hl

=

K∑
k=1

∂L
∂yk

∂yk
∂hl

∂L
∂wi

=

L∑
l=1

∂L
∂hl

∂hl
∂wi

x f1 f2 L

w θ

h y

∂L
∂yk

∂L
∂hl

∂L
∂θj

∂L
∂wi

Figure 1.15: Backpropagation in
a two-layer network operating
with multidimensional signals.

When we implement backpropagation in software, it is convenient to write
code for each block of a neural network such that it contains

– forward computations y = f(x,θ)

– backward computations that transform the derivatives wrt the block’s
outputs ∂L

∂yk
into the derivatives wrt all its inputs: ∂L

∂xl
, ∂L
∂θj

,

which is illustrated in Fig. 1.16. We will practice implementing forward and
backward computations in the home assignment.

1.5 Deep vs shallow networks

Multilayer neural networks were invented long time ago but they became the
state of the art in many applications only recently. One characteristic property
of modern neural networks is their depth. For example, modern convolutional
neural networks for computer vision tasks can have more than 100 layers.
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Figure 1.16: Implementation of
backpropagation in software.

∂L
∂θj

=

K∑
k=1

∂L
∂yk

∂yk
∂θj

∂L
∂xl

=

K∑
k=1

∂L
∂yk

∂yk
∂xl

f

θ

x y

∂L
∂yk

∂L
∂xl

∂L
∂θj

During the second wave (Fig. 1.3), neural networks were not very deep, only
with two-three hidden layers. Deeper networks did not provide better perfor-
mance, largely because training of deeper networks is a harder optimization
problem (as we discuss in Chapter 2). There were no theoretical results that
deep networks had better representational power. Shallow networks were known
to be universal approximators. The classical universal approximation theorem
(Cybenko, 1989) says that a feed-forward network with a single hidden layer
containing a finite number of neurons can approximate any well-behaved func-
tion with any given accuracy.

Why is the depth important and what is the advantage of deep neural net-
works compared to shallow ones? Today there are several theoretical results
which suggest that deep networks have greater representational power.

Suppose that we have a multilayer perceptron network with the relu acti-
vation function in every layer. Such a network implements a piece-wise linear
function. For example, the plot in Fig. 1.17 presents an example of a func-
tion with one input and one output which is implemented by an MLP with
one hidden layer with three hidden neurons. This function contains four linear
regions.

Figure 1.17: An example piece-
wise linear function implemented
by a multilayer network with one
hidden layer with three neurons
activated with relu. 6 4 2 0 2 4 6

7

6

5

4

3

2

The number of linear regions that the model can have reflects its represen-
tational power. A more flexible model can have a greater number of linear
regions. There are theoretical results which estimate the number of possible
linear regions for an MLP with relu nonlinearities.

Suppose that the network has n inputs. If the network contains a single
layer model with Lm hidden units, then the number of linear regions behaves
as O(Lnmn) (Pascanu et al., 2013). This results says that the number of linear
regions has polynomial growth wrt to the number of neurons. However, if the
network contains L hidden layers of width m ≥ n, then the model can compute

https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://arxiv.org/abs/1312.6098
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functions that have Ω((m/n)(L−1)nmn) linear regions (Montúfar et al., 2014).
This means that that number of linear regions grows exponentially with the
number of layers.

Another theoretical result says that both shallow and deep networks can
approximate arbitrarily well any continuous function Rn → R on a compact
domain but the number of required parameters grows exponentially wrt the
number of inputs n to achieve a given accuracy. However, if the approximated
function f is a hierarchical composition of local functions (for example, the
function can be computed as shown in Fig. 1.18), then deep networks of the

f(x1, . . . , x8) =

h3(h21(h11(x1, x2), h12(x3, x4)),

h22(h13(x5, x6), h14(x7, x8)))

Figure 1.18: Assumed composi-
tional structure of the approxi-
mated function in the analysis by
Poggio et al., (2019).

convolutional type can have a linear dependence on n unlike shallow networks
which have exponential dependence (Poggio et al., 2019).

This results suggests that deep networks with a much smaller number of
parameters can achieve equivalent approximation accuracy compared to shal-
low networks, provided that the approximated function has certain (composite)
structure.

Experimentally, it has been found that deeper models perform better. For
example, increasing the number of parameters in layers without increasing their
depth is not as effective at increasing test set performance. Fig. 1.19 presents an
example of accuracies achieved for a Street View House Numbers dataset using
deep convolutional neural networks (Goodfellow et al., 2014). Shallow models

Figure 1.19: Accuracies achieved
for a Street View House Num-
bers dataset using deep convolu-
tional neural networks

overfit at around 20 million parameters while deep models benefit from having
over 60 million parameters.

Deep models have a built-in assumption (often called an inductive bias) that
a modeled function should consist of many simple functions composed together.
This assumption turns out to work very well in many real-world tasks.

https://papers.nips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf
https://arxiv.org/abs/1908.09375
https://arxiv.org/abs/1908.09375
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Chapter 2

Optimization

Many components of deep learning have been invented long time ago. The first
linear model was invented in the 1950s, the training algorithm for training deep
networks was well understood in the 1980s, convolutional neural networks were
invented in the 1980s as well. Why did deep learning start only 25 years later?
Geoff Hinton gave four reasons for that:

– Our labeled datasets were thousands of times too small.

– Our computers were millions of times too slow.

– We initialized the weights in a stupid way.

– We used the wrong type of non-linearity.

1940 1950 1960 1970 1980 1990 2000 2010 2020

Perceptron
(Rosenblatt, 1958)

Convolutional neural networks
(LeCun et al., 1989)

Backpropagation
(Rumelhart et al., 1986)

Figure 2.1: Frequency of phrases
”cybernetics”, ”neural networks”
and ”deep learning” according to
Google books.

The last two reasons indicate that training of a deep neural network is a
difficult optimization problem. In order to get full benefit of deep architectures
(compared to shallow ones used in the second wave of neural networks), one
has to use several tricks including input normalization, weight initialization,
mini-batch training (stochastic gradient descent), improved optimizers, batch
normalization. We study these techniques in this chapter.

17

http://www.cs.toronto.edu/~hinton/absps/naturebp.pdf
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2.1 Loss functions

In this chapter, we assume that our model is a multilayer neural network which
we train to solve a supervised learning task. Given a set of training examples

{(x(1),y(1)), (x(2),y(2)), . . . , (x(N),y(N))},

we train the network to produce desired output y for given input x. The two
most common tasks of supervised learning are classification and regression.

2.1.1 Classification

In classification tasks, the output is a discrete variable (the label of the predicted
class). The desired output (target) can be represented as a one-hot vector y,
which is a binary vector with only one non-zero element:

yj ∈ {0, 1}
K∑
j=1

yj = 1

For example, in the case of K = 3 output classes, one-hot representation is given
by:

class 1: y =

1
0
0

 class 2: y =

0
1
0

 class 3: y =

0
0
1


We want our neural network network to produce vector f whose j-th element

fj is the probability that input x belongs to class j. Therefore, we need to
guarantee that the output satisfies the following condition

0 ≤ fj ≤ 1

K∑
j=1

fj = 1

We can guarantee that by applying the following transformation to the outputs
h of the last layer of the network:

fj =
exphj∑K

j′=1 exphj′

where hj is the j-th element of vector h. This function is called softmax because
if one of the elements hj is much larger than the rest of the elements

hj � hi, i 6= j,

then f ≈ [0, ..., 0, 1, 0, ..., 0] which is a one-hot representation of j, the index of
the maximum element of h.

To solve a classification problem, it is common to tune parameters θ of a
neural network f(x,θ) by minimizing the following loss function:

L(θ) = − 1

N

N∑
n=1

K∑
j=1

y
(n)
j log fj(x

(n),θ) (2.1)
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which is the extension of the binary cross-entropy loss to the case of multiple
classes. This loss is the negative log-likelihood for a probabilistic model with a
categorical distribution (also called multinoulli distribution) for labels y:

p(y | x,θ) = Cat(y | f(x,θ)) =

K∏
j=1

f
yj
j

The parameters of the categorical distribution are given by the output f(x,θ)
of the network.

This loss in (2.1) is often called the cross-entropy loss. The cross-entropy
between two discrete probability distributions p and q is defined as

H(p, q) = −
∑
x∈X

p(x) log q(x)

If you compare this expression with the loss in (2.1), you can see that the loss
L(θ) can be seen as the cross-entropy between the distribution defined by targets
y(n) and the distribution f(x(n),θ) defined by the output of the network.

2.1.2 Regression

Regression is the second common task of supervised learning. In regression prob-
lems, the targets are real-valued vectors y(n) ∈ RK . In this case, we can tune
the parameters of the network by minimizing the mean-squared error (MSE):

L(θ) =
1

N

N∑
n=1

∥∥∥y(n) − f(x(n),θ)
∥∥∥2

.

This loss function also has a probabilistic interpretation. Assuming that the
conditional distribution of the targets is Gaussian

p(y | x,θ) = N (y | f(x,θ), σ2I)

leads to the mean-squared error loss.

2.2 Analysis of convergence of gradient descent

Gradient descent is the simplest optimization method that one can use for tuning
the parameters of a neural network. Its update rule

θt+1 = θt − ηg(θt)

has the learning rate parameter η which has a major effect on the convergence
of the gradient descent. With a small learning rate, one may have to take too
many small steps and thus the convergence can be slow (see Fig. 2.2). With
a large learning rate, the optimization trajectory can be zigzaging. When the
learning rate is too high, the optimization procedure can even diverge.



20 CHAPTER 2. OPTIMIZATION

Figure 2.2: The effect of the
learning rate on the convergence
speed. Left: Small η may lead to
slow convergence. Right: Large η
may lead to oscillations and even
divergence.
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What is the optimal value of the learning rate? And if we select the learning
rate optimally, what affects the rate of convergence of the gradient descent? Let
us analyze the convergence of gradient descent for a quadratic function (Goh,
2017)

L(w) =
1

2
w>Aw − b>w.

For this function, we can compute the optimal solution w∗ analytically:

w∗ = A−1b

The gradient of the quadratic loss is equal to Awt−b and therefore the gradient
descent iteration is given by:

wt+1 = wt − η(Awt − b)

Figure 2.3: An example contour
plot of a quadratic loss function.
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If vector w has two elements, we can visualize the quadratic loss with a
contour plot. The contour plot may look like the one shown in Fig. 2.3. The
isolines of the plot have the shape of ellipses concentrated around the minimum

https://distill.pub/2017/momentum/
https://distill.pub/2017/momentum/
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of the loss function. The axes of the ellipses are defined by the eigenvectors
of matrix A and the eigenvalues λm of A determine the curvature of the loss
function in the corresponding direction: larger values of λm correspond to higher
curvatures.

For the convergence analysis, it is convenient to change the coordinate system
such that the optimal solution w∗ is located at the origin of the new coordinate
system and the new axes are aligned with the eigenvectors of A. We compute
the eigenvalue decomposition of A:

A = Q diag(λ1, . . . , λM )Q>

where Q is an orthogonal matrix and λm are ordered eigenvalues λ1 ≤ λ2 ≤
... ≤ λM . Then, we subtract the optimal solution w∗ and rotate the coordinate
system using the orthogonal matrix Q:

z = Q>(w −w∗) (2.2)

To go back from the new coordinates z to the original coordinates w, we can
use the inverse transformation:

w = w∗ + Qz

The original and new coordinate systems are illustrated in Fig. 2.4.
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original coordinate system w

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
z1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

z 2

new coordinate system z

Figure 2.4: Original and trans-
formed coordinate systems for a
quadratic loss function.

Now we can re-write the gradient-descent update rule in the new coordinate
system.

zt+1 = Q>(wt+1 −w∗) = Q>(wt − η(Awt − b)−w∗)

= Q>(Qzt − η(A(w∗ + Qzt)− b))

= Q>(Qzt − η(b + AQzt − b))

= zt − ηQ>AQzt

= zt − η diag(λ1, . . . , λM )zt

= (I− η diag(λ1, . . . , λM ))zt (2.3)
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As we can see from (2.3), the gradient-descent update rule in the new coordinate
system can be written separately for each element of z:

(zm)t+1 = (1− ηλm)(zm)t

where (zm)t is the m-th element of z after iteration t.
In the new coordinate system, the optimum is located at the origin z∗ = 0

and therefore the distance to the optimum in the m-th coordinate is given by
|zm|. Then, we can write the rate of convergence as

rate(η) =
|(zm)t+1|
|(zm)t|

= |1− ηλm|

It is the ratio of the distances to the optimum after the next iteration t + 1
and the current iteration t. If this ratio is small, we converge quickly to the
optimum. For convergence, the ratio has to be smaller than 1, which means
that the following condition should hold

|1− ηλm| < 1.

In the ideal case, we jump to the optimal solution after one iteration, which
happens if

|1− ηλm| = 0.

Since we need to optimize all the coordinates of z, the overall convergence
rate is determined by the slowest component.

Figure 2.5: The rate of conver-
gence as a function of the eigen-
values of A for three values of
the learning rate η. The red line
corresponds to the optimal learn-
ing rate in which case the rate of
convergence for the largest and
the smallest eigenvalues is the
same.

λ

|1− ηλ|

1

λ1
λ1+λM

2
λM

Fig. 2.5 illustrates the rate of convergence depending on the value of λ. You
can see that the worst case (the slowest convergence) is obtained either for the
smallest eigenvalue λ1 or for the largest eigenvalue λM . The overall convergence
rate is determined by the slowest component:

rate(η) = max
m
|1− ηλm| = max {|1− ηλ1|, |1− ηλM |}

The worst-case convergence rate is minimized when the rates for λ1 and λM are
equal, which suggests the optimal value of the learning rate:

η∗ =

(
λ1 + λM

2

)−1

.

https://en.wikipedia.org/wiki/Rate_of_convergence
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With the optimal learning rate, the rate of convergence is

rate(η∗) =

∣∣∣∣∣1−
(
λ1 + λM

2

)−1

λ1

∣∣∣∣∣ =

∣∣∣∣λ1 + λM − 2λ1

λ1 + λM

∣∣∣∣ =
λM − λ1

λM + λ1

=
λM/λ1 − 1

λM/λ1 + 1
=
κ(A)− 1

κ(A) + 1

where κ(A) = λM

λ1
is the condition number of matrix A. We know from linear

algebra that κ(A) is a measure of how close to singular matrix A is. For the
analysis of convergence of gradient descent, κ(A) is a measure of how poorly
the gradient descent will perform:

– in the ideal situation κ(A) = 1, we get the fastest convergence;

– for large κ(A) the convergence can be slow.

This is illustrated in Fig. 2.6. In the lhs plot, the condition number κ(A) = 1
and we can converge to the optimal solution in one iteration from any starting
point if we select the optimal learning rate. In the second case, matrix A is
ill-conditioned, which causes zigzaging of the optimization trajectory and slow
convergence.
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κ(A) = 1
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large κ(A)

Figure 2.6: Contour plots of a
quadratic loss function for dif-
ferent condition numbers of A.
Left: For κ(A) = 1, gradient
descent can converge in one iter-
ation. Right: Large κ(A) causes
slow convergence.

We performed the analysis for a quadratic objective function. For non-
quadratic functions, the error surface is well approximated locally by a second-
order Taylor series expansion

L(w) ≈ L(wt) + g>(w −wt) +
1

2
(w −wt)

>H(w −wt) (2.4)

which is a a quadratic function (see Fig. 2.7). Here, g is the gradient (the vector
of the first-order partial derivatives) and H is the Hessian matrix, which is the
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matrix of the second-order derivatives

H =


∂2L

∂w1∂w1
· · · ∂2L

∂w1∂wM

...
. . .

...
∂2L

∂wM∂w1
· · · ∂2L

∂wM∂wM


For the quadratic loss L(w) = 1

2w>Aw−b>w, the Hessian matrix is equal
to matrix A, which suggests that the convergence of the gradient descent is
affected by the properties of the Hessian. If the Hessian matrix is ill-conditioned,
the gradient descent algorithm converges slowly.

Figure 2.7: A quadratic approx-
imation of a non-quadratic loss
function.
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The properties of the Hessian matrix affect the landscape of the optimization
problem. The eigenvalues of H determine the curvature of the objective func-
tion. Larger λ correspond to higher curvatures in the corresponding direction.
If we arrive in a critical point w∗ (which is a point with a zero gradient), we can
check whether the critical point is a maximum, a minimum or a saddle point:

– if all eigenvalues of H are positive: w∗ is a local minimum,

– if all eigenvalues of H are negative: w∗ is a local maximum,

– if H has both positive and negative eigenvalues: w∗ is a saddle point.

2.3 Input normalization

Let us now consider a linear regression problem in which we are given a set of
training examples {(xi,yi)}Ni=1 and we model the data with a linear function:

f(x) = w>x

For simplicity, we assume that our model does not have a bias term. We tune
the parameters w by minimizing the mean squared error

L(w) =
1

2N

N∑
n=1

(
yn −w>xn

)2
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and suppose that we use gradient descent to minimize the loss function.

We know that the convergence of the gradient descent is determined by the
properties of the Hessian matrix. Let us compute the Hessian matrix for our
problem:

g =
2

2N

N∑
n=1

(
yn −w>xn

)
(−xn) =

1

N

N∑
n=1

xnx>nw − 1

N

N∑
n=1

ynxn

H =
1

N

N∑
n=1

xnx>n = Cx

We can see that the Hessian is equal to the second order moment of the data
(which is equal to the covariance matrix of the inputs if inputs have zero mean).

We know from the convergence analysis for the gradient descent that the
fastest convergence happens when the Hessian matrix has the condition number
of 1. This can be achieved if we transform the inputs such that Cx = I. This
can be done by decorrelating the input components using principal component
analysis (PCA):

xPCA = D−1/2E>(x− µ)

where EDE> is the eigenvalue decomposition of the covariance matrix of x.
Here, we center the data by subtracting the mean, then we multiply the centered
data by the matrix of the eigenvectors E>, which gives the principal components
of the data. Finally, we divide the principal components by the square root of the
corresponding eigenvalues to obtain data that have unit variance when projected
onto any unit-norm vector. Optionally, the dimensionality of the data can be
reduced by dropping the principal components corresponding to the smallest
eigenvalues. This preprocessing procedure is often called whitening.

Even though multilayer neural networks are nonlinear models, normalizing
the inputs typically has positive effect on the convergence speed. The simplest
transformation is to normalize the data to zero mean and unit variance. A more
advanced procedure is to perform whitening of the data. In some applications
(for example, image processing), we may want the whitened signals to be close
to the original ones. This can be done by multiplying the scaled principal
components by the matrix of eigenvectors:

xZCA = ED−1/2E>(x− µ)

This procedure is commonly known as ZCA.

2.4 Weight initialization

Initialization of the parameters of a neural network has a significant effect on the
optimization procedure. With poor initialization, the optimization procedure
can find a bad solution which results in poor model performance.
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Let us consider the initialization of the weights of a linear fully connected
layer. The layer has Nx inputs and Ny outputs and for simplicity, we assume
that the layer does not have the bias terms.

yi =

Nx∑
j=1

wijxj

It makes sense to initialize weights with random values. For example, we can
draw the initial values of the weights from some distribution p(w) with zero
mean 〈w〉 = 0. Suppose that the inputs xj are normalized to have zero mean
and unit variance and they are also uncorrelated. Then, the variance of the
output signals is

var yi =

Nx∑
j=1

w2
ij varxj =

Nx∑
j=1

w2
ij

Its expectation under the distribution p(w) of the initial values of the weight is
then

〈var yi〉 =

Nx∑
j=1

〈
w2
ij

〉
= Nx varw

where varw is the variance of the initial weight values.

Figure 2.8: Change of the signal
variance in the forward propaga-
tion through a linear layer.

x1

...

xNx

wij ∼ p(w)
〈w〉 = 0

y1

...

yNy

varxj = 1 〈var yi〉 = Nx varw

We can see that if either Nx or varw is large, the variance of the output
signal can get higher than the variance of the inputs. If we stack multiple linear
layers on top of each other and use, for example, large varw for each layer,
then the variance of the signals can quickly grows producing very large values
at the output. This can cause problems for the optimization procedure. On the
other hand, if the variance of the weights is chosen to be too small, then the
signals in the network can quickly decay to zero, which is again a problem for
the optimization.

To prevent explosions or decay of the signals, it is a good idea to keep the
variance at a constant level: 〈var yi〉 = 〈varxj〉 = 1, which means that we should
select the distribution p(w) such that the variance varw of the weights is equal
to

vf =
1

Nx
.

What about the variance of signals in the backpropagation phase? Let us
assume that the inputs ∂L

∂yi
of the linear layer in the backward phase are also
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uncorrrelated and have unit variance: var ∂L
∂yi

= 1. With similar arguments, the
expected variance of the outputs is〈

var
∂L
∂xj

〉
= Ny varw

and if we want to keep the variance at a constant level, the initial distribution
of the weights p(w) should be such that the variance varw of the initial weight
values is equal to

vb =
1

Ny
.

∂L
∂x1

...

∂L
∂xNx

wij ∼ p(w)
〈w〉 = 0

∂L
∂y1

...

∂L
∂yNy

〈
var ∂L

∂xj

〉
= Ny varw var ∂L

∂yi
= 1

Figure 2.9: Change of the signal
variance in the backward propa-
gation through a linear layer.

To keep the balance between the forward and backward variances, Glorot
and Bengio (2010) proposed to use weight distribution p(w) such that varw is
the harmonic mean of va and vb:

varw =

(
1/vf + 1/vb

2

)−1

=
2

Nx +Ny

If p(w) is a uniform distribution wij ∼ U [−∆,∆], then the variance of the
weights is

varw =
〈
w2
ij

〉
=

∫ ∆

−∆

w2
ijp(wij)dwij =

∫ ∆

−∆

w2
ij

1

2∆
dwij = 2

∆3

3

1

2∆
=

∆2

3

Then, we can initialize the weights as

wij ∼ U

[
−

√
6√

Nx +Ny
,

√
6√

Nx +Ny

]

which is perhaps the most popular intialization scheme called Xavier’s initial-
ization.

2.5 Mini-batch training (stochastic gradient descent)

The loss function that we minimize during training is usually a sum of terms
which correspond to individual training examples. For example, for a regression
problem with N training example, we minimize the mean-squared error loss

L(θ) =
1

N

N∑
n=1

∥∥∥y(n) − f(x(n),θ)
∥∥∥2

.

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://en.wikipedia.org/wiki/Harmonic_mean
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Training is often done using very large data sets, nowadays the data sets are
so large that they cannot fit into the RAM memory. In the standard gradient
descent, we need to go through all the training examples to compute the loss
and its gradient before we update the model parameters. But does it make sense
for large data sets?

Large data sets are often redundant, which means that different parts of the
data set may contain similar information. The effect of that is that the gradients
computed on different parts of the data are likely to be similar. Then, why to
process the whole data set before updating the model parameters? This seems
like a waste of computations.

The idea of mini-batch training is that we compute the gradient using only
a small fraction of the training data (called a mini-batch):

∂L
∂θ
≈ 1

|Bj |
∑
n∈Bj

∂

∂θ

∥∥∥y(n) − f(x(n),θ)
∥∥∥2

and use that gradient estimate ∂L
∂θ to update the model parameters. Here,

Bj denotes one mini-batch. When using mini-batches, we never use the true
gradient which should be computed using the whole data set. We always use its
“noisy” estimate caused by the limited size of the mini-batch. Therefore, this
method is often called stochastic gradient descent.

When doing mini-batch training, at every iteration we construct a mini-
batch of examples sampled from the training set. It makes sense to use all
training examples the same number of times and therefore the training examples
are usually processed in an order. One loop of going through all the training
examples is usually called a training epoch.

In every training epoch, it is a good idea to use a different split of the
training set into mini-batches, otherwise gradient estimates are biased towards
a particular mini-batch split. It is also important that mini-batches do not
contain too similar examples. In classification problems, for example, mini-
batches need to be balanced for classes.

The recent trend is to use as large batches as possible, for example, use
the maximum size allowed by the GPU memory. There are two main reasons
for that. First, using larger batch sizes reduces the amount of noise in the
gradient estimates. Second, computing the gradient for multiple samples at
the same time is computationally efficient. It typically requires matrix-matrix
multiplications which are efficient, especially on GPUs.

Since in mini-batch training we always use noisy estimates of the gradient,
the magnitude of the gradient estimate can be non-zero even when we are close
to the optimum (see Fig. 2.10). One way to reduce this effect is to reduce the
learning rate ηt towards the end of training. The simplest schedule is to decrease
the learning rate after every n updates.

One trick to reduce the amount of noise in the weight estimates caused by
stochastic gradient descent is to use exponential moving average of the model
parameters. The parameters of the final model are computed as

θ′t = γθ′t−1 + (1− γ)θt
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where θt are the parameters of the model trained with stochastic gradient de-
scent and γ is a positive constant which is close to 1, for example, 0.9. By
doing exponential moving, we essentially use the average of the weight values
obtained in a moving window over the recent updates. This reduces the noise
in the parameter values which is illustrated in Fig. 2.10.
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Figure 2.10: An optimization
trajectory of stochastic gradient
descent. The fluctuations are
caused by using gradient esti-
mates from a mini-batch instead
of the true gradient.

2.6 Batch normalization

Now we seem to know everything that we need to optimize a neural network.
We know how to compute the gradient efficiently using backpropagation, we
know that it is better to normalize the inputs of a neural network to zero mean
and unit variance, we also know how to initialize the weights so that the signals
in the neural network neither vanish nor explode. However, does the fact that
our model is a stack of multiple layers cause any problems for optimization?

Suppose that we have a deep neural network with 32 inputs and 32 features
in each hidden layer. For simplicity, let us assume that the network does not
have nonlinearities: it is a stack of linear layers. We do the tricks that we
mentioned before:

– whiten the inputs

– initialize the weights with Xavier’s initialization

and we initialize bias terms with zeros. In Fig. 2.11a, we show the eigenvalues
of the covariance matrices of the intermediate signals after each of the first
five layers. We can see that the covariance matrix of the intermediate signals
quickly becomes ill-conditioned: the dominant eigenvalues become much larger
than the smaller ones. And this happens in spite of the fact that the inputs
of the network are whitened, which means that all the eigenvalues at the input
layer are equal to one.

Now suppose that we fix the first layers of the network and optimize only
the last layers. The fact that the covariance matrix of the intermediate signals
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is ill-conditioned means that the convergence of the gradient descent will be
extremely slow.

Figure 2.11: The structure of the
intermediate signals in a stack of
linear layers with 32 features in
each layer. (a): The eigenvalues
of the covariance matrices of
the intermediate signals after
each of the first five layers. (b):
The rank of the matrix of the
intermediate signals as a function
of the layer.
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In fact, the problem is even more severe. Fig. 2.11b shows the ranks of the
matrices (as implemented in torch.matrix rank()) containing the intermedi-
ate signals in the network as a function of the layer. We can see that the rank of
the intermediate representations decays very quickly with the number of layers.
This means that we effectively lose information on the way: some projections of
the original data do not influence the output signal at all. As noted by Danesh-
mand et al. (2020), the rank collapse indicates that the direction of the output
vector becomes independent of the actual input. Bjorck et al. (2018) report that
a standard neural network initialized normally consistently predicts one specific
class, irrespective of the input (see Fig. 2.14). This is also an indicator of the
rank collapse.

Why does the rank collapse happen? The intuition is that the dominant
eigenvectors of the weight matrices make the input vectors rotate more in the
same direction. Recall the power iteration method which is a method to find
the dominant eigenvector of a matrix W:

v← Wv

‖Wv‖
.

We multiply a randomly initialized vector v by W, normalize the resulting
vector to unit length and use this vector in the next iteration. The power itera-
tion method converges to the desired solution because the matrix multiplication
rotates the input vector towards the direction of the dominant eigenvector.

In our deep linear network

y = Wn...W3W2W1x

one layer W1x can be viewed as one iteration of the power method without
the normalization step. Thus, even after the first layer, the intermediate signals
h1 = W1x become (slightly) correlated even if the inputs x have been whitened.
When multiple layers are stacked together, the effect becomes very prominent:
outputs y are more determined by the spectral structure of the weight matrices
Wi rather then inputs x. Some data projections simply become invisible in the
outputs. Applying intermediate nonlinearities does not fix this problem.

https://arxiv.org/abs/2003.01652
https://arxiv.org/abs/2003.01652
https://arxiv.org/pdf/1806.02375.pdf
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(a) rank in the last hidden layer after random
initialization

(b) training accuracy after 75 epochs

Figure 2.12: Effect of depth on
rank and learning for an MLP
network with 128 hidden units in
each hidden layer and ReLU
nonlinearities (Daneshmand
et al., 2020). The network is
trained on the Fashion-MNIST
dataset.

The rank collapse problem has a severe negative effect on the training pro-
cedure. Fig. 2.12 presents the effect of depth on rank and learning for an MLP
network with ReLU nonlinearities (Daneshmand et al., 2020). We can see that
when the network has more than 12 layers, the rank collapses to one and the
network does not train. Bjorck et al. (2018) report that a deep network with
standard initialization can have very large gradient magnitudes (see Fig. 2.14a),
which can cause divergence of the training procedure.

The rank collapse problem is diminished by the trick called batch normal-
ization. The motivation behind batch normalization is the following: if input
normalization has positive effect on training, it is probably a good idea to nor-
malize the intermediate signals as well. The problem is that the intermediate
signals change during training and we cannot perform normalization before the
training. The solution is to normalize intermediate signals to zero mean and
unit variance in each training mini-batch. This yields the batch normalization
layer:

1. Compute the means and variances of the intermediate signals x from the
current mini-batch {x(1), . . . ,x(N)}:

µ =
1

N

N∑
i=1

x(i) σ2 =
1

N

N∑
i=1

(x(i) − µ)2 .

2. Normalize signals to zero mean and unit variance:

x̃ =
x− µ√
σ2 + ε

.

3. Scale and shift the signals with trainable parameters γ and β:

y = γ � x̃ + β .

Daneshmand et al. (2020) show that batch normalization has a positive effect
on the rank of the intermediate representations (see Fig. 2.13). For a linear
model, the rank quickly drops with and without batch normalization. Without

https://arxiv.org/abs/2003.01652
https://arxiv.org/abs/2003.01652
https://arxiv.org/abs/2003.01652
https://arxiv.org/pdf/1806.02375.pdf
https://arxiv.org/abs/2003.01652
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batch normalization, the rank goes to one but with batch normalization the
rank stabilizes at a larger value. For an MLP with ReLU activations, the rank
almost does not drop at all.

Figure 2.13: The rank of the last
hidden layer’s activation as a
function of the total number of
layers.

Due to fixing the rank collapse problem, batch normalization has positive
effect on the magnitudes of the gradients inside the network. Bjorck et al. (2018)
present the heat maps of the output gradients in the final classification layer
after initialization in a deep neural network (see Fig. 2.14). The columns in
these plots correspond to classes and the rows correspond to samples in the
mini-batch. The unnormalized network consistently predicts one specific class
(which corresponds to the very right column) and because of that the gradients
are highly correlated. For a batch normalized network, the dependence upon
the input is much larger and the gradients become less correlated.

Figure 2.14: A heat map of the
output gradients in the final
classification layer after initial-
ization (Bjorck et al., 2018). The
columns correspond to classes
and the rows to samples in the
mini-batch.

Bjorck et al. (2018) also compute the histograms over the gradients at ini-
tialization for a midpoint layer of a deep neural network (see Fig. 2.15). For
the unnormalized network (Fig. 2.15a), the gradients are distributed with heavy
tails. The large magnitudes of the gradients can cause divergence of the gradi-
ent descent especially for large learning rates. Therefore, one has to use very
small learning rates, which slows down training. For the normalized networks,
the gradients are concentrated around the mean and the optimization procedure
can converge even with larger learning rates. Thus, batch normalization enables
training with larger learning rates, which is the cause for faster convergence and
better generalization.

https://arxiv.org/pdf/1806.02375.pdf
https://arxiv.org/pdf/1806.02375.pdf
https://arxiv.org/pdf/1806.02375.pdf
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Figure 2.15: Histograms over the
gradients at initialization for a
midpoint layer of a deep neural
network.

In a batch normalization layer, the mean and standard deviation are com-
puted for each mini-batch. What statistics (mean and standard deviation)
should be used then at test time for a trained network? Our test batch can
contain a single example for which we cannot compute the statistics. The so-
lution is to keep track of the batch statistics (mean and standard deviation)
during training:

µ← (1− α)µ+ α
1

N

N∑
i=1

x(i)

σ2 ← (1− α)σ2 + α
1

N

N∑
i=1

(x(i) − µ)2

where α is the momentum hyperparameter. It is the running statistics µ and
σ2 that are used at test time. For that reason, the behavior of the network with
batch normalization layers is different in the training and evaluation modes:

– In the training mode, we compute statistics from a mini-batch and update
running statistics µ and σ2.

– In the evaluation mode, we use running statistics µ, σ2 and keep them
fixed.

A common mistake is not to set the network into the evaluation mode in which
case the running statistics keep on changing.

In PyTorch, the model is switched to the training mode with .train() and
into the evaluation mode with .eval(), like in the code below.

model = nn.Sequential(

nn.Linear(1, 100),

nn.BatchNorm1d(100),

nn.ReLU(),

nn.Linear(100, 1),

)

# Switch to training mode

model.train()
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# train the model

...

# Switch to evaluation mode

model.eval()

# test the model

Remember that batch normalization introduces dependencies between samples
in a mini-batch in the computational graph.

2.7 Improved optimization algorithms

The gradient descent algorithm is conceptually very simple but unfortunately
it has problems. When we analyzed the convergence of the gradient descent,
we saw that the convergence can be slow when the curvature of the objective
function substantially varies in different directions. The problem is that the
gradient magnitudes can be large in the directions in which we need to travel
little and they can be small in the direction in which we need to travel much.
This fact results in zigzaging of the optimization trajectory.

Figure 2.16: Gradient magni-
tudes can be large in the direc-
tions in which we need to travel
little and they can be small in
the direction in which we need
to travel much. This fact results
in zigzaging of the optimization
trajectory.
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We know that the information about the curvature is contained in the Hes-
sian matrix and, in principle, we could try to use that information. This is
done in Newton’s method. In one iteration of this method, we find a quadratic
approximation of the loss function, as given in (2.4), and find the minimum of
the quadratic approximation. This results in the following update rule:

θt+1 = θt −H−1
t gt

This optimization method can be efficient but it is not practical for large
neural networks which may contain millions of parameters. The problem is
the high computational complexity of computing H−1

t gt when the number of
parameters is large.
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Figure 2.17: An optimization
trajectory obtained with New-
ton’s method.

2.7.1 Momentum method

A more practical method is called a momentum method (Polyak, 1964). The
idea of the method is that

– we would like to move faster in directions with small but consistent gra-
dients;

– we would like to move slower in directions with big but inconsistent gra-
dients.

The method is implemented by aggregating negative gradients in the mo-
mentum:

mt+1 = αmt − ηtgt

and using the momentum to update the parameters:

θt+1 = θt + mt+1

The first equation can be viewed as applying exponential moving average to
ηt

(1−α)gt which is the gradient scaled by the learning rate:

mt+1 = αmt − (1− α)
ηt

(1− α)
gt.

Parameter α is often chosen to be close to one, for example, 0.9.
Hinton (2012) gives a intuitive explanation of the momentum method. Imag-

ine a ball moving on the error surface. The location of the ball represents the
value of the parameters (w1, w2). At time t = 0, the ball follows the gradient.
Once it gains velocity, it no longer does steepest descent: its momentum makes
it keep going in the previous direction. The momentum damps oscillations in
directions of high curvature (by combining gradients with opposite signs) and
it builds up speed in directions with a gentle but consistent gradient. You can
find the convergence analysis for the momentum method in (Goh, 2017).

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://distill.pub/2017/momentum/
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Figure 2.18: An optimization
trajectory obtained with the
momentum method.
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2.7.2 Rprop

The algorithm called Rprop (Reidmiller and Brau, 1992) is the basis of modern
optimizers used for tuning neural networks. The authors note that the magni-
tude of the gradient can be very different for different weights and can change
during learning. This makes it hard to choose a single global learning rate. For
that reason, Rprop uses only the sign of the gradient but ignores the gradient
magnitude. The update rule is

θt ← θt−1 − ηt �
gt√

g2
t + ε

where g2 is a vector of squared partial derivatives and �, a
b denote elementwise

multiplication and division, respectively. The algorithm uses different learning
rates for individual parameters, thus ηt is a vector in which each element corre-
sponds to one of the parameters. The learning rates ηt are adapted to increase
the step size for parameters that are consistently changed in the same direction:

– Increase the step size for a weight multiplicatively (e.g., ×1.2) if the signs
of its last two gradients agree. Do not exceed the maximum step size.

– Otherwise decrease the step size multiplicatively (e.g., ×0.5).

The Rprop algorithm allows escaping quickly from plateaus with tiny gradients.

2.7.3 RMSProp

Rprop was designed for full-batch training and it does not work well for mini-
batch training. Hinton (2012) gives an intuitive example. Consider a weight
that gets a gradient of +0.1 on nine mini-batches and a gradient of -0.9 on the
tenth mini-batch: We want this weight to stay roughly where it is because if we
combine the gradients from the ten mini-batches, the aggregate gradient will
be close to zero. However, Rprop would increment the weight nine times and

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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decrement it once by about the same amount (if we ignore the adaptation of
the step sizes). So the weight would grow a lot.

Hinton (2012) proposed to modify Rprop by essentially using the exponential
moving average of the squared gradients g2

t in the denominator:

θt ← θt−1 − ηt
gt√

vt + ε

vt = βvt−1 + (1− β)g2
t

This algorithm is called RMSprop. Suppose that we use β = 0.9 in the toy
example, that we considered above. Then, for the tenth mini-batch we have
vt = 0.09 and the effective step size is ηt

0.9√
0.09

= 3ηt, which means that we

diminished the problem.

2.7.4 Adam

Adam (Kingma and Ba, 2014) is perhaps the most popular optimization algo-
rithm. It can be viewed as RMSProp with the exponential moving average of
the gradient in the numerator:

θt ← θt−1 − ηt
m̂t√
v̂t + ε

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

The estimates of the momenta mt, vt start from zero, which creates a bias in
favor of small values (which is less negligible at the beginning of training). The
authors propose to correct this bias using

m̂t =
mt

(1− βt1)

v̂t =
vt

(1− βt2)

where βt1, βt2 denote β1, β2 in the power of t. These momenta corrected for bias
are used in the Adam update rule.

Adam is perhaps the most popular optimization algorithm among deep learn-
ing practitioners. Why does Adam work so well? One reason is that in Adam,
the effective step size |∆t| is bounded. In the most common case:

|∆t| =
∣∣∣∣η m̂t√

v̂t

∣∣∣∣ ≈
∣∣∣∣∣η E[g]√

E[g2]

∣∣∣∣∣ ≤ η
because

E[g2] = E[g]2 + E[(g − E[g])2].

Thus, we never take too big steps which can happen in the standard gradient
descent because the gradient magnitudes can get large (this property is inherited

https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/pdf/1412.6980.pdf
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from Rprop). We go with the maximum speed (taking steps of size η) only if
g is the same between updates (mini-batches), that is when the gradients are
consistent.

Another reason is that Adam has a mechanism for automatic annealing of the
learning rate. At convergence, when we start fluctuating around the optimum,
E[g] ≈ 0 and E[g2] > 0, which means that the effective step size gets smaller.



Chapter 3

Convolutional neural
networks

3.1 Motivation

In this chaper, we consider supervised learning problems in which inputs either
have specific order such as one- or two-dimensional spatial structure. As an
example, let us consider a classification task in which we need to classify images
of handwritten digits from the MNIST dataset (see Fig. 3.1). The inputs of a
classifier are images of 28 × 28 pixels. The task is to classify an image into 10
classes.

Figure 3.1: Example classifica-
tion problem: images of hand-
written digits from the MNIST
dataset. Inputs x(n) are images
28× 28 pixels. Targets y(n): One
of the 10 classes.

In this task, spatial information plays an important role. In Fig. 3.2, you
can see the same images from Fig. 3.1 with the pixels shuffled in the same way
for all the images. Even though the information is preserved in the shuffled

Figure 3.2: If we change the or-
der of the pixels (in the same
way for all images), the classifi-
cation task becomes much harder
for a human. This suggests that
the classifier can benefit from
using spatial information.

images, the digits become non-recognizable for a human. This example shows
that the classifier should benefit from using spatial information.

39



40 CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS

Let us first try to solve our image classification problem using a multilayer
perceptron network that we discussed in Section 1.3. We can flatten images (for
example, by stacking the columns of the images into one vector) and feed the
resulting vector into an MLP model. In Fig. 3.3, we can see a 3 × 3 image of
digit 4 that is converted into a 9-dimensional vector and fed to an MLP. For this
simple dataset, the MLP model will actually be able to solve the classification
task on a reasonably good level.

Figure 3.3: Solving an image
classification task using a mul-
tilayer perceptron. Images are
flattened and fed to the MLP.
Right: When two pixels are
swapped, we simply feed the
pixels into different inputs of the
MLP.

However, there are several problems with using the MLP model in this task.
The first problem is that the model does not use the spatial structure (or order)
of the inputs. Suppose that we shuffle the pixels of the input images. In Fig. 3.3,
we swap two pixels in the top right corner and the bottom left corner. The
swapped pixels will be fed to different inputs of the network, which means that
after training the weights of the corresponding neurons are likely to be swapped
too. However, swapping of the pixels does not affect the difficulty of the learning
problem for the MLP. Training the MLP model using the original images will
be as hard as using the shuffled inputs. This means that the MLP ignores
the spatial structure and essentially tries to solve a more difficult classification
problem.

The problem of ignoring the spatial structure can be demonstrated using
the following example. Let us take an image of digit 0 which is resized to
8× 8 pixels for demonstration purposes. And let us do small translations of the
image by shifting the image one pixel to the left and to the right, up and down
(see Fig. 3.4). We can easily see that the translated images contain the same
digit in slightly different locations. However, the flattened versions of these
five images look substantially different, as the activations happen in different
positions. Feeding such translated images to an (untrained) MLP model will
result at very different activations inside the network and the output of the
network will change in an unpredictable way. During training, the MLP has to
learn to be invariant to such transformations, which may require a considerable
amount of data and training iterations.

The second problem of the MLP is a large number of parameters. Suppose
that for solving the MNIST dataset, we use an MLP network with the following
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Figure 3.4: Small translations
of the input image (for example,
shifting the image one pixel to
the left/right/top/bottom) result
in significant changes of the MLP
inputs, therefore the outputs
of the MLP will change in an
unpredictable way. The MLP
has to learn to be invariant to
such transformations, which may
require a considerable amount of
training.

architecture: two hidden layers, the first layer has 225 units, the second layer
has 144 units (see Fig. 3.5). The output layer has 10 outputs because we have
10 classes in the MNIST classification problem. Let us count the number of

input x

784 pixels

h1 = relu(W1x + b1)

225 units

h2 = relu(W2h1 + b2)

144 units

f = softmax(W3h2 + b3)

10 outputs

Figure 3.5: An example MLP
network for solving the MNIST
classification task.

parameters in our MLP network ignoring the bias terms b for simplicity. The
first layer has 28 × 28 × 225 parameters because the input contains 28 × 28
pixels and the output consists of 225 elements. The second layer has 225× 144
parameters and the output layer contains 144×10 parameters. In total, we have

28× 28× 225 + 225× 144 + 144× 10 = 210240

more than 200 thousand parameters for our small classification problem. If we
want to process images that contain millions of pixels, the number of parameters
would be several orders of magnitude larger.
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Therefore, we would like to design an alternative to the fully-connected layer
that would address these problems. Our new layer should

– take into account the order of the inputs,

– have a smaller number of parameters compared to the fully-connected
layer,

– change the outputs in a predictable way for simple transformations such
as translation.

3.2 Convolutional layer

3.2.1 Inputs with 1d structure

Let us consider inputs with one-dimensional structure. For example, we process
one-dimensional time series and the order of the inputs is determined by the
order in which the observations arrive. Suppose that our time series has length
5 and we process it with a fully-connected layer with 5 outputs (see Fig. 3.6).
The layer has 5× 5 = 25 parameters if we neglect the bias terms.

Figure 3.6: Processing of input
with five ordered elements by a
fully-connected layer.

x1 x2 x3 x4 x5

We can reduce the number of parameters by using only local connections. We
can connect each output only to inputs in a small neighborhood. For example,
only to three inputs that are closest to the location of the output (see Fig. 3.7).
Now the outputs also have an order because each output corresponds to a par-
ticular location. The new layer has 13 parameters instead of 25 parameters in
the fully-connected layer.

Figure 3.7: Processing of input
with five ordered elements by a
layer with local connections.

We can further reduce the number of parameters by using weight sharing.
In Fig. 3.8, arrows with the same color represent shared weights. We can see
that the inputs that come before the output neuron are processed by the same
weight (represented by the red arrows). The inputs that come after the current
position are processed by another weight (represented by the blue arrows). The
black arrows represent the third parameter. By sharing weights in this way, we
have reduced the number of parameters to 3.
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Figure 3.8: Processing of input
with five ordered elements by a
layer with local connections and
shared weights.

Shared parameters bring us the following benefit. A pattern that appears
at the beginning of the input sequence may activate a neuron at the beginning
of the output sequence. When the same pattern appears at the end of the
input sequence, it will activate another neuron that is close to the end of the
output sequence. This happens due to parameter sharing. That means that our
neurons act as detectors of features at different spatial locations.

The computations performed in such a layer are

yi =
∑

∆i=−1,0,1

w∆ixi+∆i + b

We compute a linear combination of the inputs in a moving window and add a
bias term. This layer is called a (one-dimensional) convolutional layer because
the computations are closely related to the convolution operation:

(w∗x)[t] =
∑
a

w[a]x[t− a].

Inputs and outputs of a convolutional layer usually contain multiple elements
(usually called channels). Each output channel is produced with the same
formula:

yi,o =
∑
∆i

∑
c

w∆i,o,cx∆i,c + bo.

Note that we need to combine all the channels in the input and therefore the
number of weights w is proportional to the number of the input and output
channels. Weights w∆i,o,c are usually called kernel.

The inputs at the borders can be processed in two different ways. In the
first approach, we compute only the outputs for which we have all the required
elements in the inputs (see Fig. 3.9). As you can see, this results in the output
that contains fewer elements than the input.

Figure 3.9: A one-dimensional
convolutional layer without
padding.

In many situations, however, we want to produce an output of the same
size as the input. We can achieve that by assuming that the input has extra
elements at the borders (see Fig. 3.10). Filling inputs with extra elements at
the borders is typically called padding. Inputs are usually padded with zeros.
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Figure 3.10: A one-dimensional
convolutional layer with padding.

0 0

3.2.2 Inputs with 2d structure

The same ideas can be used for processing inputs with two-dimensional spatial
structure such as images. We can use local connections such that an output is
affected only by the inputs in its neighborhood (see Fig. 3.11). We can process
different parts of the inputs with shared parameters. In Fig. 3.11, links with
the same colors represent shared weights.

Figure 3.11: A two-dimensional
convolutional layer. Links with
same colors represent shared
weights.

b1,W1

Let us take a closer look at the computations in a two-dimensional convolu-
tional layer. We will use a simplified example in which the input image contains
only one channel of binary (black-and-white) pixels (see Fig. 3.12). For simplic-
ity, we assume that all the elements of the kernel are also binary. The output of
the layer also contains only one channel and we do not use padding. To compute
the output of the layer, we slide the filter across the entire input and compute
the dot products between the input entries and the filter weights. In Fig. 3.12,
you can see how the output map is populated. Note that the computations
can be parallelized: we can compute the outputs at all locations in parallel.
The parallelization can be very effective when the computations are done on
graphical processing units.

The filter acts as at feature detector. Note that the filter in the example in
Fig. 3.12 has the shape of a corner and the output has the maximum value of 3
at the position where this corner is present in the input image.
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Figure 3.12: Illustration of com-
putations in a two-dimensional
convolutional layer. The kernel
which contains the layer param-
eters is shown in the middle. We
slide the filter across the entire
input and compute dot products
between input elements marked
with blue squares and the kernel.
The result is stored in the posi-
tion marked with the red square.

In general, inputs of a convolutional layer may contain multiple channels.
For example, color images are usually represented as two-dimensional maps with
three (RGB) channels. We want to detect multiple features in the input images
and therefore we typically use multiple filters. Therefore, the convolutional layer
produces multiple channels o and we have a separate set of parameters w for
each output channel.

yi,j,o =
∑
∆i

∑
∆j

∑
c

w∆i,∆j,o,cxi+∆i,j+∆j,c + bo

Just like in multilayer perceptrons, the output of a convolutional layer is usually
transformed by a nonlinear activation function, such as ReLU:

y′i,j,o = relu(yi,j,o).

One filter learns to detect one feature in the input. Consider an example
in Fig. 3.13. We process a grayscale image with two convolutional filters. The
weights of the first filter change in the vertical direction. Therefore, it produces
high activations at locations where the color changes in the direction from top
to bottom. Similarly, the second filter detects color changes in the horizontal
direction. We observe high values in the locations where the input resembles
the kernel. Low values are observed in the locations where the color gradient is
opposite compared to the color gradient in the kernel.
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Figure 3.13: Each filter learns
to detect one feature throughout
the input.

3.2.3 2d convolutional layer in PyTorch

A two-dimensional convolutional layer in PyTorch is implemented in class

torch.nn.Conv2d(in channels, out channels, kernel size, stride, padding)

One needs to specify the number of input and output channels, the kernel size
which is the number of elements in the kernel in both dimensions. Padding
defines the number of padded elements at the borders. Parameter stride spec-
ifies how many pixels we skip when we slide over the input image. Skipping
pixels results in reducing the dimensionality of the output image. This can be
useful in practice because two neighboring windows of pixels in the input image
often contain similar information. By skipping pixels with stride, we can reduce
the resolution of the output without losing much information. An interactive
visualization of the convolutional layer can be found on this web page. Fig. 3.14
explains the meaning of the parameters of the layer.

Figure 3.14: Visualization of the
parameters of a two-dimensional
convolutional layer. The input
image is shown with a black
square on the left hand side. The
colors represent receptive fields
of all pixels in the output map.
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Note that the size no of the output map is generally different from the size
ni of the input. It can be computed using the following formula

no =
1

s
(ni + 2p− k) + 1,

where k is the kernel size, p is the number of padded elements and s is the stride
value.

Why do we need padding?

– With padding, the output of a convolutional layer can have the same
size as the input, which makes it is easier to design deep networks. For

https://ezyang.github.io/convolution-visualizer/index.html
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example, in the network called ResNet (Section 3.4.3), the output of a
layer is summed with its input

x + conv(x),

which means the input and output dimensions have to match.

– With padding, we can construct deeper networks. Without padding, the
size would reduce quickly with adding new layers.

– Padding improves the performance by keeping information at the borders.

3.2.4 Translation equivariance

Let us now conduct the following experiment. We take an image and compute
the output of a convolutional layer for this image (see the top row in Fig. 3.15).
Then, we translate the image by shifting it one pixel to the right and feed the
transformed image to the same convolutional layer. Note that the output of
the layer will be a shifted version of the layer output for the original image
(the bottom row in Fig. 3.15). This happens because during sliding over the
transformed image, we will be getting the same values but in locations shifted
by one pixel to the right compared to the original output. This property is
known as translation equivariance.
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Figure 3.15: Shifting the input
image by one pixel to the right
changes the output in the same
way: it is shifted by one pixel to
the right.

Function f is equivariant with respect to transformation T if applying the
transformation to input x and feeding it to the function is equivalent to applying
the transformation T to the output f(x):

f(T (x)) = T (f(x)).

Function f is invariant with respect to a transformation T if the result does
not change when you apply the transformation to the input:

f(T (x)) = f(x).

Thus, the convolutional layer is equivariant to translations but not invariant.
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3.3 Construction of a convolutional network

Let us build a convolutional neural network to solve the MNIST classification
task. The input is an image with 28 × 28 pixels with 1 channel. As the first
layer, we use a convolutional layer with a 5× 5 kernel, 9 channels and padding
with two pixels on each side. The output of the first layer contains 28×28 pixels

Figure 3.16: Constructing a con-
volutional network to solve the
MNIST classification task. The
first layer has a 5 × 5 kernel, 9
channels and padding with two
pixels on each side.

with 9 channels. The number of parameters in the first layer (ignoring the bias
terms) is

5× 5× 9 = 225 .

Compare this number with the number of parameters in the first fully-connected
layer of the MLP that we described in Section 3.1:

28× 28× 225 = 176400 .

Let us now count the number of signals in the first layer:

28× 28× 9 = 7056 .

Compare this number with 225 which was the number of signals in the first layer
of the MLP from Section 3.1. We can see that the number of intermediate signals
is much larger in the convolutional layer. To process such a high-dimensional
signal, we need to perform a significant amount of computations in the rest of
the network. In order to decrease the amount of computations, it makes sense
to reduce the number of intermediate signals. We can do so by a pooling layer.

3.3.1 Pooling layer

A common way to reduce the number of intermediate signals is to keep the
maximum values in a small window moving over the input. Consider as an
example an output of a convolutional layer that is 4× 4 in Fig. 3.17. We slide a
2×2 window over the image and select the maximum value inside that window.
We can see that by using a filter of size 2×2 we discard 75 percent of the values.

The motivation behind pooling is that the outputs of a convolutional layer
in two neighboring locations are likely to be similar because they have been
computed in overlapping windows. By using max pooling, we take the most
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2 2 Figure 3.17: Populating the out-
put of a max pooling layer.

pronounced presence of a given feature in the input map. Pooling also makes
intermediate representations approximately invariant to small translations of
the input.

Let us add a 2× 2 pooling layer on top of the first convolutional layer from
Fig. 3.16. The output of the pooling layer is a 14× 14 map with 9 channels, the
same number of channels as in the output of the first convolutional layer.

Figure 3.18: Constructing a
convolutional network to solve
the MNIST classification task.
Adding a 2× 2 pooling layer.

3.3.2 Stacking more layers

We continue by stacking another convolutional layer with a 5×5 kernel, padding
of the inputs and 16 output channels (see Fig. 3.19) Note that each unit looks
at all the channels of the previous layer. The resulting two-dimensional map
is 14 × 14 pixels with 16 channels. Finally, we flatten the outputs of the last
convolutional layer and feed them to a fully-connected layer with the softmax
nonlinearity.

The network can be trained by a gradient-based optimization procedure, for
example, Adam. The gradients are computed by backpropagation just as in
the multilayer perceptron. The biggest difference is that we need to take into
account parameter sharing inside the convolutional layers.
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Figure 3.19: A convolutional
network to solve the MNIST
classification task.

3.3.3 Backpropagation through a convolutional layer

Let us take a look at the computations that happen in a convolutional layer

yi,j,o =
∑
∆i

∑
∆j

∑
c

w∆i,∆j,o,cxi+∆i,j+∆j,c + bo

in the backpropagation phase. To compute the derivative with respect to pa-
rameters w∆i,∆j,o,c, we need to compute a sum over all locations i and j (due
to parameter sharing):

∂L
∂w∆i,∆j,o,c

=
∑
i

∑
j

∂L
∂yi,j,o

xi+∆i,j+∆j,c.

To compute the derivatives wrt the inputs of the layer, we need to combine
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the partial derivatives wrt to the outputs with the layer parameters.

∂L
∂xi,j,c

=
∑
∆i

∑
∆j

∑
o

∂L
∂yi−∆i,j−∆j,o

w∆i,∆j,o,c (3.1)

Note that the resolution of the outputs in the backpropagation phase increases.
The operation that processes inputs ∂L

∂yi−∆i,j−∆j,o
as written in (3.1) is often

called transposed convolution.

∂L
∂xi,j,c

=
∑
∆i

∑
∆j

∑
o

∂L
∂yi−∆i,j−∆j,o

w∆i,∆j,o,c

∂L
∂x

∂L
∂y

Figure 3.20: The operation per-
formed during backpropaga-
tion through a convolutional
layer is often called transposed
convolution.

3.4 Popular convolutional networks

The architecture that resembles modern convolutional networks was first pro-
posed by Fukushima (1980). The model was called neocognitron, it was a neural
network architecture with multiple layers of local feature detectors and weight
sharing (see Fig. 3.21).

Figure 3.21: Fukushima’s
Neocognitron

The neocognitron architecture inspired many researchers. LeCun et al. (1998)
used that architecture as inspiration for building the first convolutional networks
to solve the task of handwritten character recognition. A time-delay neural net-
work was similar to convolutional networks but applied to audio (Waibel et
al., 1989).

Convolutional neural networks became hugely popular after the ImageNet
competition in 2012. In this section, we will look at the architectures of three
notable networks that were successful in the ImageNet competition: AlexNet,
VGG network and ResNet.

https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
https://www.cs.toronto.edu/~hinton/absps/waibelTDNN.pdf
https://www.cs.toronto.edu/~hinton/absps/waibelTDNN.pdf
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Figure 3.22: Top-5 classifi-
cation error in the ImageNet
competition.
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3.4.1 AlexNet

The network (Krizhevsky, 2012) contains five convolutional layers and the first
layer has pretty large filters 11× 11. The network has three maximum pooling
layers and three fully-connected layers at the end of the network. The network
has ReLU nonlinearities after the convolutional layers. To reduce overfitting,
the authors used a regularization technique called dropout (see Section 4.4.1).

Figure 3.23: The architecture of
AlexNet (Krizhevsky, 2012). image source:oreilly.com

3.4.2 VGG network

Simonyan and Zisserman (2015) give the following motivation behind the VGG
architecture. Suppose that we have a block that processes a two-dimensional
map with c input channels to produce a two-dimensional map with the same
number of channels c. If we implement this block as a single convolutional layer
with 7× 7 filters, we have 49c2 parameters (see Fig. 3.24).

Now suppose that we stack three convolutional layers with 3× 3 filters (see
the rhs plot in Fig. 3.24). As you can see, the value of a pixel in the third layer
is affected by a window of size 7 in the input. That means that the receptive
field of a neuron in the third layer is 7× 7. However, the number of parameters
in the block is 27c2, which is about half of the parameters of one convolutional
layer with the same receptive field. Therefore, it makes to use smaller kernels
but deeper networks.

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/abs/1409.1556
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Figure 3.24: Motivation behind
using small kernels: by using a
stack of three layers with kernel
size 3, we get a receptive field
of 7 with a smaller number of
parameters compared to a single
layer.

Using deeper networks with small kernels has been the trend since 2012. In
the VGG-19 network, there are 19 convolutional layers with 3 × 3 kernels (see
Fig. 3.25).

Figure 3.25: The architecture of
the VGG-19 network.

3.4.3 ResNet

ResNet (He et al, 2016) is probably the most popular convolutional architecture.
The authors noticed that training a convolutional network with a large number
of layers is a difficult problem. In Fig. 3.26, you can see the learning curves
for two convolutional networks with 20 and 56 layers. The performance of the
deeper network is worse than of the more shallow one. This is somewhat counter-
intuitive because the extra layers of the deeper network could simply learn an
identity mapping if the shallow architecture is more preferable. However, this
does not happen in practice.

Figure 3.26: Learning curves for
two convolutional networks with-
out residual connections. Train-
ing of a convolutional network
with more layers is a harder opti-
miation problem.

The authors proposed an architecture in which instead of learning function
f(x), layers learn function x + h(x). The motivation is that if an identity map-
ping is optimal for a layer, it is easier to push the residual h(x) to zero than to

https://arxiv.org/pdf/1512.03385.pdf
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learn an identity mapping with f(x). The proposed architecture contains resid-
ual connections that skip convolutional layers (see Fig. 3.27). The architecture
is called ResNet.

Figure 3.27: The architecture of
ResNet (He et al, 2016).

Later, Balduzzi et al. (2017) gave a different perspective into why residual
connections help training. They looked at a randomly initialized MLP network
with scalar inputs and outputs f : R → R. The network had 200 neurons and
ReLU activations in each layer. They visualized the derivative of the output
as a function of the input x (see Fig. 3.28). One can see that in a shallow
network with a single layer the derivative changes “slowly” wrt to the input.
On the contrary, the derivative changes rapidly in a 24-layer network. Note that

Figure 3.28: Gradients ∂f
∂x

(x) as

a function of the input. 1-layer feedforward 24-layer feedforward 50-layer ResNet

the sign of the gradient may change from positive to negative even for a small
change of the input. The authors call this phenomenon shattered gradients.

Why does this matter? When we do backpropagation, we need to compute
the partial derivatives of the output of a block wrt to its input. In a deep network
without skip connections, these derivatives may change significantly even for a
small perturbation of the input. The fact that the sign of the derivative changes
means that instead of increasing the value of a weight, we can start decreasing
the value just because of a slightly perturbed input. This causes problems
for the optimization procedure. As we can see from Fig. 3.28, adding skip
connections fixes this problem. The gradients start behaving similarly to the
shallow network, which has a positive effect on optimization.

3.4.4 Batch normalization in convolutional networks

To improve convergence, the ResNet architecture contains batch normalization
layers. The batch statistics in a batch norm convolutional layer are computed
across all examples in a mini-batch and all pixels.

µ =
1

NWH

N∑
n=1

W∑
i=1

H∑
j=1

x
(n)
ij σ2 =

1

NWH

N∑
n=1

W∑
i=1

H∑
j=1

(x
(n)
ij − µ)2

https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1702.08591.pdf
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The statistics are computed separately for each channel, therefore vectors µ
and σ2 have as many elements as there are channels in the input x. The batch
statistics are used to normalize the signals in each channel. After that, the
signals are scaled and shifted with parameters γc and βc:

y
(n)
ijc = γc

z
(n)
ijc − µc√
σ2
c + ε

+ βc .

3.5 Applications of convolutional networks

Convolutional networks have been used for processing images, text data, speech,
analyzing positions in board games and even for predicting protein folding. The
main advantages of the convolutional networks are:

– They take into account the order of the inputs.

– They can process input sequences with varying lengths (due to parameter
sharing).

– The computations can be effectively parallelized.

3.5.1 Processing speech with temporal convolutions

WaveNet (van den Oord et al., 2016) is an autoregressive model of speech that
predicts the next value of the speech signal given a window of the previous
values.

p(x) =

T∏
t=1

p(xt|x1, . . . , xt−1)

The model is implemented as a stack of one-dimensional convolutional layers.
One challenge in the speech domain is that one typically needs to model

dependencies between very distant signals. The sampling rate of the CD quality
audio is 44 kHz which means that one second of audio contains 44 thousand
samples. If we want to model dependencies within one second with WaveNet,
the receptive field of the last convolutional layer should be 44 thousand. To
obtain such a large receptive field with standard convolutional layers, one would
have to stack a huge number of them (see Fig. 3.29).

Figure 3.29: In a stack of stan-
dard convolutional layers, the
receptive field grows slowly. The
marked pixel has a receptive field
of size 5 in a stack of four layers.

For that reason, WaveNet uses a stack of dilated convolutional layers whose
architecture is shown in Fig. 3.30. Dilated convolutions allow fast growth of the

https://arxiv.org/abs/1609.03499
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receptive field, which means that we can obtain the same size of receptive fields
with fewer convolutional layers. WaveNet is still the state-of-the-art model in
speech synthesis.

Figure 3.30: In a stack of di-
lated convolutional layers, the
receptive field grows faster. The
marked pixel has a receptive
field of size 16 in a stack of four
layers.

3.5.2 Convolutional models for semantic segmentation

Semantic segmentation is a popular application for convolutional neural net-
works. The task is to generate pixel-wise segmentations of images, that is to
predict the class of the object visible in each pixel. This is a harder classification
problem compared to producing one label for the whole image.

Figure 3.31: The task of seman-
tic segmentation. input image output segmentation map

U-net is a popular architecture for solving the semantic segmentation task
(see Fig. 3.32). The model contains two paths: the contracting path from the
high-resolution input to a low-resolution representation and the expansive path
from the low-resolution representation to high-resolution outputs. The purpose
of the contracting path is to extract high-level features, that is we want to detect
high-level objects such as a human or a motorcycle in Fig. 3.31. The purpose of
the expansive path is to make the classification decisions on the pixel level. The
expansive path uses representations developed in the contracting path via skip
connections. The representations from the skip connections are concatenated
with the signals computed in the expansive path and fed as the input of the
next layer.
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Figure 3.32: The architecture of
the U-net.

3.5.3 Convolutional model for statistical machine translation

Convolutional networks have been also used in the task of statistical machine
translation. The task is to translate a sentence in one language into a sentence
in another language. Sentences can be seen as sequences of words and they
can also be processed by a convolutional neural network. Gehring et al., (2017)
used convolutional networks to encode the source sequence and to decode the
developed representations into the output sequence (Fig. 3.33). We will have a
closer look at this model in Chapter 6.

Figure 3.33: Convolutional
model for statistical ma-
chine translation Gehring et
al., (2017).

3.5.4 Convolutional networks in reinforcement learning

In reinforcement learning tasks, convolutional networks are used to process sen-
sory inputs with two-dimensional structure. For example, the famous AlphaZero

https://arxiv.org/pdf/1705.03122.pdf
https://arxiv.org/pdf/1705.03122.pdf
https://arxiv.org/pdf/1705.03122.pdf
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algorithm (Silver et al, 2017), that achieves superhuman performance in the
games of Go, chess and shogi, uses convolutional neural networks to analyze
game positions. Deep convolutional networks are used to compute the proba-
bility of the next move and the probability that the player wins the game from
the current position.

Figure 3.34: A convolutional net-
work to analyze the board posi-
tion in the AlphaZero algorithm
(Silver et al, 2017).

3.5.5 Protein folding

Convolutional neural networks were also used to solve the protein folding prob-
lem. Proteins are comprised of chains of amino acids and the information about
the sequence of amino acids is contained in DNA. The protein folding problem
is predicting how the chains of amino acids will fold into the 3D structure of a
protein.

Figure 3.35: Complex 3D shapes
emerge from a string of amino
acids. The image is from Deep-
mind’s blog post.

The standard for assessing techniques in the protein prediction problem is a
biennial global competition called the Critical Assessment of protein Structure
Prediction (CASP) which runs since 1994. In 2020, DeepMind’s model called
AlphaFold 2 (Senior et al., 2020) has achieved “unprecedented progress in the
ability of computational methods to predict protein structure” (see Fig. 3.36).

The backbone of the AlphaFold 2 model is a convolutional neural network
(Fig. 3.37). The input of the model is a sequence of amino acids. Each sequence

https://deepmind.com/documents/119/agz_unformatted_nature.pdf
https://deepmind.com/documents/119/agz_unformatted_nature.pdf
https://www.nature.com/articles/s41586-019-1923-7
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Figure 3.36: Progress in the Crit-
ical Assessment of protein Struc-
ture Prediction (CASP).

is represented as a two-dimensional matrix in which each element corresponds
to one pair of amino acids. The features (channels) of each pixel are produced
using an external model. The outputs are the distances between the Cβ atoms
of pairs of amino acid residues of a protein. It is interesting that even though the
input has one-dimensional structure, it is processed by a convolutional network
with two-dimensional convolutions and the results are outstanding.

Figure 3.37: A convolutional
network is the backbone of the
AlphaFold 2 model for protein
structure prediction.
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Chapter 4

Regularization

4.1 Overfitting

Overfitting happens when a trained model follows training data too closely but
it fails to fit test data reliably. In Fig. 4.1, we show an example of fitting a
polynomial function of order 12 to the data points shown with the blue circles.
The model trained on these data are shown with the red line. We can see that
the model fits the training data very well but it generalizes poorly between the
training examples.
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Figure 4.1: Example of overfit-
ting with a polynomial model
of order M = 12. The training
samples are shown with the blue
circles. The red line is the fit-
ted model. The green line is the
correct function.

The conventional wisdom says that overfitting happens when “the model
is too flexible for the amount of training data”. The flexibility of the model is
traditionally assumed to be connected to the number of model parameters. This
is a quote from Wikipedia which says that “an overfitted model is a statistical
model that contains more parameters than can be justified by the data”. There
is a well-known rule of thumb for the logistic regression model: to keep the risk
of overfitting low, the number of examples should be ten times larger than the
number of parameters.

The common way to detect overfitting is to use a validation set to evaluate
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the performance of a trained model. In Fig. 4.2, the black circles represent the
validation set. We can measure that the error on that validation set is much
larger that the error on the training set. This is a sign of overfitting.

Figure 4.2: Overfitting can be
detected by using a validation set
(black dots).
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Regularization is any modification to the learning algorithm that is done to
reduce the overfitting problem. As we discussed in Chapter 1, neural networks
are universal approximators, which means that they are very flexible models
and they can also overfit. In Fig. 4.3, we see an MLP model fitted to the same
training data as in Fig. 4.1. We can clearly see that the model overfits.

Figure 4.3: Fitting a toy data
set with an MLP network. The
red line is the fitted model. The
green line is the correct function. 0.0 0.2 0.4 0.6 0.8 1.0
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In this chapter, we study common methods to prevent overfitting of neural
networks. They are:

1. limiting model capacity (by reducing network size, weight decay, parame-
ter sharing)

2. early stopping

3. ensemble methods (dropout, Bayesian neural networks)

4. data augmentation (noise injection, transformations, adversarial training).
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4.2 Limit model capacity

4.2.1 Reducing the model size

Recall the conventional wisdom: overfitting is likely to happen when a model
contains more parameters than can be justified by the data. Then the obvious
solution is to reduce the number of parameters. For example, we can vary
the number of neurons, the number of layers and find the architecture that
generalizes best in our learning problem. The advantage of this approach is that
it is conceptually easy. The disadvantage is that other regularization methods
often give better results.

4.2.2 L2 regularization

Another easy way to reduce overfitting is a penalty term that penalizes large
values of the model parameters to add to the loss function (Tikhonov, 1943).

Lreg = L+ Ω(w) .

Ω(w) =
α

2
‖w‖2 =

α

2

∑
i

w2
i

where α is a hyperparameter that controls the strength of the regularization.
The penalty term Ω(w) is simply a sum of the squared values of the model
parameters.

This regularization method is known as Tikhonov regularization or L2 reg-
ularization. It pushes the solution towards zero. In Fig. 4.4, we see example
contour plots of the unregularized loss L and the contour plots of the penalty
term. The solution that minimizes the original loss is located here. The solution
that minimizes the penalty term is located at w∗. The regularized solution is
found somewhere in between the unregularized solution and the origin w = 0.
The regularized solution is a compromise between w∗ and w = 0

w∗ unregularized solution
w̃ regularized solution

Figure 4.4: L2 regularization
pushes the solution towards zero.

L2 regularization is often called weight decay. For example, the Adam opti-
mizer in PyTorch has the option of using L2 regularization.
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torch.optim.Adam(params, lr, betas, eps, weight decay)

The strength of the regularization is controlled by the parameter weight decay

which sets the value of the hyperparameter α.
However, using term weight decay for L2-regularization may cause confusion.

In the early paper by Hanson and Pratt (1988), weight decay was implemented
by the following update rule

wt+1 = (1− λ)wt − η∇L (4.1)

in which the weights w decay exponentially with factor (1− λ). We see that in
order to compute the updated values of the weights, we multiply the previous
values of the weights by factor (1−λ) which is smaller than 1. That means that
the contribution of the weight wt will decay exponentially when the training
progresses.

It is easy to see that weight decay is equivalent to L2 regularization for
standard stochastic gradient descent.

Lreg = L+
α

2
‖w‖2

wt+1 = wt − η∇Lreg = wt − η∇L− ηαwt = (1− ηα)wt − η∇L

If we set ηα = λ, we get the same update rule as in (4.1).
However, for algorithms like Adam, weight decay, as defined by (4.1), is

not equivalent to L2 regularization. This was noted by Loshchilov and Hutter
(2017). They proposed a regularized version of Adam which tries to follow the
early-days definition of weight decay. That optimization algorithm is available
in PyTorch as torch.optim.AdamW.

It seems that many students are confused about this topic and the confusion
seems to be caused by a popular blog post which says “that the way weight decay
is implemented in Adam in every library seems to be wrong”. They call that
implementation “old, broken Adam”. What is implemented in PyTorch under
the name of Adam with weight decay is simply Adam with L2 regularization.
It is a valid regularization technique and it is not broken in any way. AdamW
implements a different regularization technique. It may work better or worse
but both are valid regularization methods.

Why does L2 regularization reduce overfitting? One intuition is that smaller
weights usually produce smoother functions, functions with smaller magnitudes
of derivatives. A more formal analysis of weight decay can be done for a linear
regression problem (Goodfellow et al., 2016). Consider a linear regression prob-
lem in which we minimize the mean-squared error loss and let us drop the bias
terms for simplicity:

L(w) =
1

2N

N∑
n=1

(
yn −w>xn

)2
+
α

2
w>w.

We can find the minimum of the regularized loss by computing the gradient

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
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and equating it to zero:

∇wL =
2

2N

N∑
n=1

(
yn −w>xn

)
(−xn) +

α

2
w =

1

N

N∑
n=1

xnx>nw − 1

N

N∑
n=1

ynxn +
α

2
w

=

(
1

N

N∑
n=1

xnx>n + αI

)
w − 1

N

N∑
n=1

ynxn = 0 ,

which yields

w =

(
1

N

N∑
n=1

xnx>n + αI

)−1(
1

N

N∑
n=1

ynxn

)
.

Let us take a closer look at this expression. We can see that the first term
is the sample covariance matrix plus an additional term which is a diagonal
matrix with the same diagonal elements α. That means that we simply add α
to the diagonal elements of the sample covariance matrix.

Therefore, L2 regularization causes the learning algorithm to “perceive”
the input as having higher variance. This makes the weights shrink (become
smaller). The regularization effect is larger for the weight values determined by
the minor components of the data (those components that have small variance).
Although this analysis was done for a linear model, it gives us some intuition
why this regularization method works.

4.3 Early stopping

When we apply early stopping, we monitor the performance of the model on the
validation set during training. Typical learning curves look like the ones shown
in Fig. 4.5. First, both the training and validation errors decrease. Then, at
some point, the training error continues to decrease while the validation error
starts increasing. This is a sign of overlearning.

Figure 4.5: Typical learning
curves during training.

The idea of early stopping is to stop training when the validation perfor-
mance starts deteriorating. By doing that, we keeps the solution close to the
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initialization. Note that when other regularization techniques are used, the
deterioration of performance may never start and this technique does not help.

Goodfellow et al. (2016) give an intuition why early stopping works. They
perform analysis for a quadratic loss function with optimal solution w∗

L(w) = L(w∗) +
1

2
(w −w∗)

>A(w −w∗).

Suppose that we minimize the loss using gradient descent. For this analysis,
it is convenient to use the same transformation of the coordinate system that
we did in Section 2.2. We compute the eigenvalue decomposition of matrix
A = QΛQ> and transform the coordinate system as in (2.2):

z = Q>(w −w∗). (4.2)

The gradient descent update rule in the new coordinate system is given by (2.3):

zt = (I− ηΛ)zt−1

which can be written as

zt = (I− ηΛ)zt−1 = (I− ηΛ)2zt−2 = ... = (I− ηΛ)tz0

Now using (4.2) yields

Q>(wt −w∗) = (I− ηΛ)tQ>(w0 −w∗)

If we assume that we start with w0 = 0, we get

Q>(wt −w∗) = −(I− ηΛ)tQ>w∗

Q>wt = Q>w∗ − (I− ηΛ)tQ>w∗ = [I− (I− ηΛ)t]Q>w∗ . (4.3)

Now consider minimizing the same loss with a weight decay penalty.

Lα(w) = L(w∗) +
1

2
(w −w∗)

>A(w −w∗) +
α

2
w>w

We can find the optimal solution w̃ by taking the gradient and equating it to
zero.

∇Lα = A(w −w∗) + αw = 0

The optimal solution w̃ is given by

w̃ = (A + αI)−1Aw∗

In the coordinate system rotated by Q>, the solution is given by

Q>w̃ = Q>(QΛQ> + αI)−1QΛQ>w∗

= Q>
[
Q(Λ + αI)Q>

]−1
QΛQw∗

= (Λ + αI)−1ΛQ>w∗ (4.4)



4.3. EARLY STOPPING 67

Now let us compare the solutions found with the L2 regularization (4.4) and
with early stopping after iteration t (4.3):

L2 regularization: Q>w̃ = (Λ + αI)−1ΛQ>w∗

early stopping: Q>wt = [I− (I− ηΛ)t]Q>w∗

If the hyperparameters η, α and t are chosen such that

(Λ + αI)−1Λ = [I− (I− ηΛ)t]

then L2 regularization and early stopping can be seen as equivalent.
This analysis suggests that if we start with small values of the weights, the

effect of early stopping is similar to the effect of the L2 regularization. We find
a solution that is somewhere between the origin where we started from and the
unregularized solution. This is illustrated in Fig. 4.6.

w∗ unregularized solution
w̃ regularized solution

Figure 4.6: Left: In early stop-
ping, the solution is between the
initialization w = 0 and the un-
regularized solution. Right: A
similar effect is achieved with L2

regularization.

training error
validation error

Figure 4.7: Early stopping stops
training before we go to a narrow
hole in which the model may
generalize poorly.

For nonlinear optimization problems, the intuition why early stopping helps
can be given by Fig. 4.7. At the beginning of training, we start moving in the
areas of the parameter space where the gradients are small and small changes
of the parameters cause small changes of both training and validation error.
When we get closer to the optimum, we may start going into a narrow hole of
the training loss where small changes of the weights can cause large changes of
the validation loss. In early stopping, we stop training before we start going
into that narrow hole.
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4.4 Ensemble methods

The idea of ensemble methods is to train several models and take the average
of their outputs. This approach is also known as bagging or model averaging.
There are several ways how one can create an ensemble of models. For example,
we can

– vary the types of models and training algorithms

– we can vary the hyperparameters of a single model

– we can vary data, for example, dropping some examples or dimensions

– we can vary model initializations.

Figure 4.8: The red line shows a
prediction made by an ensemble
of models. The dotted lines rep-
resent predictions by individual
ensemble members.
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4.4.1 Dropout

Dropout is perhaps the most popular ensemble method used with neural net-
works (Hinton et al., 2012). The idea of dropout is that during training we
randomly delete neurons with some probability p. Deletion means that we set
the output of a neuron to zero. This is illustrated in Fig. 4.9.

Why is dropout an ensemble method? Because each model configuration
with a particular set of dropped neurons can be seen as one member of an
ensemble of models. The ensemble members have shared weights because we
drop neurons in the same neural network. If the network contains N neurons,
the ensemble contains 2N models.

Fig. 4.10 illustrates that the dropout does not let the neural network learn
to rely on particular features. During training, we randomly drop neurons that
detect certain details in the input. For example, we may drop features that
detect the curve at the bottom and the bar at the top but the network should
use the remaining features to compute the prediction. In case we drop important
features, an individual ensemble member may be uncertain about its prediction.
But the average prediction computed by the ensemble may still be correct. The
model trained with dropout is more robust to noise in the data.

At training time, neurons are dropped at random and therefore the output
of the network is stochastic. At test time, we often want to get a deterministic

https://arxiv.org/abs/1207.0580
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Figure 4.9: Above: A neural
network with fully-connected
layers. Below: Instances of the
same network when some of the
neurons are dropped out.

Figure 4.10: Dropout as bagging.

output. However, if we do not drop neurons at test time, the neurons after the
dropout layer would receive more activation in their inputs than during training.
This has a negative effect on the model performance.

We can fix this problem with the following trick. If a signal x is dropped
with probability p, then the expected value after the dropout is

E[dropout(x)] = (1− p)x .

If we divide the output of the dropout layer by (1− p) at training time, we get

E

[
1

1− p
dropout(x)

]
= x ,

which means that the expected value of the signal after the dropout is the same
as without the dropout. This is how it is implemented in the PyTorch dropout
layer:
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– at training time: replace inputs with 0 with probability p and divide by
(1− p),

– at time time: pass the inputs without modification.

Therefore, if your network has a dropout layer, you should remember to switch
between the training and evaluation modes as shown in the piece of code below.

model = nn.Sequential(

nn.Linear(1, 100),

nn.Tanh(),

nn.Dropout(0.02),

...

)

# Switch to training mode

model.train()

# training the model

...

# Switch to evaluation mode

model.eval()

# test the model

Dropout is usually placed after the activation function. If the activation
function is ReLU, then placing it before or after the nonlinearity is equivalent.

4.4.2 Probabilistic treatment: Bayesian neural networks

Another way of creating an ensemble of neural networks is implemented in
Bayesian neural networks. This idea was popularized by David MacKay (1992).
In the Bayesian methodology, one should always consider all possible models
and combine them according to how well they explain the data. The predictive
distribution for output y given input x and data D should be constructed by
combining predictions made by individual models p(y | x,Mi) weighted by the
probability of the model given the data:

p(y | x, D) =
∑
i

p(y | x,Mi)p(Mi | D)

Probability p(Mi | D) is usually called model evidence.
We can build an ensemble of models around a single neural network archi-

tecture, just like we did with dropout. Each ensemble member is described by
different values of the network parameters w and we can combine predictions
produced by the ensemble by computing the following integral:

p(y | x, D) =

∫
p(y | x,w)p(w | D)dw

where p(w | D) is a distribution over the model parameters w. We weigh the
individual predictions by the probability of an ensemble member given the data.

In order to compute this integral, we need to evaluate the posterior distri-
bution p(w | D) of the model parameters given the training data. We can do

https://authors.library.caltech.edu/13793/1/MACnc92b.pdf
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that using the Bayes rule

p(w | D) =
p(D|w)p(w)

p(D)
.

Here, we have the prior distribution p(w) over the weights, the likelihood p(D|w)
and a normalization constant p(D) that does not depend on the model parame-
ters. Unfortunately, the distribution p(w | D) does not have an analytical form
for nonlinear models such as neural networks and therefore we need to approxi-
mate this distribution somehow. We can use different strategies to approximate
p(w | D):

– maximum a posteriori estimation (point estimates of w)

– variational approximation

– sampling

Next we briefly discuss some of these techniques.

4.4.3 Weight decay as Bayesian prior

The simplest approach to approximate p(w | D) is to use point estimates: max-
imum a posteriori values. Of course, this would not really create an ensemble of
models because we would simply select a single model with the highest probabil-
ity. To find the maximum a posteriori estimate, we can maximize the logarithm
of the posterior probability

F(w) = log p(w | D) = log p(D | w) + log p(w)− log p(D)

or minimize the negative of that:

L(w) = − log p(D | w)− log p(w) (4.5)

We can drop the term log p(D) because it is constant wrt the model parameters.
Recall that the mean-squared error loss can be seen as minus log-likelihood

of a Gaussian probabilistic model (see Section 2.1.2):

− log p(D | w) = − log

N∏
n=1

N (y(n) | f(x(n),w), σ2I)

=
β

N

N∑
n=1

∥∥∥y(n) − f(x(n),w)
∥∥∥2

+ const (4.6)

Now if we assume the Gaussian prior p(w) = N (0, α−1I), we get

− log p(w) =
α

2
‖w‖2 + const (4.7)
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Inserting (4.6) and (4.7) into (4.5) gives

L(w) = − log p(D | w)− log p(w) =
β

N

N∑
n=1

∥∥∥y(n) − f(x(n),w)
∥∥∥2

+
α

2
‖w‖2 + const

This shows that L2 regularization is equivalent to maximum a posteriori esti-
mation in a probabilistic model with the Gaussian prior.

4.4.4 Variational approximation of the posterior distribution

Another approach is to approximate the posterior distribution p(w | D) using
variational approximation, which is illustrated in Fig. 4.11. The true posterior
distribution over the weights typically has a very complex form, as shown with
the blue line. It usually has many modes two of which are shown in the figure.
A popular way to approximate this complex posterior distribution is to use
a simpler distribution q(w | θ) that has an analytical form and to minimize
the distance between that approximating distribution q(w | θ) and the true
distribution p(w | D). The approximate distribution is shown with the red line
in Fig. 4.11.

Figure 4.11: Approximation of a
true posterior distribution (blue
line) with a simpler distribution
(red line). 1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

2.0

2.5

3.0
true distribution
approximation

It is common to use a fully factorial Gaussian distribution as the approxi-
mating distribution:

q(w | θ) =
∏
i

N (wi | µi, σ2
i ).

In this case, each parameter wi is described by two values: mean µi and stan-
dard deviation σi. Note that when we train a neural network normally, each
parameter is described by a single value, the value of the parameter. Param-
eters θ = {µi, σi} are the parameters of the variational approximation. Those
parameters are often called variational parameters. We tune those parameters
during training.

The metric that is used to measure the distance between the true distribution
p(w | D) and the approximating distribution q(w) is often chosen to be the
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Kullback-Leibler (KL) divergence:

L(θ) = KL[q(w | θ)||p(w | D)] =

∫
q(w | θ) log

q(w | θ)

p(D | w)p(w)
dw

= −Eq(w|θ)[log p(D | w)]︸ ︷︷ ︸
fit to data

+ KL[q(w | θ)||p(w)]︸ ︷︷ ︸
regularization term

.

For this learning problem, the KL divergence can be written as a sum of two
terms. The first term measures how well the model ensemble fits the data. The
second term works as a regulrization term that tries to keep the distribution
of the weights close to the prior distribution. The regularization term can
be computed analytically, while the first term has to be approximated, most
commonly by Monte Carlo sampling (see, e.g., Blundell et al., 2015).

4.4.5 Sampling approach: Stein variational gradient descent

Another notable algorithm for variational inference in probabilistic models is
called Stein variational gradient descent Liu and Wang (2016). It is a general
method for doing variational inference and it is also applicable to training of
neural networks.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.5

1.0

1.5

2.0

2.5

3.0
true distribution
approximation
samples from approximation

Figure 4.12: In Stein variational
gradient descent, the true distri-
bution (blue line) is represented
by sample (red dots) from an
approximating distribution (red
dashed line).

The basic idea is that we want to describe the posterior distribution by sam-
ples drawn from an approximation of that posterior distribution. In Fig. 4.12,
the approximation of the true posterior distribution is shown with the dashed
red line and the samples from that approximation are shown with the red dots.
It is those samples that define the members of our model ensemble. Each sample
defines one neural network with particular values of the model parameters.

In this approach, we do not postulate the form of the posterior approxi-
mation q(w). Therefore, we cannot compute the distance metric between the
approximation and the true posterior distribution. However, we can use sam-
ples wk from the approximate posterior to compute the gradient of the distance
between the two distributions. We can use that gradient to update samples wk

so as to decrease the distance between the approximation and the true posterior

https://arxiv.org/pdf/1505.05424.pdf
https://arxiv.org/pdf/1608.04471.pdf
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distribution. The update rule of the Stein variational gradient descent is

wk ← wk + η
1

K

K∑
k′=1

k(wk′ ,wk)∇wk′ [log p(wk′) + log p(D | wk′)]︸ ︷︷ ︸
smoothed gradient

+∇wjk(wk′ ,wk)︸ ︷︷ ︸
repulsive force

where k(w,w′) is a kernel function, for example,

k(w,w′) = exp

(
− 1

h
‖w −w′‖2

)
. (4.8)

The update rule shows how samples wk are updated in each training iteration.
Note that we use a kernel function k in the update rule. If we assume that

k is a delta function, then all ensemble members are trained with standard
gradient descent to minimize

− log p(wk′)− log p(D | wk′)

where − log p(wk′) can be viewed as a regularization term. If we use a kernel
like (4.8), update one sample wk by taking into account gradients computed for
the other samples as well. This makes us go towards area with high probability
mass.

The term ∇wj
k(wk′ ,wk) works as a repulsive force. It prevents the conver-

gence of all samples wk to the same values. As a result of that, our samples try
to populate the whole area of high probability mass.

4.4.6 Uncertainty estimation with Bayesian neural networks

A useful property of ensemble methods is that they can produce confidence
intervals for their predictions. Given a particular value of the input, we can
compute multiple predictions by different ensemble members and treat those
predictions as samples from the predictive distribution.

Figure 4.13: Uncertainty esti-
mation with a Bayesian neural
network (Blundell et al., 2015).
Training examples are shown
with the black crosses.

Fig. 4.13 shows predictive distributions computed with a Bayesian neu-
ral network whose parameters were estimated using variational approximation
(Blundell et al., 2015). The confidence intervals are relatively small in the areas
where we have the training examples shown with the black crosses. The width of
the confidence intervals increases when we move farther away from the training
data. This happens because different ensemble members produce more distinct
predictions.
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4.5 Data augmentation

A very powerful way to reduce overfitting is to increase the amount of training
data. If we have access to a dataset {(x(i),y(i))}Ni=1 of a limited size, we can
increase the size of the data set by applying different kinds of transformations
to training examples x(i) while keeping the original label y(i) for a transformed
example. This approach is often called data augmentation.

The simplest way to modify training examples is to corrupt them with ran-
dom noise (Sietsma and Dow, 1991). In each iteration, for each mini-batch,
we apply a different noise instance and therefore we essentially create an in-
finite dataset. Gaussian noise is very commonly used for noise injection (see
Fig. 4.14). A nice property of this method is its simplicity and applicability in
many application domains.

Figure 4.14: Data augmentation
by noise injection.

4.5.1 Image transformations

In the domain of image processing, a very powerful way to increase the amount
of data is to modify training examples by a set of chosen transformations. Pop-
ular transformations include random crop, random translation, random scaling,
flipping, random rotation. Again, we generate an infinite dataset by applying a
different transformation to each training example in each new epoch.

Image from (Dosovitskiy et al., 2014)

Figure 4.15: Example image
transformations.
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In Fig. 4.15, you can see examples of random transformations applied to
an image patch. We can see that one can generate a huge number of training
examples just from a single image. By feeding transformed images, we train our
network to be invariant to such transformations. Sometimes transformed images
do not look even realistic but this normally does not cause problems. It turns
out that the networks generalize better when they are trained on challenging
examples even if they do not look very realistic.

This data augmentation scheme works very well in the image domain. Here,
we use our prior knowledge about the domain: we know that transformations
should not affect the label of the training example. In other domains, designing
such transformations may be less trivial.

4.5.2 mixup

In the data augmentation scheme called mixup (Zhang et al., 2017) virtual
training examples are constructed in the following way. We select a random
number λ between [0, 1] and mix two training examples with weights λ and
1− λ. We do this both for input x and output y.

x̃ = λxi + (1− λ)xj

ỹ = λyi + (1− λ)yj

In classification tasks, y is a one-hot encoded representation of the target class.
Note that for images, we create mixtures of two different images which may look
quite unrealistic. Nevertheless, this data augmentation method works well and
has positive effect on model generalization. This data augmentation encourages
the model to behave linearly in-between training examples. Therefore, we create
a bias in favor of linear functions, which helps regularize the learning problem.

4.5.3 Adversarial examples

The generalization performance of a model can be improved by augmenting the
training data with adversarial examples.

When we train a neural network, we minimize a loss that is usually computed
as a sum of losses for each training example x(n),y(n):

1

N

N∑
n=1

L(x(n),y(n),w)→ min
w

where L(x(n),y(n),w) is, for example, a cross-entropy loss. Szegedy et al. (2014)
discovered that it is very easy to fool a trained neural network. One can modify
a given example x with label y such that the classifier would output a wrong
prediction. We can do that by solving the following optimization problem:

L(x + r,y,w)→ max
r

We add a perturbation r to the input x and instead of minimizing the loss wrt
the model parameters, we maximize the loss wrt to the perturbation vector r.

https://arxiv.org/abs/1710.09412
https://arxiv.org/pdf/1312.6199.pdf
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Since we want to stay close to the original training example (we want to keep
our modification small and perhaps not noticeable), we add an extra constraint
that the norm of the perturbation vector should be small, for example, smaller
than some ε:

‖r‖ ≤ ε.

Such modified inputs x + r are called adversarial examples.

It is quite surprising that adversarial examples can be found very close to
training examples. Fig. 4.16 presents a famous example in which an image
of a panda (shown in the left) is correctly classified as “panda” by a trained
classifier. Then we add a small (carefully tuned) perturbation (shown in the
middle) to the image and produce an adversarial example which is shown on
the right hand side. For humans, the adversarial example and the original
image look exactly the same. However, the classifier changes its prediction for
the adversarial example from “panda” to “gibbon”.

x, f(x) = “panda” sign(∇xL(w,x,y)) x + r, f(x) = “gibbon”

Figure 4.16: Adversarial example
found with FGSM: The original
image is shown on the left, the
perturbation r is in the middle
and the adversarial example is
on the right.

Finding adversarial examples is also surprisingly easy. For example, the fast
gradient sign method (FGSM) (Goodfellow et al., 2014) simply takes the sign
of the gradient of the loss wrt to input x, multiplies it by small ε and adds it
to the modified example:

x + r = x + ε sign(∇xL(w,x,y)).

4.5.4 Adversarial training

The idea of adversarial training is to augment the training data with adversarial
examples. Since adversarial examples are difficult for neural networks, including
them in the training set can help improve generalization.

The existence of adversarial examples motivated a whole new subfield of deep
learning in which the goal is to develop techniques to defend neural networks
against adversarial attacks. One of the popular defense techniques in adversarial
deep learning is Madry’s defense model (Madry et al., 2017). To train a model
with that technique, we never use clean examples during training. Instead, we
always use the worst adversarial examples. There are two optimization loops in
the training procedure:

min
w

E(x,y)∼D

[
max
δ∈S
L(w,x + δ,y)

]
.

https://arxiv.org/pdf/1412.6572.pdf
https://arxiv.org/abs/1706.06083
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In the inner loop, we find the worst adversarial example x+δ for a given training
example x. In the outer loop, we tune the parameters of the neural network to
classify the adversarial example correctly.

It is interesting that this kind of adversarial training helps develop more
semantically meaningful representations, which is illustrated in Fig. 4.17. In

Figure 4.17: Adversarial training
help develop more semantically
meaningful representations. images from (Madry et al., 2018)

the first row we see training examples from three different datasets. In the
second row, we see the gradients of the loss wrt the input computed for the
same examples for the model trained in a standard way without adversarial
examples. Intuitively, the pattern in the gradient should suggest how to modify
the input so as to change the class label. Unfortunately, the gradients do not
look reasonable and look more like noise. In contrast, the gradients computed
for the models trained with Madry’s defence look much more meaningful. The
gradients are high in the locations which we believe are important for producing
the correct label.

Figure 4.18: Original examples
(first column) and adversarial
examples for a neural network
trained normally (second col-
umn) and with Madry’s defense
(third and fourth column). images from (Madry et al., 2018)

In Fig. 4.18, we show adversarial examples found for a neural network trained
normally and for two neural networks trained with Madry’s defense model. We
can see that the adversarial examples found with Madry’s model look very

https://arxiv.org/pdf/1805.12152.pdf
https://arxiv.org/pdf/1805.12152.pdf
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confusing even for humans. This shows that fooling such models is a much
more difficult task.

4.6 Rethinking generalization

Recall the conventional wisdom that we presented at the beginning of this chap-
ter: overfitting happens when the model is too flexible for the amount of training
data. Traditionally, the flexibility of the model is connected to the number of
model parameters. The study by Zhang et al. (2016) challenges the conventional
wisdom. They show that the same neural networks which are flexible enough to
memorize large and unstructured datasets can generalize very well in real-world
learning problems.

Figure 4.19: Fitting randomized
CIFAR-10 data with a convolu-
tional neural network.

Fig. 4.19a presents the evolution of the training error during training for
several experiments with the same convolutional network.

– The blue curve is the learning curve for the CIFAR-10 dataset.

– The green curve represents learning of the same dataset with shuffled
pixels. In this experiment, the same random permutation of pixels is
applied to all the images. By shuffling the pixels, we destroy the spatial
structure of the images but despite that, the convolutional network is able
to learn this dataset, which is indicated by the zero training error.

– The black and magenta curves describe experiments with randomized in-
puts. To obtain the magenta curve, the pixels of each image were shuffled
by a different random permutation. To obtain the black curve, the input
images were generated by drawing samples from the Gaussian distribu-
tion (with mean and variance matching the statistics of the CIFAR-10
dataset). In both cases, the training error again goes to zero.

– Finally, the authors used the original images but they randomized labels
and still the same neural network was able to learn to classify the training
set correctly.

Fig. 4.19b presents results with partially corrupted labels: with probability
p the label of each image was corrupted as a uniform random class. The time

https://arxiv.org/pdf/1611.03530.pdf
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that it took to achieve zero error grew as a function of the corruption rate p.
The same effect happened for three different convolutional architectures.

What is surprising is that exactly the same networks generalize very well
for uncorrupted data and achieve a reasonable level of generalization for partial
label corruption (see Fig. 4.19c). These experiments show that the same neural
network that has enough parameters to memorize very complex and unstruc-
tured datasets can generalize very well on real data. These results challenge the
common wisdom on how the number of parameters is related to overfitting.

The authors argue that explicit regularization may improve generalization
performance, but is neither necessary nor sufficient for controlling generalization
error. And the same network generalizes well on real data. Weight decay and
data augmentation only slightly improve the generalization performance (see
Table 4.1).

Table 4.1: Explicit regulariza-
tion (such as augmentation with
random crop or weight decay)
may improve generalization per-
formance, but is neither neces-
sary nor sufficient for controlling
generalization error.

In Table 4.2, we can see that batch normalization is usually found to improve
the generalization performance, even though it was not explicitly designed for
regularization. The results without batch norm are worse than the results with
the batch norm. Also the authors argue that stochastic gradient descent may
act as an implicit regularizer.

Table 4.2: Batch normalization
is usually found to improve the
generalization performance, even
though it was not explicitly de-
signed for regularization.

4.7 Hyperparameter search

4.7.1 Grid search

In this chapter, we studied several techniques that can be used to avoid over-
fitting. It is hard to know in advance which of those techniques would work
best in a particular learning problem. One needs to try different combinations
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of those techniques in order to select the best configuration. This process is
known as hyperparameter tuning or hyperparameter search.

During hyperparameter search, the performance on the validation set is used
to select the optimal values of the hyperparameters. The hyperparameters that
you may want to tune are:

– learning rate schedule

– transformations used for data augmentation

– weight decay coefficient

– dropout rate

– mini-batch size

– number of layers

– number of neurons

– convolution kernel width

– nonlinearity

Training a pretty large model with strong regularization such as data aug-
mentation often works best in practice. It is typical that the training error
becomes very low during training, which means that there is usually a gap in
performance between the training and the validation set. You should not expect
that the training and validation errors would be similar.

image from (Bergstra and Bengio, 2012) Figure 4.20:

Perhaps the simplest way of tuning the hyperparameters is called grid search.
One selects a fixed set of possible values for each hyperparameter and trains a
neural network with all possible combinations of the hyperparameters values.
In Fig. 4.20, we have two hyperparameters and for each hyperparameter we
choose three possible values. We train our model with all the nine combinations
of the hyperparameters. This approach is conceptually very easy but unfortu-
nately it is computationally very expensive. The computational cost increases
exponentially with the number of hyperparameters.
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Let us look at the hypothetical example in Fig. 4.20. Suppose that the first
hyperparameter affects the performance: the plot on the top of the figure shows
the performance of the model (for example, model accuracy) as a function of the
first hyperparameter. We can see that the optimal value of the hyperparameter
is somewhere between the second and the third value on the grid. However, we
do not find this value because we only test three values of that hyperparameter.

Suppose that the second hyperparameter is not important for the model
performance. By doing grid search, we perform three times more computations
than would be needed to tune only the important parameter. Therefore, grid
search is likely to be wasteful in terms of computations.

4.7.2 Random search

A simple alternative to grid search is random search. In random search, we try
combinations of random values of the hyperparameters instead of taking them
from a fixed grid. (see the rhs plot of Fig. 4.20). In the hypothetical example in
Fig. 4.20, the first hyperparameter is important and the second hyperparameter
is not important. We try nine different values of the important hyperparameter
instead of only three values in the grid search. Therefore, we increase the chance
of finding the value that maximizes the model performance.



Chapter 5

Recurrent neural networks

In the previous chapters, we considered supervised learning problems in which
inputs were vectors of fixed size. For example, in the MNIST classification prob-
lem, the inputs were 28×28 images which could be viewed as a two-dimensional
map of fixed width and height or as a vector with 784 elements. In some tasks,
inputs can be sequences and each input sequence can have a different number
of elements. For example, one sequence may have three elements and another
sequence may contain four elements:(

x
(1)
1 , x

(1)
2 , x

(1)
3

)
→ y(1)(

x
(2)
1 , x

(2)
2 , x

(2)
3 , x

(2)
4

)
→ y(2).

We should be able to process both sequences. One example of such learning
problem is sentiment analysis in which the task is to classify paragraphs of text
(see Table 5.1).

Input sequence Class
Dear #XYZ there is no network in my area and internet service is
pathetic from past one week. Kindly help me out.

negative review

Although the value added services being provided are great but the
prices are high.

mixed review

Great work done #XYZ Problem resolved by customer care in just
one day.

postive review
Table 5.1: The task of sentiment
analysis.

How can we process sequences with varying lengths? Let us start with a
simple example. Suppose we want to count the number of zeros in an input
sequence (x1, x2, x3, . . . xT ). In order to do that, we can write a script

h = 0

for x in input_sequence:

if x == 0:

h = h + 1

in which we initialize counter h with zero and then loop over all the elements in
the input sequence and increment h by one if the element x is equal to zero.

83
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We can implement these computations in a computational graph shown in
Fig. 5.1. We initialize the counter with h0 = 0 and then apply a pre-defined
function f to the counter h after seeing each new element xi of the input se-
quence.

Figure 5.1: A computational
graph to count the number of
non-zero elements in the input
sequence.

h0 f f f f f

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

def f(x, h):

return h + (x == 0)

In this simple example, it is easy to design a function that processes each
element of the input sequence. What should we do in more difficult cases,
for example, when we want to train a model to produce the correct label in
a sentiment analysis task. How should we process each element of the input
sequence?

To build a generic processor of sequences, we can use the same computational
graph as in our simple example. But instead of using a fixed and pre-defined
function f , we can use a learnable function f that can be tuned to produce the
correct outputs at the end of the sequence (see Fig. 5.2).

Figure 5.2: A computational of
a generic processor of a sequence
with varying length.

h0 f f f f f

x1 x2 x3 x4 x5

h1 h2 h3 h4 h5

What should we use as the computational block f in this architecture? A
simple solution is to use a block that has a similar architecture as the classical
multilayer perceptron that we studied in Section 1.3:

f(x,h) = tanh(Wh + Ux + b).

Here, we have a linear combination of the previous values of h, a linear com-
bination of the inputs x, the bias terms b and a nonlinear activation function
tanh. And we use this block on every step in our computational graph. Note
that we apply exactly the same function f again and again to process the ele-
ments of the input sequence. Therefore, this architecture is called a recurrent
neural network (RNN). Vector h which is updated at each iteration of the RNN
is often called the hidden state of the RNN.

In Fig. 5.3, we compare the computational graph of a multilayer perceptron
network with two layers and the computational graph of a recurrent neural
network which processes a sequence with two elements. Note that each layer
of the MLP has a different set of parameters W1 and W2. We can view the
computational graph of the RNN as a neural network with two layers. There
are two differences compared to the feedforward network:
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x f1 f2 L

W1 W2

y

h1 h2
h0 f f L

x1 x2 y

θ

h1 h2

Figure 5.3: Left: Computational
graph of a feedforward network.
Right: Computational graph of
an RNN.

– external inputs are added at every step,

– same parameters are used in every layer.

5.1 Training recurrent neural networks

The parameters of a recurrent neural network can also be tuned by gradient de-
scent or stochastic gradient descent. Suppose that we want to solve a sentiment
analysis task with an RNN. We need to produce the probability distribution
over existing classes at the output of our recurrent neural network. In order
to obtain a proper distribution, we can use the softmax nonlinearity after the
last layer (see Fig. 5.4). Since it is a classification problem, we can use the
cross-entropy loss.

h0 f f softmax L

x1 x2 y

θ

h1 h2 z

Figure 5.4: An example compu-
tational graph in the sentiment
analysis task.

The loss function that we want to minimize can be written as a sum of
terms in which n corresponds to one training example (one input sequence) and
j corresponds to one of the classes:

L(θ) = − 1

N

N∑
n=1

K∑
j=1

y
(n)
j log z

(n)
j .

To use (stochastic) gradient descent, we need to compute the gradient of the
loss function. We can do that efficiently with the backpropagation algorithm.

We first review the backpropagation algorithm for a multilayer neural net-
work without recurrence. Let us assume for simplicity that our neural network
operates with scalar signals:

L = L(y), y = f2(h, θ), h = f1(x,w),
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where x is the model input, y is the output and w, θ are the model parame-
ters. We can compute the derivatives wrt θ and w using the backpropagation
algorithm as illustrated in Fig. 5.5.

Figure 5.5: Backpropagation in a
feedforward network.
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Let us now consider a recurrent neural network with two layers which also
operates with scalar signals:

L = L(h2), h2 = f(x1, h1, θ), h1 = f(x1, h0, θ).

The difference to the feedforward network is that each layer implements the
same function and therefore each layer has the the same (shared) parameters θ.
This illustrated in Fig. 5.6.

Figure 5.6: A computational
graph of a recurrent neural
network.

L = L(h2)

h2 = f(x1, h1, θ)

h1 = f(x1, h0, θ)

h0 f f L

x1 x2

θ

h1 h2

Let us assume for now that the parameters of the layers are not shared.
The first layer has parameter θ1 and the second layer has parameter θ2. This
results in the computational graph that is similar to the feedforward network
(see Fig. 5.7). Now we can compute the derivatives wrt parameters θ1 and θ2

the same way we did for the feedforward network without recurrence. We can
compute the derivatives efficiently using backpropagation.

Figure 5.7: Backpropagation in
a network from Fig. 5.6 assum-
ing different parameters of the
layers.
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Finally, we need to take into account the fact the parameters of the first and
second layer are shared. We can do so simply by combining the gradients using
the rules of differentiation. Since the partial derivatives ∂θ1

∂θ = ∂θ2
∂θ = 1, we

simple sum the partial derivatives ∂L
∂θ1

and ∂L
∂θ2

. This is illustrated in Fig. 5.8.
Note that those are the derivatives that were computed by following two different
routes from the loss to the parameters. Therefore, we need to sum all the partial
derivatives that are computed by following all possible routes from the loss to
the parameters. The backpropagation algorithm applied to recurrent neural
networks is often called backpropagation through time.

∂L
∂θ

=
∂L
∂θ1

∂θ1

∂θ
+
∂L
∂θ2

∂θ2

∂θ

=
∂L
∂θ1

+
∂L
∂θ2

h0 f f L

x1 x2

θ1 θ2

θ

h1 h2

∂L
∂h2

∂L
∂h1

∂L
∂θ2

∂L
∂θ1

∂L
∂θ2

∂L
∂θ1

Figure 5.8: Backpropagation in a
recurrent neural network.

5.2 Problems with RNN training

Does recurrence cause problems for training? Consider a recurrent neural net-
work in which the computations are similar to the ones in the multilayer per-
ceptron:

ht = f(xt,ht−1,W,U,b) = φ(Wht−1 + Uxt + b). (5.1)

Let us first assume that we are not careful about selecting the nonlinearity φ
and we select it to be the identity mapping φ(a) = a. Let us also assume that
the hidden state at time 0 is initialized with h0 = 0 and that we do not use the
bias term: b = 0. Then, the hidden state at time t is computed as shown in
this formula.

ht = Wht−1 + Uxt = W (Wht−2 + Uxt−1) + Uxt

= WWht−2 + WUxt−1 + Uxt =

t∑
τ=1

Wt−τUxτ (5.2)

Now let us assume that matrix W is diagonalizable which means that it can
be written as

W = QΛQ−1 ,

where Q is a matrix of eigenvectors qi of W in its columns and Λ is a diagonal
matrix with the eigenvalues of W on the main diagonal. In general, there is

https://en.wikipedia.org/wiki/Diagonalizable_matrix
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no guarantee that W would be diagonalizable, but we make this assumption to
make the analysis simpler. Now we can write:

Wt−τ = QΛQ−1QΛQ−1 . . .QΛQ−1︸ ︷︷ ︸
t−τ times

= QΛt−τQ−1

We have the diagonal matrix Λ in the power t − τ in this expression. Let us
now look at one term in the formula for ht in (5.2):

Wt−τUxτ = QΛt−τ Q−1Uxτ︸ ︷︷ ︸
=z

= QΛt−τz =
∑
i

qiλ
t−τ
i zi

where we denote z = Q−1Uxτ and zi is the i-th component of z. Now we can
see that if there is an eigenvalue λi such that |λi| > 1 (and the corresponding
zi is non-zero), then the norm of the corresponding term qiλ

t−τ
i zi will grow

exponentially with t. This will cause explosions in the forward computations.
In a more general case, let Qm be an n×m matrix containing the m linear

independent eigenvectors qi of W in its columns and Λ be a diagonal matrix
made of the corresponding eigenvectors λi:

WQm = QmΛ

We can write Uxτ = Qmz + z′ where z′ belongs to the null space of Qm, that
is Q>mz′ = 0. Then, one term in (5.2) is

Wt−τUxτ = Wt−τQmz + Wt−τz′

Let us look at the first term only:

Wt−τQmz = Wt−τ−1WQmz = Wt−τ−1QmΛz = Wt−τ−2QmΛ2z = ...

= QmΛt−τz =
∑
i

qiλ
t−τ
i zi

Again, if one of the eigenvalues is such that |λi| > 1 (and the corresponding zi is
non-zero), then the norm of qiλ

t−τ
i zi will grow exponentially causing explosions

in the forward computations.

The largest absolute value among all eigenvalues of a matrix is called the
spectral radius:

spectral radius(W) = max
i
|λi|.

Using this terminology, we can say that explosions in the forward computations
happen if the spectral radius of W is greater than 1.

What if we use tanh as the nonlinearity in (5.1)?

ht = tanh(Wht−1 + Uxt + b)

In this case, explosions cannot happen because tanh is bounded in (−1, 1).
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5.2.1 Are there similar problems in backward computations?

Now let us analyze the backward computations. To do that, let us look at the
longest route of derivative computations for an RNN

ht = φ(Wht−1 + Uxt + b)

which is shown with the red arrows in Fig. 5.9.

h0 f f · · · f L

x1 x2 xt

h1 h2 ht

∂L
∂ht

∂L
∂h2

∂L
∂h1 Figure 5.9: The longest route of

derivative computations for an
RNN.

Using the chain rule, we can write the partial derivative wrt the hidden
state h1 as the matrix product of the Jacobian matrices of the intermediate
trasformations:

∂L
∂h1

>
=

∂L
∂ht

> ∏
τ=t,...,2

∂hτ
∂hτ−1

=
∂L
∂ht

> ∏
τ=t,...,2

diag(φ′τ )W. (5.3)

In this expression, diag(φ′τ ) is a diagonal matrix with the diagonal elements
given by φ′τ = φ′(Whτ−1 + Uxt + b). φ′ is the derivative of the nonlinearity
that we used in the recurrent cell. ∂L

∂h1
is a column vector of partial derivatives.

4 3 2 1 0 1 2 3 4
1

0

1

φ(h)

4 3 2 1 0 1 2 3 4
0

1

φ′(h)

Figure 5.10: tanh nonlinearity
(left) and its derivative (right).

Now suppose that we use the φ(h) = tanh(h) nonlinearity whose derivative is
shown in Fig. 5.10. Suppose that all our neurons in the RNN are not saturated
which means that their inputs are somewhere close to zero. That means that
the absolute values of the derivatives φ′ are greater than some threshold γ:

|φ′τ | ≥ γ.

Now if the spectral radius of W is greater than 1/γ, then the gradient explodes.
It is easiest to see this if we assume that the hidden state h is one-dimensional,

then W is simply a scalar w and the spectral radius of W is simply the absolute
value |w|. Then, the absolute value of (5.3) becomes∣∣∣∣∣ ∂L∂ht ∏

τ=t,...,2

φ′τw

∣∣∣∣∣ ≥
∣∣∣∣ ∂L∂ht

∣∣∣∣ ∏
τ=t,...,2

γ|w| =
∣∣∣∣ ∂L∂ht

∣∣∣∣ (γ|w|)t−1
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Figure 5.11: The blue solid line
represents an optimization tra-
jectory when training parameters
of an RNN. Exploding gradients
can cause taking too large steps,
which can harm training. Gra-
dient clipping can mitigate this
problem. With clipped gradi-
ents, the optimization process
is less affected by the gradient
explosion problem (dashed line). image from (Pascanu et al., 2013)

If |w| > 1/γ, we get exponential growth of this value with t. To avoid explosions,
it is good to keep neurons in the saturated regime where derivatives φ′ are small.

This analysis shows that the gradient may explode even for a bounded ac-
tivation function such as tanh. Gradient explosions caused by recurrence is
one big problem with training RNNs, which is illustrated in Fig. 5.11. One
workaround is to clip the gradient if it is larger than some pre-defined value.
This can be done element-wise (Mikolov, 2012) or by clipping the norm (Pascanu
et al., 2013):

if ‖g‖ ≥ ∆, then g← ∆
g

‖g‖
.

Clipping the gradient can mitigate the gradient explosion problem (see Fig. 5.11).
In PyTorch, clipping of gradients can be done by re-writing the attribute
parameter.grad.data after calling loss.backward().

5.2.2 Vanishing gradients

Let us now look at the gradients again.

∂L
∂h1

>
=

∂L
∂ht

> ∏
τ=t,...,2

∂hτ
∂hτ−1

=
∂L
∂ht

> ∏
τ=t,...,2

diag(φ′τ )W

We can see from Fig. 5.10 that if we use tanh nonlinearity, then the absolute
values of the derivative |φ′| are bounded:

0 < |φ′τ | ≤ 1.

That means that if the spectral radius of W is smaller than 1, then the gradient
will vanish, which means that its norm will decay exponentially with the increase
of t. Again, it is easiest to see this if we assume one-dimensional states h and
scalar W = w.∣∣∣∣∣ ∂L∂ht ∏

τ=t,...,2

φ′τw

∣∣∣∣∣ ≤
∣∣∣∣ ∂L∂ht

∣∣∣∣ ∏
τ=t,...,2

|w| =
∣∣∣∣ ∂L∂ht

∣∣∣∣ |w|t−1

http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
http://proceedings.mlr.press/v28/pascanu13.pdf
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If |w| < 1, we get exponential decay of this value with t. To avoid vanishing gra-
dients, it is good to keep neurons in the non-saturated regime where derivatives
φ′ are close to 1.

This analysis suggests that it is very difficult to balance the gradients in the
simple recurrent neural networks of type

ht = φ(Wht−1 + Uxt + b).

In order to avoid gradient explosions, it is better to keep neurons in the saturated
mode, while in order to avoid vanishing gradients, we need to to keep the neurons
in the linear mode. This causes major problems in training recurrent neural
networks.

Why do vanishing gradients cause problems for learning? Due to vanishing
gradients, it is difficult to learn long-range dependencies in the data. For exam-
ple in sentiment analysis, it is difficult to capture the effect of the first words
in a paragraph on the predicted class. In time-series modeling, it is difficult to
capture slowly changing phenomena.

These are the problems of the vanilla RNNs whose recurrent unit is in-
spired by a classical MLP and this is the reason why those networks are rarely
used in practice. What works much better is recurrent neural networks with a
gating mechanism inside the recurrent units. The two most popular units are
called gated recurrent unit (GRU, Cho et al., 2014) and long short-term memory
(LSTM, Hochreiter and Schmidhuber, 1997).

5.2.3 Historical note on RNNs

Recurrent neural networks for sequential data processing were proposed already
in the 1980s (Rumelhart et al., 1986; Elman, 1990; Werbos, 1988). However,
RNNs did not gain much popularity because they were particularly difficult to
train with backpropagation due to unstable training because of gradient explo-
sions and difficulty to learn long-term dependencies due to vanishing gradients
(Bengio et al., 1994). The breakthrough came with the invention of Long Short-
Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997), a recurrent neural
network which was designed to solve the problem of gradient explosions and
vanishing gradients. However, the LSTM remained largely unnoticed in the
community until the deep learning boom started.

5.3 Gated recurrent unit (GRU)

Cho et al. (2014) give the following motivation for the gating mechanism in
GRU. In the vanilla RNN cell, we re-write all the elements of the state ht−1

with the new values ht:

ht = φ(Wht−1 + Ux + b).

What if we want to keep some of the old values ht−1 of the state unchanged?
For example, we may observe two kinds of processes in the data: one process

https://arxiv.org/abs/1406.1078
https://www.bioinf.jku.at/publications/older/2604.pdf
http://www.comp.hkbu.edu.hk/~markus/teaching/comp7650/tnn-94-gradient.pdf
https://www.bioinf.jku.at/publications/older/2604.pdf
https://arxiv.org/abs/1406.1078
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changes slowly and the other one changes fast. To track the fast process, we
may want to update the state at every step but the state that describes the slow
process may be updated less frequently. How can we achieve that?

GRU uses an update gate ut ∈ (0, 1) that controls which states should be
updated:

ht = (1− ut)� ht−1 + ut � h̃t

ut = σ(Wuht−1 + Uuxt + bu)

where σ(x) = 1/(1 + e−x) is the logistic function and h̃t are the new state
candidates. The gate is computed using a linear combination of the inputs
xt and the previous states ht−1. The value of each element in ut is in (0, 1)
because it is the output of the logistic function. If the gate is zero, we keep the
previous values of the states. If the gate is one, we re-write the state with the
new value h̃t. The gate is a vector with as many elements as there are states
in the recurrent unit. Therefore, we have the flexibility to update only some of
the states and keep some of the states unchanged.

The new candidate value of the state h̃ as

h̃t = φ(W(rt � ht−1) + Uxt + bh)

rt = σ(Wrht−1 + Urxt + br).

Here, we apply a nonlinearity φ such as tanh to a linear combination of the
previous states and the inputs. One difference is that we use another gate rt
that controls which elements of ht−1 are used in the computations. If an element
of rt is zero, then we do not use the corresponding state. If an element of rt is
one, then we do use that state. Gate rt is called a reset gate.

Does GRU actually help with the problem of exploding and vanishing gra-
dients? Let us look at the gradient propagation in the GRU-based RNN assum-
ing for simplicity that gates ut and rt are fixed, which means that we do not
propogate derivatives through them. The Jacobian matrix of the state trans-
formation in the GRU is then given by

∂hτ
∂hτ−1

= diag(1− uτ ) + diag(uτ ) diag(φ′τ )W diag(rτ )

where φ′τ = φ′(W(rτ � hτ−1) + Uxτ ). We again look at the longest route of
derivative propagation shown in Fig. 5.9:

∂L
∂h1

>
=

∂L
∂ht

> ∏
τ=t,...,2

∂hτ
∂hτ−1

=
∂L
∂ht

> ∏
τ=t,...,2

(diag(1− uτ ) + diag(uτ ) diag(φ′τ )W diag(rτ ))

Let us now assume for simplicity that the state of the RNN is one-dimensional:

∂L
∂ht

∏
τ=t,...,2

((1− uτ ) + uτφ
′
τwrτ )
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and that all intermediate signals do not change with τ

∂L
∂ht

∏
τ=t,...,2

((1− u) + uγr)

where we denote γ = φ′τw. If we further assume that gates u = r = 1
2 , we get

∂L
∂ht

(
1

2
+
γ

4

)t−1

.

Now let us do the same simplified analysis for the vanilla RNN cell in (5.1)
Assuming that our states are one-dimensional, (5.3) becomes

∂L
∂ht

> ∏
τ=t,...,2

diag(φ′τ )W =
∂L
∂ht

∏
τ=t,...,2

φ′τw =
∂L
∂ht

γt−1

where we denote γ = φ′τw.
Let us compare the two expressions:

vanilla RNN:
∂L
∂ht

γt−1

GRU:
∂L
∂ht

(
1

2
+
γ

4

)t−1

If γ is small, we can neglect the term γ/4 in the expression for GRU. Then, the
gradients in the GRU vanish with the rate 1

2 . In contrast, the gradients vanish
in the vanilla RNN cell with the rate of γ which is much worse for small γ.
If γ is large, the magnitudes of the gradients grow exponentially as O

(
(γ/4)t

)
for the GRU. This is better than O

(
γt
)

in the vanilla RNN. Thus, the gating
mechanism mitigates the problem of exploding/vanishing gradients. Gradients
may explode or vanish in the GRU-based recurrent neural networks but such
problems occur much more rarely compared to the vanilla RNN.

5.3.1 Connection to probabilistic graphical models

p(h1) = N (h1 | µ1,R1)

p(ht | ht−1) = N (ht | Bht−1,R)

p(xt | ht) = N (xt | Aht,V)

h1 h2 h3 h4

x1 x2 x3 x4
Figure 5.12: A linear dynamical
system.

Consider a linear dynamical system, which is a linear Gaussian model with
temporal structure. The graph of that probabilistic model is shown in Fig. 5.12.
xt is a sequence of observations, ht is a sequence of hidden, unobserved states.
In linear Gaussian models, all conditional probabilities which are represented
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by the arrows in the graph are Gaussian with a linear dependence of the mean
on the conditioning variables.

The inference in linear dynamical system is the evaluation of the conditional
distribution p(ht | x1, . . . ,xt) of the hidden states ht given the observed se-
quence x1,x2, . . . ,xt. Since we consider a linear Gaussian model, the inference
can be done using the message-passing algorithm which is described for example,
in Chapter 13 of (Bishop, 2006). The application of the message-passing algo-
rithm to this system results in the famous Kalman filter algorithm. Even though
the Kalman filter is not usually derived using the message passing algorithm, it
can be seen as an implementation of that.

The Kalman filter consists of two steps. In the first step, we predict the
future hidden state given the current posterior distribution over the hidden
state at the current time step (see Fig. 5.13). Since we have a linear system,
the prediction is computed using linear transformations of the random variable
ht−1 which describes the current state.

Figure 5.13: Prediction step of
the Kalman filter.

p(ht | x1, ...,xt−1) = N (ht |
−→
h t,Pt)

−→
h t = Bh̄t−1

Pt = BΣt−1B
> + R

... ht−2 ht−1 ht

xt−2 xt−1 xt

−→
h t,Pt

On the second step, we correct our estimate of the hidden state at time t by
using the observation xt at time t (see Fig. 5.14).

Figure 5.14: Correction step of
the Kalman filter.

p(ht | x1, ...,xt) = N (ht | h̄t,Σt)

h̄t =
−→
h t + Kt(xt −A

−→
h t)

Σt = (I−KtA)Pt−1

Kt = Pt−1A
>(APt−1A

> + V)−1

... ht−2 ht−1 ht

xt−2 xt−1 xt

A†xt

The message from xt to ht is usually not
explicitly expressed in the derivations of

the Kalman filter.

The two steps can be seen as combining two messages that provide informa-
tion about the state of the system. One message comes from the previous time
step and the other message comes from the observation at the same time step.

Let us take a closer look at the correction equation for the mean values of
the hidden states in the Kalman filter

h̄t =
−→
h t + Kt(xt −A

−→
h t)

Kt = Pt−1A
>(APt−1A

> + V)−1

For simplicity, let us assume that the states h are one-dimensional. Then, we

http://www.springer.com/gp/book/9780387310732
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can re-write the update rule of the Kalman filter in the following form:

h̄t =
−→
h t + kt(xt − a

−→
h t)

=
−→
h t +

pt−1a

a2pt−1 + v
(xt − a

−→
h t)

=
−→
h t −

pt−1a
2

a2pt−1 + v

−→
h t +

pt−1a

a2pt−1 + v
xt

=
v

a2pt−1 + v

−→
h t +

a2pt−1

a2pt−1 + v

xt
a

= (1− ut)
−→
h t + ut

xt
a

(5.4)

where

ut = σ
(
log a2pt−1 − log(a2pt−1 + v)

)
. (5.5)

We can see the new value of ht is computed by gating between the signal
−→
h t

that comes from the previous time step and the signal xt

a that comes from the
current observation. Thus, the updated value is a trade-off between the estimate
computed before observing xt (our prior belief) and the value xt

a justified by
the new observation (our likelihood).

Now compare (5.4)–(5.5) with the update rule of GRU:

ht = (1− ut)� ht−1 + ut � h̃t

u = σ(Wuht−1 + Uuxt + bu).

They look quite similar: we use a gate ut between 0 and 1 to combine the
knowledge gained from the previous observations and the knowledge gained from
the current observation. This example justifies the use of gating in the recurrent
units. The same intuitions hold for nonlinear dynamical systems which can be
learned by RNNs.

... ht−2 ht−1 ht

xt−2 xt−1 xt

−→
h t,Pt

A†xt

h̄t = (1− ut)
−→
h t + ut

xt

a

ut = σ
(
log a2pt−1 − log(a2pt−1 + v)

)

... ht−2 ht−1 ht

xt−2 xt−1 xt

ht = (1− ut)� ht−1 + ut � h̃t

u = σ(Wuht−1 + Uuxt + bu)

Figure 5.15: The computational
graph of an RNN with gating
can be seen as implementation
of an inference procedure for a
probabistic graphical model with
sequential data. Left: Message
passing in a linear dynamical
system. Right: Computational
graph of an RNN with gating.

We can view the computational graph of the RNN with gating as an imple-
mentation of the inference procedure for a probabilistic graphical model with
sequential data (see Fig. 5.15). The direction of connections in the computa-
tional graph corresponds to the directions along which messages are sent in the
message-passing procedure.
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5.4 Long short-term memory (LSTM)

The LSTM (Hochreiter and Schmidhuber, 1997) cell has two states ct and ht.
State ct is called a cell state, it is updated using gating between the previous
state ct−1 and the new state estimate computed using the current input xt:

ct = ft � ct−1 + it � φc(Wcht−1 + Ucxt + bc),

where ft ∈ (0, 1) is called the forget gate and it ∈ (0, 1) is called the input gate.
The gates are computed similarly to the update gate of the GRU:

ft = σ(Wfht−1 + Ufxt + bf )

it = σ(Wiht−1 + Uixt + bi).

The update of c is similar to the update of the hidden state of the GRU. The
difference is that the LSTM uses two gates ft and it while the coefficients in the
GRU update rule are (1− ut) and ut, computed with a single gate ut.

The second state of the LSTM is computed as a nonlinear transformation of
the cell state state ct:

ht = ot � φh(ct),

where the nonlinearity φh is typically chosen to be tanh. State ht is used as the
output of the LSTM cell. This update rule for ht contains yet another gate ot
which controls which states are passed to the output. The gate o is called the
output gate, it is computed in the same manner as the other gates:

ot = σ(Woht−1 + Uoxt + bo).

The motivation behind the LSTM design was to mitigate the problem of
vanishing and exploding gradients. We can see that

∂ct
∂ct−1

= diag(ft)

and if the forget gate ft is set to 1, the gradients neither grow nor vanish.
The forget gates ft are important for controling how the information (or gra-

dients) propagate through the network. A common intialization of the LSTM
weights is such that weights bf are set to small random values. This initial-
ization effectively sets the forget gates to 1

2 and therefore the gradient vanishes
with a factor of 1

2 per timestep. It works well in many problems.
However, sometimes an RNN can fail to learn long-term dependencies. This

problem can be addressed by initializing the forget gates bf to large values such
as 1 or 2. This initialization would increase the values of the forget gates and
the gradients will not vanish as fast as with the default initialization (Jozefowicz
et al., 2015).

LSTM and GRU have somewhat similar architectures. Can there be even
a better architecture of the recurrent unit? Jozefowicz et al. (2015) performed

https://www.bioinf.jku.at/publications/older/2604.pdf
http://proceedings.mlr.press/v37/jozefowicz15.pdf
http://proceedings.mlr.press/v37/jozefowicz15.pdf
http://proceedings.mlr.press/v37/jozefowicz15.pdf
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search of the optimal architecture by constructing the recurrent unit using a
set of operations that appear in GRU and LSTM. The performance was tested
on a set of standard benchmarks with sequential data. Interestingly, the best
architectures were found to be very similar to GRU. For example, one of the
best performing unit had the following architecture:

z = σ(Wxzxt + bz)

r = σ(Wxrxt + Whrht + br)

ht+1 = tanh(Whh(r� ht) + tanh(xt) + bh)� z + ht � (1− z).

5.5 A sequence-to-sequence model for statistical machine
translation

Statistical machine translation is one of the tasks where RNNs can be used.
The task is to translate a sentence in the source language into a sentence in the
target language. Each sentence can se seen as a sequence of words and therefore
the task is to convert a source sequence into a target sequence (see Fig. 5.16).
Models which are trained to do that are called sequence-to-sequence models.

x1 x2 x3 x4 x5

This is my cat .

source sequence

y1 y2 y3 y4

Tämä on kissani .

target sequence

Figure 5.16: The task of statis-
tical machine translation as a
sequence-to-sequence modeling
task.

Sequence-to-sequence models can be built using recurrent neural networks.
The simplest RNN-based model contains two parts: the encoder and the de-
coder, both implemented with recurrent neural networks (see Fig. 5.17). The
two RNNs are different: the encoder RNN and the decoder RNN have different
weights. The computational graph in Fig. 5.17 processes one pair of sequences.
The encoder RNN converts the input sequence into a single vector z5 which
is the hidden state produced after processing the last element of the input se-
quence. Next, the decoder RNN takes the output of the encoder z5 and converts
it to the output sequence. The decoder produces one word at every decoding
step and it takes as input the previous word in the output sequence.

The decoder has to select the correct word from the dictionary of the target
language at every decoding step. This can be seen as a classification problem
in which the number of classes is equal to the number of words in the target
language. Therefore, we can use the cross-entropy loss as the loss function. The
loss is the sum of the cross-entropy losses computed for each sequence n and for
each position τ in the target sequence:

L = − 1

N

∑
n

tout
n∑
τ=1

log p
(
y(n)
τ

∣∣∣ y(n)
<τ ,x1, ...,xtinn

)
.

Since the output of the deoder RNN has to form a proper distribution over
all possible words in the target language, we apply the softmax nonlinearity at
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Figure 5.17: An RNN-based
sequence-to-sequence model for
statistical machine translation.

z0 z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

This is my cat .

h1 h2 h3 h4

y1 y2 y3 y4

Tämä on kissani .

context

encoder decoder

every position. The input to the softmax can be produced by a linear layer wi

transforming the hidden states of the RNN:

p(yτ = i
∣∣∣ y<τ ,x1, ...,xtinn ) =

exp(w>i hτ )∑
j exp(w>j hτ )

. (5.6)

The model can be trained by stochastic gradient descent with backpropa-
gation. Each mini-batch contains a few pairs of source and target sequences.
The computational graph shown in Fig. 5.17 is built for all the sequences in the
mini-batch.

To generate translations using a trained model, we take the input sequence,
encode it with the encoder RNN and then decode it with the decoder RNN. The
decoder generates the output sequence by selecting one word at every decoding
step. The simplest approach here is to select the most probable word according
to the predictive distribution in (5.6). This is the approach that we will take in
the home assignment.

However, doing greedy selection at each position often leads to suboptimal
results. The reason for that is the fact that the sequence that has the highest
probability may be different from the sequence that is produced takin the most
probable word at every position. A better algorithm to find the most probably
sequence is called beamsearch (see, e.g., Cho, 2015).

Note that there is a difference in the way the decoder is used at training
and test times. At training time, the decoder uses the correct words as the
inputs because they are known. Doing this is often called teacher forcing in
the RNN literature. At test time, we do not know the correct outputs and
therefore we have to feed the decoder’s own predictions as the inputs. One
potential problem is that during training the decoder does not learn to work in
the generation mode (without teacher forcing) which may have negative effect
on the performance. To fix this problem, we can toggle the teacher forcing on
and off during training. That means that the decoder alternates between using
the ground truth words and its own predictions as the inputs during training.

https://arxiv.org/pdf/1511.07916.pdf


Chapter 6

Attention-based models

6.1 Sequence-to-sequence models with attention

In Section 5.5, we considered an RNN-based sequence-to-sequence model for
statistical machine translation. The model contained two recurrent neural net-
works: the encoder RNN encodes the input sequence into a vector and the
decoder decodes that vector into the output sequence.

z0 z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

This is my cat .

h1 h2 h3 h4

y1 y2 y3 y4

Tämä on kissani .

context
Figure 6.1: An RNN-based
sequence-to-sequence model for
statistical machine translation.

There is one problem with this model: we encode the whole sentence into a
single vector of fixed size. One vector has to represent all information contained
in the input sequence and the longer the input sentence is, the more difficult it
is to encode all the information in just a single vector. Intuitively, the size of
the encoding should depend on the size of the input sequence: the longer the
input sentence, the longer the representation should be.

A simple solution is to let the length of our representation be equal to the
length of the input sequence. This is illustrated in Fig. 6.2. There are five
elements in the input sequence and therefore we use five vectors to represent
the input sequence.

How can we implement this idea? One idea is to use the intermediate states
of the encoding RNN as the representations (see Fig. 6.3). Technically this is
possible because in our simple sequence-to-sequence model, the encoding RNN

99
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Figure 6.2: An encoder which
produces a representation with
the same number of elements as
the length of the input sequence.

x1 x2 x3 x4 x5

z1 z2 z3 z4 z5

Encoder

computes state values at every step. However, this idea does not work well
in practice. Intuitively, the encoding at a particular position should represent
the meaning of the word in that position. And the meaning of a word often
depends on the context: what words come before and after that word. The
problem with using intermediate states of the encoder RNN as representations
is that the representations do not take into account words that come after the
current position. For example, the representation at the first position does not
depend on words in positions 2, 3, and so on.

Figure 6.3: An RNN encoder
which uses intermediate hidden
states as representation does not
work well in practice because the
representations are not affected
by the subsequent words.

x1 x2 x3 x4 x5

z1 z2 z3 z4 z5

h1 h2 h3 h4 h5

Therefore, in the classical sequence-to-sequence model by Bahdanau et al.
(2014), the varying-length representation was built using a bi-directional RNN
(see Fig. 6.4). The bi-direction RNN does two passes through the input se-
quence. In the first pass, the input sequence is processed in the conventional
way from the beginning to the end. In the second pass, the input sequence is
processed in the reverse order: starting from the last element and going back-
wards. The output of the bi-directional RNN is a concatenation zj = [−→zj ;←−zj ] of
the states produced by the two RNNs.

Figure 6.4: A bi-directional RNN
used an encoder in the sequence-
to-sequence model by Bahdanau
et al. (2014).

x1 x2 x3 x4 x5

−→z1z0
−→z2

−→z3
−→z4

−→z5

←−z1
←−z2

←−z3
←−z4

←−z5 z0

z1 z2 z3 z4 z5

Consider the decoding in the simple RNN-based model from Fig. 6.1. At
every step, the decoder RNN uses the previous hidden state, the previous word

https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
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in the output sequence and the representation of the input sequence produced
by the encoder, as shown in Fig. 6.5. The last state of the encoder RNN is used
as the context for decoding in every step. If we want to use a varying-length
representation instead of a single vector (which is vector z5 in Fig. 6.5), how
can we implement that? Our RNN cell has only a single input for the context.

z0 z1 z2 z3 z4 z5

x1 x2 x3 x4 x5

h1 h2 h3 h4

y1 y2 y3 y4

Figure 6.5: Decoding in a simple
RNN-based sequence-to-sequence
model. The last state of the en-
coder RNN is used as the con-
text for decoding in every step.

This can be implemented using an attention block. The idea of attention is
to select as the context one of the vectors zj from the representation produced
by the encoder. Once can view the attention block as a multiplexer, a selector
that picks one of the input signals and forwards the selected input to the single
output. Which one to select, we let the neural network decide by using the
attention mechanism (see Fig. 6.6).

x1 x2 x3 x4 x5

Encoder

z1 z2 z3 z4 z5

h1 h2 h3 h4

y1 y2 y3 y4

Attention

Figure 6.6:

Let us look at the attention mechanism from the pioneering paper by Bah-
danau et al. (2014). The output of the attention block is a linear combination

https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
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of the inputs with positive coefficients αj that sum up to 1:

c =

n∑
j=1

αjzj , 0 < αj < 1,

n∑
j=1

αj = 1.

Imagine that one of the coefficients αj = 1 and the remaining ones are equal
to zero. In that case, the block copies the j-th input zj to the output. The
coefficients α are computed by applying the softmax nonlinearity to some values
ej which tell how likely we are to select input j as the output of the attention
block:

αj =
exp(ej)∑n

j′=1 exp(ej′)
.

This can be viewed as a differentiable implementation of multiplexing.
How should we compute ej? We let the model decide and therefore we use

a generic model

ej = f(hi−1, zj),

where function f is modeled with a multilayer perceptron network that takes
as inputs the previous decoder state hi−1 and the encoder representation zj at
position j.

Figure 6.7: The RNN-based
sequence-to-sequence model
with attention by Bahdanau et
al. (2014).

x1 x2 x3 x4 x5

−→z1
−→z2

−→z3
−→z4

−→z5

←−z1
←−z2

←−z3
←−z4

←−z5

Attention

z1 z2 z3 z4 z5

h1 h2 h3 h4

y1 y2 y3 y4

c3

h2

The full architecture from (Bahdanau et al., 2014) is shown in Fig. 6.7. The
encoder is a bi-directional RNN that produces representations at every position
of the input sequence. The decoder RNN decoder produces the output sequence
one element at a time. At every time step, the inputs of the decoder are the
hidden state of the decoder, the previous element of the output sequence and the
output of the attention block. The switches of the attention block are computed

https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1409.0473.pdf
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using the hidden state of the RNN and the encoded representations zj of the
input sequence.

Table 6.1 shows the translation quality obtained with different models. The
quality of translation is typically measured by the BLEU score which basically
compares n-grams (subsequences of length n) between the output sequence and
the target sequence. In the first row, you can see the performance of the simple
RNN-based sequence-to-sequence model without attention. In the second row,
you can see the performance of the RNN model with attention. By using larger
datasets and an ensemble of models, the performance can be improved even
further.

Model BLEU
Simple Enc-Dec 17.82

Attention-based Enc-Dec 28.45
Attention-based Enc-Dec (LV) 34.11

Attention-based Enc-Dec (LV, ensemble) 37.19
LV - large vocabulary

source: (Jean et al., 2014)

Table 6.1: The BLEU scores
of different translation models
(large is good).

A nice property of the model from (Bahdanau et al., 2014) is that one can
visualize the coefficients αj that were used by the model in the attention block.
In Fig. 6.8, we see two example translations from English to French. The x-axis
corresponds to the words in the source sentence and the y-axis corresponds to
the generated sequence. We can see that when the network generates an output
word, it pays attention to the relevant words in the input sequence.

Figure 6.8: The x-axis and y-
axis of each plot correspond to
the words in the source sentence
and the generated translation,
respectively.

Models with attention have been very successful in machine translation tasks
but they have been used in other domains too. For example, the paper “Show,
Attend and Tell” (Xu et al., 2016) considers the task of image captioning: gen-
erating a sentence that describes a given image (see Fig. 6.9). The authors treat
this problem as a translation task in which the input is an image and the output
is a textual description. The architecture of the model is shown in Fig. 6.10.
The image is preprocessed into 14× 14 feature maps with a convolutional net-
work pre-trained on ImageNet. These feature maps are split into L annotation

https://arxiv.org/pdf/1412.2007.pdf
https://arxiv.org/pdf/1409.0473.pdf
https://arxiv.org/pdf/1502.03044.pdf
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Figure 6.9: The task of image
captioning. input image

A bird flying over a body of water.

output sequence

Figure 6.10: “Show, Attend and
Tell” model for image captioning
(Xu et al., 2016).

z1 z2

zL Attention

z1 z2 z3 ... zL

h3h2h1 h4

y1 y2 y3 y4

c3

z2

vectors zi by flattening the feature map. These annotation vectors are used as
the context in the decoding RNN. You can see that the model is very similar
to the attention-based model for statistical machine translation but the image
encoding is done with a pre-trained convolutional network.

6.2 Convolutional sequence-to-sequence models

Consider the RNN-based encoder from the classical (Bahdanau et al, 2014)
paper (Fig. 6.11). There are two problems with the RNN-based encoder. The

Figure 6.11: An encoder im-
plemented with a bi-directional
RNN (Bahdanau et al, 2014).

x1 x2 x3 x4 x5

−→z1z0
−→z2

−→z3
−→z4

−→z5

←−z1
←−z2

←−z3
←−z4

←−z5 z0

z1 z2 z3 z4 z5

first problem is that we may need a lot of steps to encode the input sequence.
The number of steps is equal to the number of words in the input sentence
and we need many steps for long sentences. This may slow down the training
procedure. Note that we typically process sentences in mini-batches and the
number of steps is determined by the longest sequence in a mini-batch. The
second problem is that we need to take multiple steps to model relations between
words. For example, in order to model the relation between word 1 and word 5,
we need to build five layers of the RNN. And we know that modeling long-term

https://arxiv.org/pdf/1502.03044.pdf
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dependencies can be difficult with RNNs.
Since we know how to decode representations of varying lengths using the

attention mechanism, we do not have to use an RNN to implement the encoder.
The encoder can be any network that converts input sequence (x1, ...,xn) into
representations (z1, ..., zn). Gehring et al. (2017) proposed to use a convolutional
network (CNN) to encode input sequences (Fig. 6.12).

x1 + p1 x2 + p2 x3 + p3 x4 + p4 x5 + p5

CNN

z1 z2 z3 z4 z5

Figure 6.12: The encoder in
the convolutional sequence-to-
sequence model by Gehring
et al. (2017). + denotes sum-
mation of position and word
embeddings.

Convolutional layers can process sequences of varying lengths due to param-
eter sharing. That is why they can be used to encoder sentences in the machine
translation task. Since the input is a sequence and it has one-dimensional struc-
ture, we use one-dimensional convolutions inside such an encoder.

The advantage of the convolutional encoder is that it can compute represen-
tations in all positions in parallel. We do not need to loop over the elements of
the input sequence like in RNNs. Another advantage the encoding is affected
by both preceding and subsequent positions. For example, the representation
at position 3 will depend on the inputs at positions 2 and 4. Recall that in the
bi-directional RNN, one RNN used only preceding elements and the other one
used only subsequent elements.

One disadvantage of the convolutional encoder is that it does not take into
account the position of the word. The representation in the current position only
depends on the input in the receptive field but it does not depend on whether
that input appears at the beginning or at the end of the sequence. This happens
due to translation equivariance of convolutional layers. Gehring et al. (2017)
fixed that problem by adding position embeddings. Position embedding are
computed similarly to word embeddings: instead of encoding words, we encode
positions 1, 2, 3 and so on as pj . The position embeddings are added to word
embeddings and the sum is fed to the convolutional encoder (see Fig. 6.12).

We have now got rid of the RNNs in the encoder. Can we also get rid of the
RNN in the decoder? Recall that the decoder is an autoregressive model which
predicts the next word given the previous words and the context z produced by
the encoder:

yi = f(yi−1, ...,y1, z1, ..., zn). (6.1)

We can model function f using a convolutional neural network but we need
to make sure that we preserve the autoregregressive structure of the model as
given by (6.1). We can achieve this using the following trick. The input and the
desired output of the convolutional decoder are two shifted versions of the target
sequence y1,y2, ...,ytout (see Fig. 6.13). The input is the target sequence that

https://arxiv.org/pdf/1705.03122.pdf
https://arxiv.org/pdf/1705.03122.pdf
https://arxiv.org/pdf/1705.03122.pdf
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Figure 6.13: A convolutional
decoder. Inputs and outputs are
same sequences but the output
is shifted by one position and
the input sequence starts with a
SOS token. The receptive field
in each position does not contain
subsequent elements of the input.

SOS y1 y2 y3

Decoder

y1 y2 y3 y4

context

starts with a special start-of-sentence (SOS) token: SOS,y1, ...,ytout−1. The de-
sired output is the target sequence that starts with the first word y1,y2, ...,ytout .
Next, we construct the CNN such that the output in position i is not affected
by subsequent elements i′ ≥ i of the input. This is illustrated by the red dotted
lines in Fig. 6.13. For example, to predict the first word y1, we use only the
SOS token, to predict the second word y2, we use the SOS token and the first
word y1 of the target sentence and so on. If we construct our CNN in that way,
then we have a proper auto-regressive model and we can use it for generating
output sequences.

Figure 6.14: Using a trained
decoder to generate an output
sequence.
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Decoder
context

SOS

y1
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Let us see how we can use a decoder with the described structure to generate
output sequences. We generate an output sequence one element at a time. First,
we input only the SOS token in the first position and predict the first word y1

(see Fig. 6.14a). Then, we take the predicted first word y1 and place it to the
second position in the input. Now we use the decoder to predict the second
word y2 (Fig. 6.14b). We place the second word to the input y2 and predict
the third word and so on.

A big advantage of the convolutional decoder compared to the RNN is that
during training, we can compute output elements for all positions in parallel.
Recall that in the RNN decoder, we had to produce the output sequence one
element at a time.

Now we need to construct our convolutional decoder in such a way that the
receptive field in each position does not contain subsequent elements. We can
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achieve the desired effect by using shifted convolutions.
Let us first look at the standard convolutional layer with kernel size 3.

Since we process sequences (inputs with one-dimensional structure), we use
one-dimensional convolutions. We use padding of size 1 and the produced pix-
els in the output are shown with the colored squares in Fig. 6.15a. If we want
to stack more layers, we again use padding and process the output in the same
way.

(a) standard convolution

SOS y1 y2 y3 y4

y1 y2 y3 y4 y5

(b) shifted convolution

Figure 6.15: Standard ver-
sus shifted one-dimensional
convolutions.

In shifted convolutions, instead of padding the input sequence from both
ends, we add two elements only at the beginning of the input sequence and
process the input with the same convolutional layer. We also shift the output
such that the green pixel corresponds to the last element (Fig. 6.15b). We can
see that some of the pixels in the output will have the same receptive field as in
the standard convolution. This is shown by using the same colors in Fig. 6.15.
However, when we shift the output in this way, none of the pixels in the output
layer uses information from subsequent positions. In all the pixels, we only use
information in the same position or the information before that. This is often
called shifted convolutions or causal convolutions.

If we feed the target sequence with the SOS token and we use as the target
sequence the sequence which starts with the first word, we get the desired au-
toregressive structure. We can stack multiple convolutional layers in the same
way and this will keep the desired autoregressive property.

Now we need to solve the next problem: how use the context provided by the
encoder in the convolutional decoder. Gehring et al. (2017) used an attention
block which is illustrated in Fig. 6.16. The block has two kinds of inputs: the
outputs hi of the previous layer of the decoder and slightly modified outputs z′j
of the encoder. The two sequences have different lengths: the number of inputs
hi is equal to the number of elements in the target sequence, the number of
inputs z′j is equal to the number of elements in the source sequence.

The output of the attention block is produced similarly to the attention
block in the RNN-based sequence-to-sequence model. At each position i, we
select one of the positions of the encoder output using weights αij :

oi =
∑
j=1

αijz
′
j .

The weights αij are positive values between 0 and 1 and they are computed

https://arxiv.org/pdf/1705.03122.pdf


108 CHAPTER 6. ATTENTION-BASED MODELS

Figure 6.16: The decoder block
with attention in the convo-
lutional sequence-to-sequence
model (Gehring et al., 2017). SOS y1 y2 y3

shifted 1d convolution

Attention

z′1

z′2

· · ·
z′n

o1 o2 o3 o4

h1 h2 h3 h4

using the softmax nonlinearity:

αij =
exp(h>i zj)∑n

j′=1 exp(h>i zj′)
. (6.2)

One difference of this attention block compared to the one described in
Section 6.1 is that it selects the modified outputs of the decoder (instead of zj):

z′j = zj + xj + pj ,

where xj are word embeddings and pj are position embeddings of the j-th
element in the source sequence. This turns out to work better.

In the formula (6.2) for the attention weights, the inputs to the softmax
nonlinearity are the dot products between the outputs hi of the previous decoder
layer and the outputs zj of the encoder. If vectors hi and zj were normalized
to unit variance, then the dot product would be equal to the cosine distance
between the vectors. Therefore, one can view these computations as doing
pairwise comparison between vectors hi and zj and the encoder output that
has the greatest similarity with the input of the attention block in the current
position i.

Gehring et al. (2017) use multiple decoder blocks (shown in Fig. 6.16) which
are stacked on top of each other. Each decoder block first processes inputs with
shifted one-dimensional convolutions and then it attends to the outputs of the
encoder with an attention block. The decoder also has connections skipping the
attention block (not shown in Fig. 6.16).

The full architecture of the model is shown in Fig. 6.17. At the top, there
is a convolutional encoder with standard one-dimensional convolutions (there
is no need to use shifted convolutions in the encoder). The convolutional de-
coder shown in the bottom left corner processes the target sequence with shifted
one-dimensional convolutions. The attention block in the middle combines the
signals from the decoder and the encoder. The skip connections are shown with
an arrow which starts at the decoder output and skips the attention block.

https://arxiv.org/pdf/1705.03122.pdf
https://arxiv.org/pdf/1705.03122.pdf
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Figure 6.17: Convolutional
sequence-to-sequence model by
Gehring et al. (2017). At the
top, there is a convolutional
encoder with standard one-
dimensional convolutions. The
convolutional decoder in the bot-
tom left corner processes the
target sequence with shifted one-
dimensional convolutions. The
attention block in the middle
combines the signals from the
decoder and the encoder. The
skip connections are shown with
an arrow which starts at the
decoder output and skips the
attention block.

Table 6.2 shows that the convolutional sequence-to-sequence model outper-
forms the classical RNN model with attention.

Model BLEU
Simple Enc-Dec 17.82

Attention-based Enc-Dec 28.45
Attention-based Enc-Dec (LV) 34.11

Attention-based Enc-Dec (LV, ensemble) 37.19
ConvS2S (BPE 40K) 40.51

Table 6.2: The translation
performances on an English-
to-French translation task
(WMT’14).

6.3 Transformer

Transformer (Vaswani et al., 2017) is one of the hottest deep learning models
at the moment. The architecture of the transformer, as shown in Fig. 6.18, is
quite similar to the convolutional sequence-to-sequence model that we consid-
ered in Section 6.2. The encoder converts the source sequence (x1, ...,xn) into
continuous representations (z1, ..., zn). The decoder uses two shifted versions
of the target sequence as the input and the target. The decoder processes all
positions in parallel preserving the autoregressive structure by special means.
The decoder attends to representations (z1, ..., zn) using an attention block.

6.3.1 Multi-head attention mechanism

The attention mechanism is central in this model and therefore we first explain
the structure of the attention block in the decoder. This block is shown in

https://arxiv.org/pdf/1705.03122.pdf
https://arxiv.org/pdf/1706.03762.pdf
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Figure 6.18: The architecture of
the transformer (Vaswani et al.,
2017). Left: Our schematic rep-
resentation. Right: The diagram
in the style of the original paper.

SOS y1 y2 y3

decoder layer

Attention
en

co
d

er

x1

x2

· · ·
xn

... ... ... ...
y1 y2 y3 y4

h1 h2 h3 h4

zn

· · ·
z2

z1

encoder

(x1, ...,xn)

(z1, ..., zn)

(SOS,y1, ...,ym−1)

(y1, ...,ym)

decoder

attention
V K Q

Figure 6.19: The attention block
in the transformer decoder. h1 h2 h3 h4
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the center of Fig. 6.18 and we visualize it separately in Fig. 6.19. Recall the
intuition of the attention mechanism in the ConvS2S model: the attention com-
pares intermediate representations hi developed in the decoder with the encoder
outputs zj and selects the encoder output that is closest to hi.

The basic attention mechanism in transformers is very similar: we select one
of the encoder outputs zj using coefficients αij

oi =

n∑
j=1

αijzj

and the coefficients are computed using the softmax function applied to the dot
products between vectors zj and hi:

αij =
exp(z>j hi/

√
dk)∑n

j′=1 exp(z>j′hi/
√
dk)

.

https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
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Thus, the similarity metric used to compare vectors zj and hi is the dot product
product scaled by the square root of the dimensionality dk of vectors zj , hi. The
authors call this mechanism scaled dot-product attention.

We can think of the scaled dot-product attention as finding values vj = zj
that correspond to keys kj = zj that are closest to the query vector qi = hi:

oi =

n∑
j=1

αijvj , αij =
exp(k>j qi/

√
dk)∑n

j′=1 exp(k>j′qi/
√
dk)

(6.3)

where vj = zj , kj = zj and qi = hi. The query values come from the previous
block of the decoder while the keys and values are the outputs of the encoder.
Note that the encoder outputs are used both as the keys and values.

Vaswani et al. (2017) write the scaled dot-product attention in the matrix
notation which is equivalent to (6.3):

attention(Q,K,V) = softmax

(
QK>√
dk

)
V

with V ∈ Rm×dv , Q ∈ Rn×dk , K ∈ Rm×dk . Fig. 6.20a shows the diagram of the
scaled dot-product attention.

(a) scaled dot-product attention (b) multi-head attention
Figure 6.20: Attention blocks
used in the transformer model.

In the scaled dot-product attention mechanism, every position of the decoder
can attend to only one position of the encoder output. Is it benefecial to allow
the decoder to attend to multiple positions?

The authors of the transformer model find that attending to multiple posi-
tions can bring benefits and they propose to implement this idea in the follow-
ing way. There are multiple attention heads that use different keys, values and
queries in (6.3) in every position:

k
(h)
j = WK

h zj , v
(h)
j = WV

h zj , q
(h)
i = WQ

h hi.

The keys, values and queries of the attention head h are produced by projecting
the inputs of the attention block to lower-dimensional vectors using matrices
WQ

h ,W
K
h ,W

V
h . Since matrices WQ

h ,W
K
h ,W

V
h are trainable parameters, each

https://arxiv.org/pdf/1706.03762.pdf
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attention head can learn to attend to different positions. The outputs produced
by different attention heads are concatenated and their linear transformation is
passed to the output. The authors call this mechanism multi-head attention. It
is illustrated in Fig. 6.20b. It is the multi-head attention that is used as the
attention mechanism in the transformer model.

Using matrix notation, the multi-head attention can be written in the fol-
lowing form:

MultiHead(Q,K,V) = concat(o1, ...,oH)WO

oh = attention(QWQ
h ,KWK

h ,VWV
h )

where WQ
h ,W

K
h ,W

V
h ,W

O are the parameters of the attention block.

6.3.2 Transformer encoder

Next we consider the transformer encoder. We have previously used different
types of encoders: a bi-directional RNN or a convolutional network. The idea of
the transformer model is to use the multi-head attention as the main information
processing unit in both the encoder and the decoder. This explains the title of
the paper: “Attention is all you need”.

Figure 6.21: Multi-head atten-
tion as the main information pro-
cessing unit of the transformer
encoder. x1 x2 x3 x4

multi-head attention

z1 z2 z3 z4

The encoder needs to develop representations zi in each position of the source
sequence (see Fig. 6.21). We can do this using the same multi-head attention

Z = MultiHead(X,X,X)

where matrices Z and X contain vectors zj , xj in their rows. If we assume
for simplicity that the attention block contains only one scaled dot-product
attention, then the output is given by

zi =

n∑
j=1

αijxj αij =
exp(x>j xi/

√
dk)∑n

j′=1 exp(x>j′xi/
√
dk)

.

Note that vectors xi as use as keys, values and queries. The authors call this
mechanism self-attention because we attend to the elements of the same se-
quence.

The advantage of self-attention is that the representation in any position is
affected by all positions of the input after one layer of self-attention. Recall
that to achieve the same effect with an RNN encoder, we have to process the
whole sequence with as many steps as there are positions in the input sequence.
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In the convolutional encoder, we have to stack multiple convolutional layers to
achieve a similar effect. In contrast, one block of self-attention is enough to
start modeling relations between any pair of input elements.

One block of the transformer encoder is shown in Fig. 6.22. The outputs of
the self-attention block are processed by a mini-MLP which is shown with the
“Feed Forward” block in the figure: each position is processed independently by
the same MLP. The encoder block also contains standard deep learning tricks
such as skip connections and layer normalization. The encoder is a stack of
multiple blocks with the structure presented in Fig. 6.22.

Figure 6.22: One block of the
transformer encoder.

6.3.3 Transformer decoder

The transformer decoder implements an autoregressive model

yi = f(yi−1, ...,y1, z1, ..., zn)

similarly to the RNN-based or the convolutional sequence-to-sequence model.
We use the same idea as in the convolutional decoder: two shifted versions
of the target sequence are used as the input and as the target. Similarly to
the convolutional decoder, we need to preserve the autoregressive structure as
illustrated in Fig. 6.23.

SOS y1 y2 y3

Decoder

y1 y2 y3 y4

z1

· · ·
zn

Figure 6.23: Preserving the
autoregressive structure in the
transformer decoder. When pre-
dicting word yi we can use the
preceding words y1, ...,yi−1 but
not subsequent words yi, ...,ym.

The decoder also uses multi-head attention as the main information process-
ing unit. This is illustrated in Fig. 6.24. The cross-attention block there is the
block that we described in Section 6.3.1. It combines the representations hi in
every decoder position with the outputs zj of the encoder. The other block in
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Figure 6.24: A simplified dia-
gram of one block of the decoder
transformer. The illustration
omits such details as skip con-
nections, layer normalization
and multilayer perceptron (see
Fig. 6.25 for a more complete
diagram). SOS y1 y2 y3

masked self-attention

cross-attention

k1 = v1 = z1

k2 = v2 = z2

· · ·
kn = vn = zn

o1 o2 o3 o4

q: h1 h2 h3 h4

that diagram is the multi-head self-attention which processes the inputs of the
decoder. Again, we see the implementation of the attention-is-all-you-need idea.

In order to create a proper autoregressive model, we need to make sure that
the output of the decoder in any position i is not affected by the subsequent
inputs i+ 1, .... This is obtained using masked self-attention. Let us assume for
simplicity that the self-attention block is implemented by the scaled dot-product
attention and vi, hj denote the inputs and the outputs of the self-attention layer:

hi =

m∑
j=1

αijvj αij =
exp(v>j vi/

√
dk +mij)∑m

j′=1 exp(v>j′vi/
√
dk +mij′)

.

To control which inputs can affect the output in a given position, we add at-
tention masks mij to the inputs of the softmax function. If mask mij is set to
−∞, input vj does not affect the value of hi because αij = 0. Therefore, we
can guarantee the desired autoregressive structure by using masks:

mij = 0 , if j ≤ i
mij = −∞ , if j > i.

The remaining elements of one block of the transformer decoder are shown
in Fig. 6.25. After the masked self-attention and the cross-attention, the rep-
resentations in each position are processed with a mini-MLP shown with the
“Feed Forward” block in the figure. This decoder block also contains skip con-
nections and layer normalization. The decoder is a stack of several blocks with
this structure.
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Figure 6.25: Transformer
decoder.

6.3.4 Positional encoding of transformer

The final detail of the transformer is how to take into account the order of
elements in the processed sequences. Consider the scaled dot-product attention:

zi =

n∑
j=1

αijxj αij =
exp(x>j xi/

√
dk)∑n

j′=1 exp(x>j′xi/
√
dk)

.

If we change the order of the inputs xi, the order of the outputs will change in the
same way, which is illustrated in Fig. 6.26. This means that the self-attention
layer is equivariant to permutations of the input and that the computed repre-
sentations do not depend on the order of the elements in the input sequence.
This is not desired because the order of the words is important for understanding
the meaning of a sentence.

x1 x2 x3 x4

self-attention

z1 z2 z3 z4

x2 x4 x1 x3

self-attention

z2 z4 z1 z3

Figure 6.26: The self-attention
layer is equivariant to permuta-
tions of the inputs. If the order
of the inputs xi changes, the or-
der of the outputs zi changes in
the same way.

To address this problem, the positions of the inputs are encoded to vectors
pi and they are added to the word embeddings at the input of the encoder and
the decoder. This is similar to the convolutional model (see Fig. 6.12) where
the sum xj + pj was used as the input.
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The classical transformer uses hard-coded positional encoding, which means
the encoding does not contain trainable parameters. Encoding pi for position i
consists of the following values:

{sin(i/100002l/d), cos(i/100002l/d), l = 1, ..., d},

where d is the length of the enconding. The motivation behind this encoding
is that it makes it easy for the model to learn to attend by relative positions
(Vaswani et al., 2017). The graphical illustration of the positional encoding is
presented in Fig. 6.27.

Figure 6.27: Positional encod-
ing of transformer for d = 20.
Different curves represent one
dimension l as a function of the
position i.

source: Annotated Transformer

Training of the transformer model typically needs a ramp-up of the learning
rate. That means that training starts with a small learning rate, the learning
rate is gradually increased and then decreased. The learning rate schedule
proposed by Vaswani et al. (2017) is shown in Fig. 6.28.

Figure 6.28: Learning rate sched-
ule proposed by Vaswani et
al. (2017).

source: Annotated transformer

Table 6.29 shows the translation performances in an English-to-French trans-
lation task. The performance of the transformer model is very good compared to
other models. If you have trouble understanding the transformer model, check
out the Annotated Transformer blog post.

Figure 6.29: The transla-
tion performances on an
English-to-French translation
task (WMT’14) according to
(Vaswani et al., 2017).

Model BLEU
ConvS2S 40.46

ConvS2S (ensemble) 41.29
Transformer (base model) 38.1

Transformer (big) 41.8

https://arxiv.org/pdf/1706.03762.pdf
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf
http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://arxiv.org/pdf/1706.03762.pdf
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6.4 BERT: Transformer-based language model

Suppose we have a custom task that requires natural language understanding
(see, e.g., tasks from the GLUE benchmark). For example, we want to classify
messages in a slack workspace as positive, neutral or negative (a task called
sentiment analysis). We can extract messages from the slack workspace and
label some of them. Our dataset would be pretty small: it would contain a few
thousand messages, a few hundred of them would be labeled because labeling
is a tedious and time consuming procedure. If we train a sentiment analyzer
using only this small data set, we are very likely to overfit and the performance
of our model will probably be not very good.

How can we achieve better performance? A popular solution is to pre-train
a model on a similar task in which one can collect a lot of data and use the
pre-trained model as initialization for our custom machine learning problem.
This approach is called transfer learning.

CLS Tok 1 Tok 2 Tok 3 ... Tok N SEP Tok 1 ... Tok M

BERT (transformer encoder)

C T1 T2 T3 ... TN TSEP T ′1 ... T ′M

Sentence A Sentence B Figure 6.30: BERT

BERT (Devlin et al., 2018) is a model pre-trained on a large collection of
texts to solve artificially created machine learning tasks. The BERT model is
essentially a transformer encoder (see Fig. 6.30). The model is trained using
as inputs either one or two sentences extracted from text corpora. One or two
inputs sentences are used to prepare the model to different natural language
processing tasks. In tasks like sentiment analysis, the model needs to classify an
individual sentence and therefore the input contains only one sentence. In tasks
like question answering, the model gets as inputs a question and a paragraph
which contains the answer to the question. When two sentences are fed to the
input of BERT, the sentences are separated by a special token denoted as SEP
in Fig. 6.30.

BERT is trained on a large corpus of texts, for example, English Wikipedia
which contains more than 2 billion of words. These text datasets do not contain
any label information that could be used to solve a supervised learning problem.
Therefore, BERT is trained on two artificially created machine learning tasks.

The first task is to predict a token that is removed from the input sentence.
During training, we randomly replace one of the input tokens with a special
MASK token (see Fig. 6.31). The model is then trained to reconstruct the
masked token in the corresponding output. The intuition is that in order to
solve this task, the model needs to understand what words typically appear in
a given context. Therefore, this tasks encourages building a statistical model of

https://gluebenchmark.com
https://arxiv.org/pdf/1810.04805.pdf
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Figure 6.31: The first pre-
training task of BERT is to pre-
dict a token masked in the input
sentence.

CLS Tok 1 MASK Tok 3 ... Tok N SEP Tok 1 ... Tok M

BERT (transformer encoder)

Tok 2

Sentence A Sentence B

the language.
The second pre-training task is to predict whether sentence B follows sen-

tence A (see Fig. 6.32). During training, the inputs are created such that

– 50% of the time sentence B follows sentence A in the corpus

– 50% of the time sentence B is randomly chosen.

This is a binary classification task and the model output is taken from the
position that corresponds to a special input token marked as CLS.

Figure 6.32: The second pre-
training task of BERT is to pre-
dict whether sentence B follows
sentence A.

CLS Tok 1 Tok 2 Tok 3 ... Tok N SEP Tok 1 ... Tok M

BERT (transformer encoder)

True/False

Sentence A Sentence B

The pre-trained BERT model can be fine-tuned to our custom natural lan-
guage processing problem in the following way. Suppose that we solve a senti-
ment analysis problem and our custom dataset consists of the following training
examples:

Sentence: Although the value added services being provided are great
but the prices are high. Class: mixed review

Sentence: Great work done #XYZ Problem resolved by customer care in
just one day. Class: postive review

We feed the input sentence as Sentence A in the BERT model and Sentence
B is kept empty. The output of the model is taken from the position that
corresponds to the special CLS token (see Fig. 6.33). The target for the model
output is the target class of the input sentence. Since the number of classes
depends on our custom classification problem, we introduce a new layer that
converts the output of BERT into class probabilities. Then, we fine-tune all the
parameters of the model.

Fine-tuning the full BERT model that contain a huge number of parameters
to our custom dataset that may be small sounds like a bad idea because of the
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CLS Tok 1 Tok 2 Tok 3 ... Tok N

BERT (transformer encoder)

Class

Input sentence

Figure 6.33: Fine-tuning of
BERT on a sentiment analysis
task.

risk of overfitting. However, it turns out to work well in practice. The intuition
is that the weights of BERT are intialized very close to a good solution for our
custom problem. It is much easier for the model to find that good solution
during fine-tuning than to find an overfitted solution that does not generalize
well.

A question answering task is often formulated as finding the answer to a
given question in a given paragraph. A typical training set consists of examples
in which the words that contain the correct answer are labeled (marked with
the blue color in the paragraph below).

Paragraph: Beyoncé Giselle Knowles-Carter (born September 4, 1981) is
an American singer, songwriter, record producer, dancer and actress.
Born and raised in Houston, Texas, Beyoncé performed in various singing
and dancing competitions as a child. She rose to fame in the late 1990s as
the lead singer of Destiny’s Child, one of the best-selling girl groups of all
time.

Question: When did Beyonce start becoming popular?
Correct answer: in the late 1990s

To fine-tuning BERT for a question answering task, the question is fed as Sen-
tence A and the paragraph (typically called passage) is fed as Sentence B (see
Fig. 6.34). The output of the model is interpreted as the probability that the
token in the corresponding position is the start of the answer and the probabil-
ity that the corresponding token is the end of the answer. Again, all the model
parameters are updated in the fine-tuning stage.

CLS Tok 1 ... Tok N SEP Tok 1 ... Tok M

BERT (transformer encoder)

IsStart IsStart
IsEnd IsEnd

Question Paragraph

Figure 6.34: Fine-tuning of
BERT on a question answering
task.

Table 6.3 shows the performance of the fine-tuned BERT on a set of natural
language understanding tasks from the GLUE benchmark. One can see that
BERT performs very well.

https://gluebenchmark.com
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Table 6.3: Performance of mod-
els on tasks from the GLUE
benchmark. The number below
each task denotes the number of
training examples. The reported
scores are: F1 scores for QQP
and MRPC, Spearman correla-
tions for STS-B, and accuracy
for the other tasks.

6.4.1 Vision Transformer (ViT)

Although originally introduced for natural language processing tasks, trans-
formers have now been used in many other domains and they show great per-
formance. One example is the Vision Transformer (ViT) which is a transformer-
based architecture for image classification tasks (Dosovitskiy et al., 2020). The
model is conceptually very close to the standard transformer, with the following
outline:

– split an image into fixed-size patches

– linearly embed each of them

– add position embeddings

– feed the resulting sequence of vectors to a standard Transformer encoder.

In order to perform classification, ViT uses the same trick as in BERT: add an
extra learnable “classification token” to the sequence and use the output in that
position as the model output.

ViT is typically pre-trained on large datasets and then fine-tuned to (smaller)
downstream tasks. ViT attains excellent results compared to state-of-the-art
convolutional networks.

Figure 6.35: The outline of the
Vision Transformer model (Doso-
vitskiy et al., 2020).

https://arxiv.org/pdf/2010.11929.pdf
https://arxiv.org/pdf/2010.11929.pdf
https://arxiv.org/pdf/2010.11929.pdf


Chapter 7

Graph neural networks

7.1 Motivation

In the previous chapters, we looked at neural network architectures that were
designed to process different types of inputs. When the inputs were vectors
whose elements did not have order, we used multi-layer perceptrons. When
inputs had one-dimensional or two-dimensional spatial structure, we used con-
volutional networks. When inputs were sequences with varying lengths, we used
recurrent neural networks or transformers.

There are many machine learning problems in which the inputs can be rep-
resented as a graph. An example of a graph is shown in Fig. 7.1, it is formally
defined as a tuple G = (u;V ;E) that consists of

– a global attribute u, for example, a real-valued vector,

– a set of nodes V , such that each node is described by a vector of attributes
xi,

– a set of edges E, such that an edge between nodes k and j is described by
a vector of attributes ekj .

x1

x2

x3 x4

V = {x1, x2, x3, x4}
E = {e12, e23, e24}

Figure 7.1: Example of a graph.

The first example of a machine learning problem with graphs is the task of
predicting the chemical properties of molecules (Duvenaud et al., 2015; Gilmer
et al., 2017). A molecule can be represented as a graph (see Fig. 7.2) in which
the global attribute u can be some known property of a molecule (for example,
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Figure 7.2: A molecule and its
graph representation.

the number of atoms), each node corresponds to an atom (a node’s attribute xi
is the atom’s identity) and the edges correspond to bond, a lasting attraction
between atoms (in this example, the edges may not have properties). The task
is to predict the molecule’s properties such as toxicity, excitation spectra or the
level of activity of a chemical compound against cancer cells. Given a graph
that represents a molecule, the model is supposed to produce a vector of real
values that describe the predicted properties. This task is similar to regression
but the inputs are graphs instead of vectors of fixed length.

Another example application is extraction of information from documents.
Suppose that we want to extract line item information from scanned invoices.
Modern software of optical character recognition (OCR) can extract text seg-
ments from scanned documents and we can represent the output of the OCR
as a graph in which each node corresponds to one text segment (see Fig. 7.3).
The edges in the graph can describe the positions of the text segments relative
to each other. The properties of the edges can be the geometrical distance be-
tween the segments in the document or some hand-crafted features, for example,
whether two text segments are in the same row or in the same column. The task
is to classify each node of the graph into two classes: whether the text segment
represents a line item or not.

Figure 7.3: The task of infor-
mation extraction from scanned
documents. Right: Text seg-
ments extracted by OCR are
represented as a graph.

images from (Liu et al., 2019)

We want to design a learning algorithm that would be able to process inputs
which are represented as graphs. Since graphs are explicit representations of
a set of objects and their relations, we would like to have a tool for modeling
relations between objects. There is no “default” deep learning component which
operates on an arbitrary relational structure. We will review several neural
architectures proposed for this task. We will call all such architectures graph
neural networks. However, this term does not mean a particular neural network
architecture.

https://arxiv.org/pdf/1903.11279.pdf
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7.2 Requirements for graph neural networks

Next we postulate the requirements for graph neural networks.
The first requirement is known as permutation invariance. Suppose that

we have a graph with four nodes like the one shown in Fig. 7.4. and we want

x1

x2x3 x4

x2

x3x4 x1

Figure 7.4: Permutation invari-
ance. Since nodes in a graph do
not have an order (typically), the
output of the network should be
invariant to node permutations.

to describe this graph in the python programming language. We can describe
the set of nodes as a list in which each element contains the attributes of the
corresponding node. The order of the elements in this list would be arbitrary
because the nodes of the graph do not have a special order. We could have the
order as shown on the left hand side of Fig. 7.4 or as on the right hand side.
The property of permutation invariance means that the output of the model is
not affected by changing the order of the nodes. This is the first requirement:
the output of the network should be invariant to node permutations.

The second requirement is that our model should be able to process graphs
with a varying number of nodes. For example, our graph could have four nodes
or three nodes (Fig. 7.5) and our model should be able to process both graphs.

x1

x2x3 x4 x1 x2 x3

Figure 7.5: The network should
be able to process graphs with a
varying number of nodes.

The last requirement is that our model should take into account the topology
of the graph. For example, the output of the model for the two graphs in Fig. 7.6
can be different because the two graphs have different topologies even though
they have the same set of nodes with the same attributes.

x1

x2x3 x4

x2

x3x4 x1

Figure 7.6: The network should
take into account the topology of
the graph.

Consider the property of permutation invariance. Suppose that our graphs
are always fully-connected and we use the multilayer perceptron model to pro-
cess them (see Fig. 7.7). We could simply feed the node attributes as the inputs
of the MLP. However, if we feed the same graph with a different ordering of
the nodes, the output of an MLP will change in unpredictable way. An MLP
trained on a particular ordering of the input may not generalize well to making
good predictions under a different ordering. For a graph with n nodes, there
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Figure 7.7:

x1

x2

x3 x4

x1

x2

x3

x4

MLP y

x4

x1

x2 x3

x4

x1

x2

x3

MLP y

are n! possible permutations of the nodes. If we want to train our model to be
invariant to node permutations, we should use a different ordering of the nodes
in every new epoch. And we are likely to require a huge number of training
iterations to achieve the desired property of permutation invariance.

Does any of the models that we studied previously

– multi-layer perceptron

– convolutional layer

– recurrent neural network

– transformer encoder

have the property of invariance or equivariance to input permutations (equiv-
ariance means that if we change the order of the inputs, then the order of
the outputs will change in the same way)? The transformer encoder without
positional encoding is equivariant to input permutations.

Next we consider the second requirement which is the ability to process in-
puts with a varying number of elements. Which of the neural networks that we
studied previously can process inputs with a varying number of elements? The
correct answer is recurrent neural network, transformer encoder and convolu-
tional layers.

Therefore, we can view the previous neural networks as models for processing
graphs with a special structure.

– RNN can be viewed as a neural network which can process graphs with
the chain topology.

– Convolutional layers can be viewed as a model that can process graphs
with the grid topology.
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– Transformer encoder can be viewed as a neural network that processes
fully connected graphs.

But we want to create a generic neural network architecture that can process
graphs with any topology.

7.3 Neural fingerprint networks

The problem considered by Duvenaud et al. (2015) is prediction of the chemical
properties of molecules, such as toxicity, excitation spectra or the level of activity
against cancer cells. The idea of the proposed algorithm is to convert a graph
that represents a molecule into a real-valued vector f that is called a fingerprint.
After that, we can solve the prediction problem by training a regression model
that takes f as the input and predicts the desired properties.

Figure 7.8: A molecule, in which
each atom is represented as a
node and edges correspond to
bond.

The proposed neural algorithm is inspired by a handcrafted algorithm called
Circular fingerprints. It is an algorithm designed to encode which substructures
are present in a molecule in a way that is invariant to atom-relabeling. Thus,
the result produced by the Circular fingerprints algorithm is invariant to atom
permutations. The algorithm is presented in Fig. 7.9.

The algorithm starts by assigning an initial integer identifier ra to each atom.
This identifier captures some local information about the corresponding atom.
We can encode various atom properties (e.g., atomic number, connection count,
etc.) into a single integer value using a pre-defined hash function. Then, the
algorithm runs for a few iterations (called layers in Fig. 7.9). In each iteration,
we loop through all the atoms in the molecule, combine the identifiers ra of all
the neighbors of that atom and apply a fixed pre-defined hashing function to the
concatenated identifiers. In this way, we produce a new identifier ra for atom a.
Finally, we convert the new identifier ra into index i by taking the remainder

http://arxiv.org/pdf/1509.09292.pdf
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Figure 7.9: Circular finger-
prints is an algorithm designed
to encode which substruc-
tures are present in a molecule
in a way that is invariant to
atom-relabeling (permutation
invariance).

of the division of ra by S which is the length of the fingerprint vector. And we
write the value of 1 to the corresponding location i of the fingerprint vector.
The result of this procedure is a binary fingerprint vector f of fixed length S.

The rhs plot in Fig. 7.9 illustrates how the information propagates in the
Circular fingerprints algorithm. At the beginning, we initialize the identifiers
of all atoms with some values. In the first iteration, the identifiers of the atoms
are updated using the values of the identifiers of all its neighbors. The red lines
indicate what atoms are used to compute the identifier at a specific location.
We perform several iterations and we finally convert the identifiers into a binary
vector using a pre-defined binarization procedure.

Duvenaud et al. (2015) propose to neuralize the Circular fingerprints algo-
rithm and calling the resulting algorithm neural fingerprint networks. They
propose to keep the structure of the Circular fingerprints algorithm but to use
learnable and differential functions instead of pre-defined functions in the orig-
inal algorithm. The proposed algorithm is presented on the rhs of Fig. 7.10.

Figure 7.10: Duvenaud et
al. (2015) “neuralized” the cir-
cular fingerprint algorithm.

The first difference compared to the Circular fingerprints is that instead of
concatenating the identifiers from a neighborhood of an atom, they propose to
compute the sum of the identifiers ri. This summation produces a vector of

http://arxiv.org/pdf/1509.09292.pdf
http://arxiv.org/pdf/1509.09292.pdf
http://arxiv.org/pdf/1509.09292.pdf
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fixed length which is easy to use as the input of the next layer. Then, instead
of using a pre-defined hashing function, they update the identifiers of the atoms
by a learnable function which consists of a linear layer and an element-wise
nonlinearity σ. This is similar to one hidden layer of a multilayer perceptron.
The identifiers are converted into indices using the softmax function. Finally,
the values of the softmax are written to the fingerprint vector. As a result, we
get a real-valued vector f , not a binary vector like in the Circular fingerprints.

H

O

H

g

g

g

+

+

+

MLP w. softmax

MLP w. softmax

MLP w. softmax

+ f Figure 7.11: Computational
graph of one iteration of neural
fingerprint networks.

We illustrate the algorithm by drawing the computational graph of one it-
eration in Fig. 7.11. In this example, the molecule consists of three atoms: H,
O and H. First, we use function g to compute the features of the atoms. In
the simplest case, function g can be implemented as an embedding layer which
simply produces an encoding of the atom identity. Then, for each atom, we sum
the features of all its neighbors. Since the O-atom is connected to the other two
atoms, we sum all the three features for the O-atom. Each H-atom is connected
only to the O-atom and therefore we sum only two identifiers in the H-position.

Lines 9 and 10 in the neural fingerprint algorithm in Fig. 7.10 can be viewed
as an MLP network with one hidden layer and the softmax nonlinearity in the
output layer. We illustrate them with MLP blocks in our computational graph.
Note that the same MLP is used for all atoms in all three positions. Finally, we
sum the outputs of the MLPs in all three positions to compute the fingerprint
vector.

Table 7.12 shows that the proposed model produces better features than
the original circular fingerprints algorithm. In several prediction tasks, the new
features yield better performance.

Figure 7.12: Predictive errors of
neural fingerprints compared to
standard circular fingerprints.

7.4 Interaction networks

Suppose that we observe a physical system that contains multiple objects in-
teracting with each other (Battaglia et al., 2016). For example, we observe a
set of n bodies acting on each other with gravitational forces (see Fig. 7.13a).
Or we observe a set of balls moving inside a room, the balls interact with each

http://arxiv.org/pdf/1612.00222.pdf
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Figure 7.13: Examples of physi-
cal systems modeled with inter-
action networks.

(a) A n-body system with
gravitation. (b) A rigid body system:

Balls moving inside a room.

(c) A mass-spring system:
A rope and a fixed object.

other and the walls of the room when collisions happen (Fig. 7.13b). The third
example is a mass-spring system in which there is a rope which is falling down
because of the gravity. One end of the rope is fixed. The trajectory of the rope
is affected by interaction with a non-moving object shown with a blue circle in
Fig. 7.13c.

The state of a physical system can be described by the positions and the
velocities of all the objects. We assume that we can measure the state at any
point of time and our task is to predict the evolution of the state in the future.

Battaglia et al., (2016) make a modeling assumption that each pair of objects
interact with one another. The interactions can be represented using graphs
shown in Fig. 7.14. In the first system, the nodes in the graph represent the

Figure 7.14: Graph representa-
tions of three example physical
systems.

The bodies are nodes and
the underlying graph is

fully connected.

The balls and walls are
nodes, and the underlying
graph defines interactions

between the balls and
between the balls and the

walls.

The rope is defined by a
sequence of masses which

are represented as nodes in
the graph.

n bodies. The graph is fully-connected because all bodies interact with each
other. In the second system, the nodes of the graph represent the balls and the
walls of the room. The node that represents the walls are shown with the light
blue color. The interactions are represented by the directed edges: note that
the walls affect the movement of the balls and the balls affect the movement
of each other. In the third system, the rope is represented as a set of parts
interacting with each other. The parts are represented as nodes in a graph.
The fixed object is also represented as a node. We can see that the fixed object
affects the parts of the rope while the parts of the rope interact only with their
direct neighbors.

Each interaction between a pair of objects is represented by an arrow in
the graph. In the interaction networks (Battaglia et al., 2016), the object that
corresponds to the source node, the node where the arrow starts, is called the
sender. The object which corresponds to the destination node is called the
receiver.

Suppose that the sender object has state o1, the receiver has state o2 and
their relationship (represented by an edge) has attribute r (see Fig. 7.15). r
can be for example, the spring constant for two objects attached by a spring.

http://arxiv.org/pdf/1612.00222.pdf
http://arxiv.org/pdf/1612.00222.pdf
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o1
o2

r

o3
o4

o5 Figure 7.15: A graph that de-
scribes the mass-spring system.

The effect of the interaction is predicted by function fR which takes as input
the state of the sender o1, the state of the receiver o2 and the attribute of the
relationship r:

e1→2,t+1 = fR(o1,t, o2,t, r).

The effect of the interaction e1→2,t+1, which is the output of function fR, is used
to compute the future state of the receiver. This is done by another function
fO which takes as inputs the current state of the receiver and the effect of the
interaction:

o2,t+1 = fO(o2,t, e1→2,t+1).

There can be multiple objects interacting with a receiver. For example,
object o3 is influenced by objects o1, o2, o4. In that case, we need to aggregate
the effects of individual interactions and then update the state of the receiver
by function fO:

o2,t+1 = fO

o2,t,
∑

i=1,2,4

ei→2,t+1

 .

Here, we sum the effects of three individual interactions and we use the sum as
the input of function fO.

The future states of other objects are computed in the same way. For exam-
ple, for object 5, we need to compute the effect of its interaction with object 1
and object 2, then aggregate those effects and update the state o5 with function
fO. This is illustrated in this computational graph in Fig. 7.16. We compute

o5,t

o1,t

r15

o4,t

r45

fR
e1→5

fR
e4→5

+

fo o5,t+1

•
•

Figure 7.16: Computational
graph of interaction networks
for one object.

the effects of the interactions of object 5 with object 1 and object 4 using func-
tions fR that have shared parameters. Then, we aggregate the effects of the
two interactions and use the aggregated effect as the input of function fO which
computes the next state of object 5.

Fig. 7.17 illustrates the predictions made by the trained interaction networks
for the three physical systems: the n-body system, the moving balls and the
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mass-spring system. In the columns on the left-hand side, we can see the ground

Figure 7.17: Prediction rollouts
in the experiments with inter-
action networks. Each column
contains three panels of three
video frames (with motion blur),
each spanning 1000 rollout steps.
Columns 1-2 are ground truth
and model predictions for n-body
systems, 3-4 are bouncing balls,
and 5-6 are strings.

truth trajectories of the objects. In the columns on the right-hand side, we see
the predicted trajectories. The predictions are very good especially for the n-
body system and the mass-spring system. The predictions for the moving balls
are less accurate because learning a good interaction model for this system is
a more challenging problem. Interactions in that system happen rarely, only
when the balls collide which each other. Therefore, it is more difficult to model
accurately the effect of those interactions.

One important property of the interaction networks is that they are able to
generalize to a different setup, for example, to a different number of objects. In
the experiments presented in Fig. 7.18, the model trained on a n-body system
with n = 6 objects is able to give good predictions for a system with only three
objects. The model trained on the moving balls system with six objects is able

Figure 7.18: The model was
able to generalize to systems of
different sizes and structure. For
n-body, the training was on 6
bodies, and generalization was to
3 bodies. For balls, the training
was on 6 balls, and generaliza-
tion was to 3 balls. For strings,
thetraining was on 15 masses
with 1 end pinned, and general-
ization was to 30 masses with 0
end pinned.

to give reasonable predictions for a system with three balls. The model trained
on a mass-spring system is able to generalize to a longer rope in which one of
the ends is not fixed.

Table 7.1 shows the mean-squared prediction errors obtained with the inter-
action networks and a few baseline models. The first baseline model assumes
that the objects move with constant velocities. It is the simplest model for
the considered physical systems. The second baseline is a simple MLP network
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Table 7.1: Mean-squared predic-
tion errors.

which cannot improve much over the simplest baseline. Note also that the MLP
model cannot be even used for systems with a different number of objects be-
cause a different number of objects means a different number of model inputs.
The third baseline (Dynamics-only IN) is the interaction networks with the ef-
fect of the interactions removed. This model basically models the trajectories of
the objects independent of each other. This model can technically be used for
predicting the state of systems with a varying number of objects. However, the
accuracy of the model is very poor. In contrast, the accuracy of the interaction
networks is very good. These models can be applied to systems with a varying
number of objects without any problems.

7.5 Relational network for visual scene understanding

The model by Santoro et al. (2017) was trained on the data set of relational
reasoning called CLEVR. In one training example of the CLEVR data set, there
is an image which contains a few objects and a few questions about the objects
depicted on the image (see Fig. 7.19).

Figure 7.19: An example from
CLEVR dataset of relational rea-
soning: An image containing four
objects is shown alongside non-
relational and relational ques-
tions. The relational question
requires explicit reasoning about
the relations between the four
objects in the image, whereas the
non-relational question requires
reasoning about the attributes of
a particular object.

There are relational and non-relational questions. Relational questions re-
quire explicit reasoning about the relations between the objects in the image.
An example of a relational question is “Are there any rubber things that have
the same size as the yellow metallic cylinder?” To answer this question, we
need to understand how the sizes of the objects compare to the size of the
yellow metallic cylinder. Non-relational questions require reasoning about the
attributes of a particular object. An example of a non-relational question is
“What is the size of the brown sphere?”

In the model proposed by Santoro et al. (2017), an image is decomposed into
patches and each image patch is treated as an object which interacts with all

http://arxiv.org/pdf/1706.01427.pdf
http://arxiv.org/pdf/1706.01427.pdf
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Figure 7.20: An image is decom-
posed into patches. Each patch
is treated as an object (a node in
a fully connected graph).

other image patches. The interactions can be represented with a fully-connected
graph which schematically shown in Fig. 7.20. The graph is processed with
a relational neural network which models the relations between each pair of
objects to produce the correct answer to a given question. The question is
processed with a recurrent neural network and the produced encoding is then
used as a global context for modeling relations.

Figure 7.21: Questions are pro-
cessed with an LSTM to produce
a question embedding. Images
are processed with a CNN to
produce a set of objects for the
RN. Objects (three examples
illustrated here in yellow, red,
and blue) are constructed using
feature-map vectors from the
convolved image. The RN con-
siders relations across all pairs of
objects, conditioned on the ques-
tion embedding, and integrates
all these relations to answer the
question.

Fig. 7.21 illustrates the computational graph to process an image and a
question. The question is processed with an LSTM to produce a question em-
bedding. The image is processed with a convolutional neural network to produce
a two-dimensional map. Each pixel in the output of the CNN is interpreted as
one object, the attributes of the object are the channels of the map. Then,
there is a relational network that contains an MLP which models the relations
between each pair of objects. The same MLP (with shared parameters) is used
to process every pair of objects. The inputs of the MLP are the attributes of the
first object and the attributes of the second object and the question embedding.
There are n2 MLPs with shared parameters where n is the number of pixels in
the output of the CNN. The outputs of the MLPs are summed together. The
sum is then processed by another MLP which is trained to produce the correct
answer. The answer in this dataset consists of one word and therefore we ba-
sically have a classification problem in which we need to select one word from
the dictionary.

Table 7.2 shows that the model produces very good results on the CLEVR
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dataset.

Table 7.2: Results on CLEVR
from pixels. Accuracy on the
test set broken down by question
category.

7.6 Graph Convolutional Networks

The motivation of the graph convolutional networks (Kipf and Welling, 2017)
is in semi-supervised classification of nodes in a graph. Suppose that we have
a graph in which some nodes are labeled (which means that they are known
to belong to certain classes) and some nodes are not labeled. For example,
nodes in the graph may correspond to documents, edges may correspond to
citation links between the documents. Node attributes xi can be the bag-of-
words features of documents, which is basically the counts of words that appear
in a document. Some of the documents may be known to belong to particular
classes, for example, they may discuss a particular topic.

Example:
– nodes are documents
– edges are citation links
– node attributes xi are bag-of-

words features of documents
– some documents have class la-

bels

Figure 7.22: Example of semi-
supervised classification of nodes
in a graph.

In Fig. 7.22, the classes of the nodes are represented with different colors.
The unlabeled nodes are represented with the white color. The task is to classify
all the unlabeled documents in the dataset (which correspond to the white nodes
of the graph). The modeling assumption that we make is that when predicting
the class of a node, the attributes and the connectivity of nearby nodes provide
useful information that should be used by the classifier. For example, if a
document is linked with several documents of the same class, it is very likely to
belong to the same class.

The considered problem is somewhat similar to the problem of image seg-
mentation. In that problem, the task is to classify each pixel of an image. We
can view an image as a graph where each pixel is connected to all its neighbors

http://arxiv.org/pdf/1609.02907.pdf
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Figure 7.23: Kipf and Welling
(2017) generalize the concept
of convolution to graphs with
arbitrary structure.

(see Fig. 7.23). Image segmentation is usually done with convolutional neural
networks (such as U-net).

The idea behind graph convolutional networks (GCN) is to generalize the
segmentation problem to graphs with any topology. Since convolutions are
useful for processing images, the authors proposed to generalize the concept of
convolution to graphs with arbitrary topology. They perform this generalization
by taking a spectral view on convolutions. Convolutions in the Fourier-domain
are simple pointwise multiplication of the Fourier-transform of a signal. And
since there are ways to define the Fourier transform of a graph, the authors
provide a way to generalize convolutions to graphs using the spectral view.

Figure 7.24: Graph convolutional
layer.

As a result of this generalization, the authors propose a so-called graph
convolutional layer (see Fig. 7.24). The input of the layer is a graph with N
nodes. Each node of the graph has C attributes. Therefore the attributes of
the nodes can be represented as an N ×C matrix X. The output of the layer is
a graph with the same topology but a new set of node attributes. Each node in
the output has F attributes and therefore the new attributes can be represented
as an N ×F matrix Z. Using the authors’ notation, the output is computed as:

Z = ÂXW

where W is a C × F matrix of the layer parameters and Â is a matrix that
describes the topology of the graph: it has non-zero diagonal elements and
elements aij 6= 0 if node i is connected to node j.

We can write how the new attributes are computed for each node i:

zi: = (âi:XW )> =
∑

j∈N (i)

âijW
>xj: ,

where zi: is a vector of the output attributes of node i. We can see that zi: is
computed as a weighted sum of linear transformations W>xj: of the attributes

http://arxiv.org/pdf/1609.02907.pdf
http://arxiv.org/pdf/1609.02907.pdf
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of all the nodes that are connected to node i. This happens because only for
the neighbors of node i the elements aij are non-zero.

In the experiments, Kipf and Welling (2017) applied the graph convolu-
tional network to the problem of semi-supervised classification of documents.
The nodes in the graph corresponded to documents and the edges corresponded
to citation links. The node attributes were the bag-of-words features of the
documents. Some documents had class labels and the task was to classify all
the documents. Table 7.25 shows that GCN outperforms other alternative al-
gorithms considered in that paper.

Figure 7.25: Classification accu-
racy (in percent).

7.7 Recurrent Relational Networks

The motivation for the paper by Palm et al., (2018) is to train a model that
can solve tasks that require a chain of multiple steps of relational inference. For
example, when we solve a Sudoku puzzle, we analyze relations between different
cells of the grid and iteratively fill the empty cells.

How can we train a neural network to solve Sudoku puzzles using a training
set that consists of solved puzzles? We can represent the Sudoku puzzle as a
graph in which each node corresponds to one cell of the grid. We know the
rules of the game and we can advise our network which relations are important
by constructing the graph with a certain topology. The important relations are
among cells in the same row, in the same column or in the same 3 × 3 block.
Therefore, in our graph we add edges between each pair of nodes in the same
row, in the same column and in the same 3×3 block. Fig. 7.3 shows a subgraph
of this graph, the subgraph contains all the nodes that are connected to one of
the nodes of the graph.

The algorithm of recurrent relational networks starts by initializing the states
of the graph nodes with some values h0

j . Then, we build a computational graph
that contains T iterations with shared parameters. Each iteration consists of
the following steps.

– Step 1 is to compute messages for all the edges connecting a pair of nodes
i and j:

mt
ij = f(ht−1

i , ht−1
j )

mt
ji = f(ht−1

j , ht−1
i ).

http://arxiv.org/pdf/1609.02907.pdf
http://arxiv.org/pdf/1711.08028.pdf
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Figure 7.26: The subgraph that
contains only the nodes con-
nected to the pink node and the
corresponding links.

8 6 3

9

7

2

1

8

8 3

Messages mt
ij , m

t
ji are vectors produced by function f that we model, for

example, with a multilayer perceptron network. The MLP takes as inputs
the states of the source and the destination nodes. Note that for each
edge we need to compute two messages: going in both directions. For
the subgraph shown in this figure, we compute the messages along all the
edges that arrive in the pink node. Of course, messages are computed for
all other nodes as well.

– In Step 2, we aggregate all incoming messages for each node by summation.

mt
j =

∑
i∈N (j)

mt
ij .

– In Step 3, we update the states of all the nodes. We do that using function
g that takes as inputs the previous values of the states, the inputs of the
nodes and the aggregate message:

htj = g(ht−1
j , xj ,m

t
j).

In the Sudoku example, input xj is either the known digit for cell j or
a special token indicating that the digit is unknown. In the recurrent
relational networks, function g is implemented with a gated recurrent unit.
We update the state of the gated recurrent unit for each node in the graph.
Note that all the nodes use the same GRU with shared parameters.

– In Step 4, we compute the output of each node using function fo that
takes as input the state of the node:

otj = fo(h
t
j).

The outputs of the nodes are used to compute the loss. The loss function
compares the outputs with the targets. In the Sudoku example, the desired
outputs are the correct digits in the solved puzzle. This can be viewed
as a classification problem with nine possible classes and therefore we can
use the cross-entropy loss.
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Palm et al., (2018) compare the proposed model with other algorithm appli-
cable to solving Sudoku puzzles. Table 7.3 shows that the model yields much
higher accuracy compared to other models. Note that a convolutional network
works much worse in this problem.

Table 7.3: Comparison of meth-
ods for solving Sudoku puzzles
(only differentiable methods).

The relational network trained to solve Sudoku puzzles performs several
iterations of inference. One can analyze the outputs that the network produced
after each iteration (see an example in Fig. 7.27). Note that the network is able
to solve this puzzle in just three iteration of relational inference.
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Figure 7.27: The output of a
trained Sudoku puzzle at initial-
ization and after two iterations.
The shades of red indicate the
confidence of the network in its
prediction: higher confidence
corresponds to darker shades.

7.8 General algorithms for graph neural networks (GNNs)

We have considered several algorithms that operate on graph inputs:

– neural fingerprints networks (Duvenaud et al., 2015)

– interaction networks (Battaglia et al., 2016)

– a relational network for visual scene understanding (Santoro et al., 2017)

– graph convolutional networks (Kipf and Welling, 2017)

– recurrent relational networks (Palm et al., 2018).

They are all different algorithms but they all have very similar structure. In
every iteration, nodes send messages to all their neighbors. Then, the node
attributes are updated using the received messages. The differences between
the algorithms are mainly in the parametric form of the messages and the way
the messages are aggregated. Let us review the computational steps in such
graph neural networks.

http://arxiv.org/pdf/1711.08028.pdf
http://arxiv.org/pdf/1509.09292.pdf
http://arxiv.org/pdf/1612.00222.pdf
http://arxiv.org/pdf/1706.01427.pdf
http://arxiv.org/pdf/1609.02907.pdf
http://arxiv.org/pdf/1711.08028.pdf
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Suppose that the input of a GNN is an undirected graphG with node features
xi and edge features eij . Each node of the GNN has hidden state hi which is
initialized to some value. The GNN performs T iterations which consist of
several steps that update the states of the nodes

h0
i → h1

i → ...→ hTi .

Finally, if the task is to produce a single output for the whole graph, there is a
function which combines all the node states to compute a single output y.

y = fo({hTi | i ∈ G})

If the task is to produce an output for each node, like, for example, in the
Sudoku problem, then we apply a readout function to the state of each node:

yi = fo(h
T
i ).

One iteration of a GNN is summarized below.

1. Each node receives messages from all its neighbors

mt+1
j→i = gt(h

t
j ,h

t
i, eji).

2. Each node aggregates messages (for example, by summation):

mt+1
i =

∑
j∈N (i)

mt+1
j→i .

3. The state of each node is updated using the aggregate message:

ht+1
i = f(hti,m

t+1
i ,xi),

where f is often implemented using a recurrent unit such as GRU. One
can use node features xi as extra inputs.

Let us see how the computations in a graph convolutional layer (Kipf and
Welling, 2017) can be viewed as a particular realization of this algorithm.

1. Each node receives messages from all its neighbors

mt+1
j→i = g(hj) = âijW

>hj .

2. Each node aggregates messages (including a message from the node itself):

mt+1
i =

∑
j∈N (i)

mt+1
j→i .

3. The states of nodes are updated using aggregate messages. A graph con-
volutional layer is typically followed by an element-wise nonlinearity such
as relu, which results in the following update of the node states:

ht+1
i = f(mt+1

i ) = relu(mt+1
i ).

http://arxiv.org/pdf/1609.02907.pdf
http://arxiv.org/pdf/1609.02907.pdf
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This analysis shows that GCNs can be viewed as a particular realization of a
general framework of graph neural networks. You can see that GCNs use very
simple functions g and f .

Gilmer et al. (2017) were probably first who proposed to unify several graph
neural networks under a general framework of message passing neural networks.
Later, Battaglia et al. (2018) defined a slightly more general framework that also
includes the updates of the edge attributes. Note that the term message-passing
exists in the literature on probabilistic graphical models. The message-passing
algorithm is used to perform inference in probabilistic graphical models, such
as Bayesian networks or Markov random fields. The message-passing algorithm
in that domain is known as belief propagation.

http://arxiv.org/pdf/1704.01212.pdf
http://arxiv.org/pdf/1806.01261.pdf
http://en.wikipedia.org/wiki/Belief_propagation
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Chapter 8

Deep autoencoders

8.1 Motivation

In the previous chapters, we considered only supervised learning problems and
we used data sets that consisted of inputs x and desired outputs y. Deep
learning is a very effective tool for supervised learning. In almost any domain
where one can collect large amounts of labeled data, it is possible to train a
deep neural network which would have excellent predictive capabilities.

However, for building the next generation of artificial intelligence systems,
the supervised learning scenario seems somewhat artificial. It seems unrealistic
that we can advise the artificial agent what outputs to produce in all possible
situations. The task of unsupervised learning is to make computers learn from
unlabeled data

x(1), . . . ,x(n) ,

data that do not contain labels y.

Humans learn a lot from unlabeled data. Of course, we provide a lot of
supervision to our children, but kids learn a lot by themselves by observing
and interacting with the environment. It seems that in order to build intelli-
gent systems that can learn quickly, we need to make machines also learn from
unlabeled data.

Unsupervised learning can have real-world application such as

– detect samples that look different from the training population (nov-
elty/anomaly detection)

– visualize data, discover patterns in data (information visualization)

– generate new samples which look similar to the training data (generative
modeling).

Unsupervised learning can also be useful for representation learning. As we
discussed Section 1, the goal of representation learning is to learn useful features

141
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and in unsupervised learning, we want to extract features without using the
labels:

x
f−→ z .

We do hope that the extracted features would work better than raw data in
future (downstream) tasks.

The problem is that we do not know for which downstream tasks we need
to prepare. From this point of view, unsupervised learning is not a well defined
problem. One popular solution is to extract patterns (or features) that appear
frequently in the data and hope that those features will be useful in the down-
stream tasks. In this approach, we compress the data, for example, we represent
the data with a fewer number of dimensions.

8.2 Principal component analysis

Principal component analysis (PCA) is one of the simplest techniques of data
compression. Suppose that we have data x normalized to zero mean. In PCA,
the first principal component is found by maximizing the variance of the data
when projected onto a unit-length vector w1:

y1 = w>1 x , ‖w1‖ = 1.

The variance of this projection is given by

E{y2
1} = E{xx>} = w>1 E{xx>}w1 = w>1 Cxw1 ,

where Cx is the covariance matrix of the data. We want to maximize the
variance, which means that we need to solve the following optimization problem:

w∗1 = arg max
w1

w>1 Cxw1, s.t. ‖w1‖ = 1.

The solution of this optimization problem is given by the first, dominant eigen-
vector of the covariance matrix Cx.

After we find the first principal component, we can find the second principal
component by maximizing the variance in the subspace orthogonal to the first
eigenvector w1. And we can continue the extraction of the principal components
in this way. This is probably the most well-known formulation of PCA.

Perhaps a less well-known formulation of PCA is the minimization of the
mean-squared error of compression. The optimization problem is formulated
in the following way. We want to find an m-dimensional subspace with an
orthonormal basis wi

W
n×m

=
[
w1 ... wm

]
W>W = I

such that the n-dimensional vectors x are first projected onto that subspace

z = W>x .



8.2. PRINCIPAL COMPONENT ANALYSIS 143

5.0 2.5 0.0 2.5 5.0 7.5

6

4

2

0

2

4

6

8

Figure 8.1: Principal component
analysis finds directions that
maximize data variance. The
longer red line corresponds to
the first principal component
of the data while the shorter
line corresponds to the second
principal component.

and then projected back to the original n-dimensional space

x̂ = Wz =

m∑
i=1

(w>i x)wi = WW>x, .

We want to find matrix W such that the mean-squared error between the orig-
inal data x and its reconstruction x̂ is minimized:

WPCA = arg min
W

E{‖x− x̂‖2} , s.t. W>W = I.

To be more precise, this formulation is known as principal subspace analysis
because there are infinitely many orthonormal bases that span the principal
subspace and the principal component analysis defines one of them.

encoder: f(x) = Wfx

decoder: x̂ = g(z) = Wgz

loss: L = E{‖x− g(f(x))‖2} x x̂

z

f g

reconstruction
loss

Figure 8.2: PCA as an autoen-
coder: We learn a mapping from
x to x.

We can implement this optimization in PyTorch by building a computational
graph shown in Fig. 8.2. We transform vector x with a linear layer to vector
z and then transfrom z to x̂ using another linear layer. The minimized loss is
the mean-squared distance between the original input x and its reconstruction
x̂. To match the PCA formulation, we could additionally enforce parameter
sharing between the two linear layers and add a penalty term to enforce the
orthogonality of matrix W. However, if we only care about minimizing the
mean-squared reconstruction error, we do not have to do that.

This type of models is called an autoencoder. In autoencoders, the same
vector is used as the input and as the target for the output. Thus, we learn a
mapping from x to x with a function that is a composite of functions f and g.
Function f is called the encoder, function g is called the decoder. In principal
subspace analysis, both the encoder and the decoder are implemented as linear
transformations.
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8.3 Bottleneck autoencoders

The autoencoder model makes no sense if we do not restrict functions f and g
somehow. The model can learn a trivial identity mapping with Wg = W−1

f

x̂ = g(f(x)) = WgWfx = x,

which yields a zero reconstruction error. One simple way to restrict the model
is to use z with a smaller dimensionality than the dimensionality of x. This
makes autoencoding useful: we represent x with a smaller-dimensional vector
z, that is we compress the data.

Representations z of a smaller dimensionality are often called the bottleneck
and the layer that produces such representations is often called the bottleneck
layer. Thus, the principal subspace can be learned with a bottleneck autoencoder
with a linear encoder and a linear decoder.

In order to improve the level of compression so that we get a smaller recon-
struction error with a bottleneck layer of the same size, we can use an autoen-
coder with a nonlinear encoder and a nonlinear decoder. Deep autoencoder is
an autoencoder in which both the encoder and the decoder are implemented
as deep neural networks (Fig. 8.3). The parameters of the autoencoder can be
tuned by minimizing the same mean-squared reconstruction error.

z = f(x,θf )

θf ,θg = arg min
θf ,θg

E{‖x− g(z,θg)‖2}.

In bottleneck autoencoders (Bourlard and Kamp, 1988; Oja, 1991), we use a
bottleneck layer z which has fewer dimensions than the input. By doing so, we
prevent learning a trivial identity mapping.

Figure 8.3: Deep autoencoder. x

z

f

x̂

g

The advantage of deep autoencoders compared to linear models such as PCA
is that they can learn complex data manifolds. In the hypothetical example
presented in Fig. 8.4, the data lie on a one-dimensional manifold embedded in
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the two-dimensional space. Principal component analysis is not be able to learn
the one-dimensional manifold because it is a linear model. However, a nonlinear
autoencoder is a able to learn such a curved data manifold.

Figure 8.4: A one-dimensional
data manifold in the two-
dimensional space. With a non-
linear autoencoder, we can learn
a curved data manifold. Colors
represents the values of the la-
tent code z that may be found
by a nonlinear autoencoder.

The most popular use case for deep autoencoders is data compression. For
example, consider the task of playing the game of Doom with a reinforcement
learning algorithm (Ha and Schmidhuber, 2018). Learning from raw images
(pixels) is likely to require a huge number of training episodes because the
amount of input data is very large. It may take a very long time for the agent
to figure out what are the useful features for collecting rewards and therefore
for learning a good policy. Therefore, the authors first compress the data using
an autoencoder and then train the agent using compressed representations as
features.

Figure 8.5: Learning compressed
representations as features for a
reinforcement learning agent (Ha
and Schmidhuber, 2018).

8.4 Denoising autoencoders

Denoising autoencoders (Vincent et al., 2008) are similar to the bottleneck au-
toencoders with the difference is that instead of using original data x as input,
the denoising autoencoder always uses data x corrupted with noise (see Fig. 8.6).
The simplest way to corrupt the data is by adding Gaussian noise:

x̃ = x + ε with εi ∼ N (0, σ2). (8.1)

The autoencoder needs to produce the original clean samples in the output, sim-
ilarly to the vanilla autoencoder. This learning task is called denoising because
the model is trained to remove noise from the data. The same mean-squared

https://arxiv.org/abs/1803.10122
https://arxiv.org/abs/1803.10122
https://arxiv.org/abs/1803.10122
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error between the output x̂ = g(f(x̃)) and the desired clean input is typically
used as the loss function:

c = E{‖x̂− x‖2}.

Figure 8.6: A denoising autoen-
coder is trained to reconstruct
a clean image from a corrupted
one.

x̃

z

f

x̂

g

One can view adding noise to inputs as a way to regularize the autoencoder.
Recall that one of the regularization methods that we studied in Section 4.5 was
adding noise to model inputs. However, there is more theory behind denoising
autoencoders. The theory says that if samples are corrupted with Gaussian
noise as in (8.1), the optimal denoising function has the following form (Alain
and Bengio, 2014, Raphan and Simoncelli, 2011):

d(x̃) = x̃ + σ2∇x̃ log p(x̃) (8.2)

where ∇x̃ log p(x̃) is the gradient of the log-probability density function of the
corrupted data x̃, which is also known as the score function. σ is the standard
deviation of the corruption noise. If σ = 0, which means that there is no noise
in the input, then the optimal denoising is the identity mapping. This is natural
because if the input does not contain noise, there is no need for denoising. If
σ is non-zero, we modify the corrupted example x̃ in the direction where the
log-probability density function grows with the fastest rate. This is illustrated
in Fig. 8.7.

Equation (8.2) suggests that in order to learn the optimal denoising function
d(x), the model need to learn the properties of the data distribution p(x) which
is related to the score function ∇x̃ log p(x̃). Note also that the optimal denoising
function is not equal to the identity mapping. Therefore, even if a denoising
autoenconder does not have a bottleneck layer, it can still learn to develop useful
representations.

https://arxiv.org/abs/1211.4246
https://arxiv.org/abs/1211.4246
https://www.cns.nyu.edu/pub/eero/raphan10.pdf
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Image from (Alain and Bengio, 2014)

Figure 8.7: A denoising autoen-
coder learns to move noisy sam-
ples towards regions with higher
probability density. The yel-
low dots represent the manifold
formed by clean samples. The
arrows represent the denoising
function learned.

8.5 Converting autoencoders into generative models

8.5.1 Generative model

Next we build an autoencoder which is a probabilistic generative model, which
is a model that can represent the data distribution p(x) and which can be used
to generate new examples from the data distribution. Vanilla autoencoders are
not generative models because they cannot be used to generate new samples.
Neither can they compute the probability that a sample comes from the data
distribution.

A simple example of a probabilistic generative model is a mixture of Gaus-
sians model (see Fig. 8.8). Its probability density function for one-dimensional
x and two Gaussian components is given by

p(x | θ) = w1N (x | µ1, σ
2
1) + w2N (x | µ2, σ

2
2).

This model has six parameters θ = {w1, µ1, σ1, w2, µ2, σ2} which can be tuned
by maximizing the likelihood. We can also draw samples from this distribution,
therefore it is a generative model. This model is an example of an explicit
density model because its probability density function p(x | θ) has an explicit
parametric form.

Figure 8.8: Probability den-
sity function of a mixture of
two Gaussians. The blue dots
represent samples from the
distribution.

We can build a deep generative model using the decoder part of the autoen-
coder. We can assume that the variables in the bottleneck layer are distributed
according to a simple tractable distribution, for example, a spherical Gaussian

https://arxiv.org/abs/1211.4246
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distribution:

z ∼ N (0, I).

We can further assume that the data samples x are nonlinear transformations
of variables z with the possibility of adding some noise ε:

x = g(z,θ) + ε.

Function g can be modeled as a deep neural network. We can also assume that
the noise has a spherical Gaussian distribution:

ε ∼ N (0, σ2I).

Now we can draw samples from the model: first we draw z from the Gaussian
distribution and then we transform z with a deep neural network g and add
noise ε to get a generated sample x.

Our model contains latent variables z. These variables are unobserved, we
do not know their values and we can only measure x. Fig. 8.9 presents a
toy example which illustrates our latent variable generative model. We model
one-dimensional data x as a noisy transformation of a Gaussian variable z.
The transformation is done with a nonlinear function g. You can see that
even though the distribution of z is a simple Gaussian, by using a nonlinear
transformation g, we can produce a more complex distribution of x, for example,
a bi-modal distribution that we see on the plot.

Figure 8.9: A toy example of a
generative latent variable model
with one-dimensional z and x.
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8.5.2 Learning the model parameters with the EM algorithm

Now our goal is to learn the parameters of our generative model using training
data {xi}. In the toy example in Fig. 8.9, the training data are shown with the
red dots. We need to learn the nonlinearity g and the noise level σ such that
the data distribution can be accurately approximated by the transformation of
the Gaussian latent variable z with the nonlinear function g.

We can tune the parameters θ, σ2 of our model by maximizing the probability
of the training data (maximum likelihood estimate):

θML = arg max
θ

log p(x1, ...,xN | θ).
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Since our training examples are sampled independently, the log-probability of
the training data is the sum of the log-probabilities of the individual samples:

log p(x1, ...,xN | θ) =

N∑
i=1

log p(xi | θ) =

N∑
i=1

log

∫
p(xi | zi,θ)p(zi)dz. (8.3)

We need to integrate out the latent variable z from the joint distribution p(x, z)
to compute the log-probabilities of the individual training examples.

The probability density functions that participate in this formula are defined
by our generative model. The conditional probability p(xi | zi,θ) is Gaussian
whose mean is determined by the output of the nonlinear function g:

p(xi | zi,θ) = N (xi | g(zi,θ), σ2I).

The covariance matrix of this distribution is determined by our noise model and
we postulated the covariance matrix to be σ2I. The prior distribution over the
latent variables z is the spherical Gaussian because we chose that distribution
in the generative model;

p(zi) = N (zi | 0, I).

Even though we can write formula (8.3) for the log-likelihood, the integral
that participates in (8.3) is not tractable. Therefore, we cannot compute this
function analytically and thus we cannot optimize it directly.

The classical way to estimate the parameters of a model with latent variables
is to use of the expectation-maximization algorithm, the EM algorithm. The
EM-algorithm iterates between two steps: the E-step and the M-step. In the E-
step, we compute the posterior probabilities p(zi | xi,θ) of the latent variables
given the data and the current values of the model parameters. In the M-
step, we update the values of the model parameters θ using the probabilities
computed in the E-step.
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Figure 8.10: Consider our simple
example. We initialize θ with
values that give us g of the form
shown in the figure.

Let us use the toy example from Fig. 8.9 to gain some intuition at what
happens in the two steps of the EM algorithm. Suppose that we have initialized
the model parameters such that function g has the shape shown in Fig. 8.10.
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Then, the distribution p(x) that is produced by our generative model does not
describe well our training data shown with the red dots.

In the E-step, we take each training example and compute the posterior
probability of the latent variable z given the data sample x1 and the current
values of the model parameters:

q(zi) = p(zi | xi,θ).

For example, for x1 shown in Fig. 8.11 the values of the latent variable z that
could have generated are represented by the conditional distribution p(z1 | x1,θ)
shown with the green line.

Figure 8.11: E-step: For each
training data point, find the dis-
tribution over the latent vari-
ables that could have produced
that data point according to the
model 3 2 1 0 1 2 3
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For the second sample x2 shown in Fig. 8.12, the conditional distribution
p(z2 | x2,θ) is more complex because there are three areas in the latent space
that could have produced x2. Therefore, the conditional distribution has three
modes, as shown on the plot. For the third sample x3, the conditional dis-
tribution is simpler (see Fig. 8.12). In the E-step, we need to evaluate these
conditional probabilities p(zi | xi,θ) for all the examples in the training set.

Figure 8.12: E-step: For each
training data point, find the dis-
tribution over the latent vari-
ables that could have produced
that data point according to the
model 3 2 1 0 1 2 3
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In the M-step, we use the distributions computed in the E-step, which we
denote by q(zi), to form an objective function of the following form:

F(θ) = 〈log p(x1, ...,xN , z1, ..., zN | θ)〉q(z1,...,zN ) (8.4)

=

N∑
i=1

〈log p(xi, zi | θ)〉q(zi)
=

N∑
i=1

∫
q(zi) log p(xi, zi | θ)dzi. (8.5)
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This function is the expected value of the joint probability of all the variables
in the model including the latent ones. The expectation is taken using the
conditional probabilities q(zi) evaluated on the E-step. In the M-step, this
objective function is maximized wrt the model parameters θ that participate in
log p(xi, zi | θ).

It can be shown that the EM-algorithm improves the values of the log-
likelihood log p(x1, ...,xN | θ) after each iteration. Therefore, by alternating
the E- and the M-steps, we can find a local maximum of the likelihood function.
Fig. 8.13 illustrates the optimization procedure: by performing a few iterations
of the EM-algorithm, we find the values of the model parameters that describe
well the distribution of the training data.
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Figure 8.13: Illustration of a few
steps of the EM algorithm.

8.5.3 Variational approximation

There are a few problems with the direct application of the EM-algorithm to
learning our deep generative model. One problem is the intractability of the
true conditional distributions q(zi) = p(zi | xi,θ) that we need to compute
on the E-step. As we can see from Fig. 8.12, the true distribution can be
very complex. And for a nonlinear function g modeled with a neural network,
it certainly does not have an analytical form. We have to approximate these
distributions somehow.

A popular solution is to approximate the true conditional distribution with
a distribution that have a simple form, for example, a Gaussian distribution.
Let us consider our toy problem again. The true conditional distribution for
training example x2 has three modes, as shown with the green line in Fig. 8.14.
We approximate the true distribution with a Gaussian distribution q(z2) which



152 CHAPTER 8. DEEP AUTOENCODERS

Figure 8.14: 3 2 1 0 1 2 3
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effectively captures only one of the modes. The approximating distribution
q(zi) ≈ p(zi | xi,θ), which is shown with the red line on this plot, is often
called variational approximation.

If we decide to use a Gaussian approximation

q(zi) = N (µzi
, σ2

zi
)

then we have two parameters µzi
and σ2

zi
that define our variational approxima-

tion. Note that we need to use a different variational approximation for every
example in the training set because the true conditional distribution depends on
the training example. Therefore, we need two parameters µzi and σ2

zi
describing

q(zi) for each training sample. Parameters describing the posterior distributions
of the latent variables θq = {µzi

, σ2
zi
}Ni=1 are called variational parameters.

To find the best approximation q(zi), we usually minimize the Kullback-
Leibler divergence between the true distribution p(zi | xi,θ) and its approxima-
tion q(zi). We can minimize the KL divergence between q(zi) and p(zi | xi,θ)
using the following trick. We add to the objective function (8.5) that we used in
the M-step of the EM-algorithm the entropies of the approximate distributions
q(zi):

F(θ,θq) =

N∑
i=1

∫
q(zi) log p(xi, zi | θ)dzi︸ ︷︷ ︸

what we had in the M-step

−
∫
q(zi) log q(zi)dzi︸ ︷︷ ︸

entropy

=

N∑
i=1

∫
q(zi) log

p(xi, zi | θ)

q(zi)
dzi =

N∑
i=1

∫
q(zi) log

p(zi | xi,θ)p(xi | θ)

q(zi)
dzi

=

N∑
i=1

−DKL(q(zi) ‖ p(zi | xi,θ)) + log p(xi | θ).

Note that the term log p(xi | θ) does not depend on the variational approxi-
mations. Therefore, maximization of objective F wrt the variational approxi-
mations q(zi) is equivalent to minimizing the KL divergence between the true
conditional distributions p(zi | xi,θ) and their approximations q(zi).

The good thing about the new objective function F is that it is a function
of both model parameters θ and the varitional approximations q(z) and we can
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optimize this function jointly with respect to θ and q(z) without having to use
the alternating E- and M-steps. If we fix the model parameters

F(θ,θq) =

N∑
i=1

−DKL(q(zi) ‖ p(zi | xi,θ)) + log p(xi | θ)︸ ︷︷ ︸
constant

and only tune the variational approximation, then maximizing F is equivalent
to minimizing the KL divergence between the variational approximation and the
true conditional distributions, which can be viewed as an approximate E-step.
If we fix the variational approximation

F(θ,θq) =

N∑
i=1

∫
q(zi) log p(xi, zi | θ)dzi −

∫
q(zi) log q(zi)dzi︸ ︷︷ ︸

constant

,

then maximizing F is equivalent to maximizing the first term and this is what
is done in the M-step of the EM-algorithm. Now we can optimize F jointly wrt
the model parameters θ and the variational parameters θq with any optimizer
of our choice.

Since the KL divergence is always non-negative DKL(q ‖ p) ≥ 0, we get

F (θ,θq) ≤
N∑
i=1

log p(xi | θ) = log p(x1, ...,xN | θ),

which shows that F is the lower bound of the true log-likelihood. This is the
log-likelihood that we actually want to maximize. It is also called evidence and
therefore function F is often called evidence lower bound (ELBO). The closer
our approximation q(zi) to the true posterior p(zi | xi,θ), the closer we are to
the true log-likelihood.

ELBO can be re-written in the following form

F (θ,θq) =

N∑
i=1

∫
q(zi) log p(xi | zi,θ)dzi −

∫
q(zi) log

q(zi)

p(zi)
dzi. (8.6)

Recall that in our deep generative model, we postulated that

p(xi | zi,θ) = N (xi | g(zi,θ), σ2I).

Then, the first term in (8.6) can be written in the following form〈
−D

2
log 2πσ2 − 1

2σ2

D∑
d=1

(xi(d)− gd(zi,θ))2

〉
q(zi)

,

where 〈〉q denotes the expectation computed over distribution q, D is the number
of dimensions in x, xi(d) is the d-th element of xi and gd is the d-th element
of the output of function g. One can see that this term contains the expected
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mean-squared error between data sample xi and its reconstruction g from the
latent code zi.

The second term of ELBO can be recognized as minus KL-divergence be-
tween the approximate distribution q(zi) and the prior distribution p(zi):

−
∫
q(zi) log

q(zi)

p(zi)
dzi = −DKL(q(zi) ‖ p(zi)).

This terms encourages the posterior approximation q(zi) to be close to the prior
distribution p(z) that we selected to be a spherical Gaussian distribution in our
model. This term works as a regularization term, it prevents divergence of the
latent codes from the prior distribution. This is written again below:

F (θ,θq) =

N∑
i=1

∫
q(zi) log p(xi | zi,θ)dzi︸ ︷︷ ︸

minus mean-square reconstruction error

−
∫
q(zi) log

q(zi)

p(zi)
dzi︸ ︷︷ ︸

regularization term

.

8.5.4 Variational autoencoder

The first algorithm for learning a latent variable model of this form

z ∼ N (0, I)

x = g(z,θ) + ε

ε ∼ N (0, σ2I)

with a neural network for modeling g and variational approximations was pro-
posed by Lappalainen and Honkela (2001). The objective function was the
ELBO that had the form (8.6). The approximate distributions q(zi) were chosen
to be Gaussian q(zi) = N (µzi

, σ2
zi

) and therefore the approximate distribution
for each training example had two variational parameters µzi

, σ2
zi

.
One problem of that early model was the large number of the variational

parameters θq = {µzi , σ
2
zi
}Ni=1: the number of them was proportional to the

number of training samples. How can we get rid of those parameters?
Let us consider the E-step of the EM-algorithm once again. The goal of

that step is to find the conditional distribution over the latent code given the
data. If we use variational approximations (see Fig. 8.14), the task is to find the
approximate distribution that would be closest to the true conditional distribu-
tion over the latent code. For fixed model parameters θ, the distribution q(z)
that we need to evaluate in the E-step is only a function of the data sample x.
Therefore, the E-step essentially maps inputs x to distributions q(z) over the
latent code. If we use a Gaussian approximation q(z), we need to map inputs x
into the two parameters µ and σ of the Gaussian approximation:

x→ µz, σ
2
z .

In the model called variational autoencoder, Kingma and Welling (2014)
proposed to approximate this mapping using a neural network. This neural

https://www.cs.helsinki.fi/u/ahonkela/papers/ch7.pdf
https://arxiv.org/abs/1312.6114
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network can be called an encoder because its job is to convert input x into
a distribution over the latent code, which is similarly to what is done by the
encoder in the vanilla autoencoder. The encoder of the VAE performs amortized
inference: when doing inference for a particular sample xi, it leverages the
knowledge of the inference results for other samples. If two samples xi and xj
are close to each other, then the corresponding approximations q(zi) and q(zj)
should be close as well.

Let us review the components of the variational autoencoder (VAE). Our
generative model, for example,

z ∼ N (0, I) x = g(z,θ) + ε ε ∼ N (0, σ2I)

is defined by the decoder. The second component of our model is the encoder
which is trained to perform variational inference. The encoder is a neural net-
work that takes as input a data sample x and produces a distribution over the
latent code. For a Gaussian approximation, the neural network produces two
vectors

x→ µz, σ
2
z .

In practice, this is done using one neural network with two output heads (see
Fig. 8.15). The encoder is similar to the encoder in a bottleneck autoencoder.
The difference is that produces two outputs that define the distribution over the
latent code z.

x

µz σ2
z z

x̂

Encoder Decoder
Figure 8.15: Variational
autoencoder.

The VAE is trained to maximize the ELBO objective function (8.6):

F(θ,θq) =

N∑
i=1

∫
q(zi) log p(xi | zi,θ)dzi︸ ︷︷ ︸

needs approximations

−
∫
q(zi) log

q(zi)

p(zi)
dzi︸ ︷︷ ︸

can be computed analytically

.

If we use Gaussian approximations q(zi), the second term can be computed
analytically. However, the first term cannot computed analytically and needs
to be approximated.
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Kingma and Welling, (2014) propose to use Monte Carlo estimation of the
first term. We can draw L samples from distribution q(zi) and use them to
compute the approximation∫

q(zi) logN (xi | g(zi,θ), σ2I)dzi ≈
1

L

L∑
l=1

logN (xi | g(z
(l)
i ,θ), σ2I),

where z
(l)
i are drawn from q(zi). In practice, using L = 1 works pretty well.

Let us review how one can compute an approximation of the ELBO objective
function. For each training example xi, we

– compute µzi
and σzi

using the encoder

– compute the term
∫
q(zi) log q(zi)

p(zi)
dzi analytically

– draw L = 1 samples z
(l)
i from q(zi) = N (µzi

, σ2
zi

)

– propagate z
(l)
i through the decoder and compute the first term logN (xi |

g(z
(l)
i ,θ), σ2I).

This results in the computational graph shown in Fig. 8.16.

Figure 8.16: Computational
graph of the variational
autoencoder.

x

µz σz z(l)

x̂

sample

Now we want to update the model parameters, which include the parameters
of the encoder and the parameters of the decoder, to maximize the objective
function. In order to do that we need to backpropagate the derivatives through
the computational graph in Fig. 8.16. We can easily perform backpropagation
through the decoder. But then we face a problem: how do we backpropagate
through the sampling procedure? If we cannot do that, we cannot compute the
derivatives wrt the parameters of the encoder. Therefore, we need a sampling
operation that can be differentiated wrt parameters µ and σ.

We can obtain this with the reparameterization trick. In that trick, we
sample noise from the spherical Gaussian distribution

εi ∼ N (0, I)

https://arxiv.org/abs/1312.6114
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and then compute a sample as

zi = µzi
+ σzi

εi.

Now sample zi comes from the desired distribution but we can also backprop-
agate through this sampling block because we can compute the derivatives wrt
µz and σz. And we can propagate the derivatives further through the encoder.
This is illustrated in Fig. 8.17.

x

µz, σz z = µz + σzε

x̂

Figure 8.17: Computational
graph of the variational autoen-
coder with the reparameteriza-
tion trick.

Let us review the training algorithm of the VAE.

– Take a mini-batch {xi} of training samples.

– Use the encoder to compute means µzi
and standard deviations σzi

for
each sample xi in the mini-batch.

– Draw εi ∼ N (0, I) and compute samples zi = µzi + σziεi.

– Propagate samples zi through the decoder to compute reconstructions x̂i.

– Compute the loss which is the negative of

F (θ,θq) =
1

n

n∑
i=1

logN (xi | g(z
(l)
i ,θ), σ2I)︸ ︷︷ ︸

Monte Carlo estimate

−
∫
q(zi) log

q(zi)

p(zi)
dzi︸ ︷︷ ︸

can be computed analytically

– Perform backpropagation and update the parameters of the encoder and
the decoder.

8.6 VAE vs bottleneck autoencoder

VAE is a more complex model than a simple bottleneck autoencoder. Do we
need all these complications? VAEs are more powerful: in some problems when
vanilla autoencoders fail, VAEs can develop useful representations. The problem
of the vanilla autoencoder is the mean-squared error loss, which makes too
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simplistic assumptions about the data distribution. One advantage of the VAE
is its greater flexibility in defining the generative model. Note that denoising
autoencoders are more powerful than the vanilla autoencoders even though they
also use the mean-squared error loss.

Variational autoencoders can be used for feature extraction and traditionally
they are used for that. However, VAEs are generative models and they can be
used for generating samples. So far, the quality of the samples generated with
VAEs has not been very impressive. Samples and reconstructions often look
blurry (see Fig. 8.19). However, Vahdat and Kautz (2020) presented a VAE
model that is able to generate high-quality images. It is a hierarchical latent
variable model, that is there are multiple levels of latent variables.

Figure 8.18:

Original images (above) and reconstructions Generated samples

Images from (Tolstikhin et al., 2017)

Figure 8.19: Original images and
reconstructions (above) and gen-
erated samples using Nouveau
VAE (Vahdat and Kautz, 2020).

Reconstructions

Generated samples

8.7 Home assignment

In the home assignment, you need to train a bottleneck autoencoder on the
MNIST dataset. When you visualize the representations developed in the bot-
tleneck layer, you will clearly see the ten clusters corresponding to the ten

https://arxiv.org/abs/2007.03898
https://arxiv.org/abs/1711.01558
https://arxiv.org/abs/2007.03898
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MNIST classes. This is a sign that the autoencoder has learned the structure
of the data.
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0
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3
4
5
6
7
8
9 Figure 8.20: MNIST data set

(left) and t-SNE visualization of
a 10-dimensional z-space found
with using a bottleneck autoen-
coder (right).

In the second part, you will have to train a denoising autoencoder on a
synthetic dataset (which I called the variance MNIST). The dataset is created
by multiplying the MNIST data by Gaussian noise (see Fig. 8.21). Note that
these are not corrupted data, this is how our clean training examples look like.
Even though the samples look noisy, it is quite easy for us to recognize the digits.
The reason why we use this dataset is because a vanilla bottleneck autoencoder
with the mean-squared reconstruction loss cannot extract features that would
capture the shapes of the digits. If you are interested, you can try to train
a bottleneck autoencoder on this dataset. But a denoising autoencoder can
extract meaningful features. This is illustrated on this plot which shows the
representations found by a denoising autoencoder.

40 20 0 20 40
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30 0
1
2
3
4
5
6
7
8
9 Figure 8.21: Variance MNIST

data set (left) and t-SNE visu-
alization of a 10-dimensional
z-space found with using a de-
noising autoencoder (right).

In the third part of the assignment, you will have to train a variational
autoencoder on the variance MNIST dataset. In order to extract meaningful
features in this dataset, one needs to use a generator (a decoder) that models
the variances of the pixel intensities. The generative model that you need to
learn in this exercise is given by

z ∼ N (0, I) x ∼ N (µ(z),diag(σ(z)))

µ(z) = gµ(z,θ) σ(z) = exp(gσ(z,θ)).

You can see that the latent code z is used both to produce the mean and the
covariance matrix of the Gaussian distribution in the pixel space. We assume a
diagonal covariance matrix and therefore we need to produce a vector of stan-
dard deviations, one standard deviation for each pixel. We need to guarantee
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that the standard deviation is positive and therefore we will output the log-
standard deviation and then we take the exponent of that.



Chapter 9

Generative adversarial
networks

9.1 Classical generative adversarial networks

Let us start by reviewing the generative model of the variational autoencoder
that we studied in Section 8.5.1. We have latent variables z that are, for exam-
ple, normally distributed

z ∼ N (0, I). (9.1)

The data vectors x are produced using a nonlinear transformation of the latent
variables with the possibility of adding some noise ε:

x = g(z,θ) + ε. (9.2)

VAE is an explicit density model because we define an explicit parametric form
of the data distribution p(x). For example, for the generative model defined in
(9.1)–(9.2), p(x) can be expressed as

p(x) =
∏
i

∫
p(zi)p(xi | zi,θ)dzi =

∏
i

∫
N (zi | 0, I)N (xi | g(zi,θ), σ2I)dzi.

In this section, we consider an unsupervised learning method with an implicit
density model. That means that we do not have an explicit form of the data
distribution p(x). The model is called generative adversarial networks (GAN).

The GAN model was proposed by Goodfellow et al. (2014). A GAN consists
of two components (see Fig. 9.1): 1) a generator which is a neural network that
converts noise into generated samples and 2) a discriminator which is another
neural network that tells whether the generated samples are good or bad. The
discriminator is simply a classifier that classifies the generated samples into two
classes: a good example or a bad example. Different GAN models may have

161
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Figure 9.1: Generative adversar-
ial networks.

generatornoise

generated
sample

discriminator
(teacher)

good

bad

different architectures of the generator, different architectures of the discrimi-
nator, a different choice for the discriminator loss function or different kinds of
regularization techniques used to train the model.

We start with the GAN generator. The simplest generative process that can
be used by a GAN generator is:

– Sample noise from an isotropic Gaussian distribution

z ∼ N (0, I)

– Transform vector z with a deep neural network to generate a data sample
x:

x = g(z,θ).

You can see that this generative process is quite similar to the one that we used
in the decoder of the variational autoencoder.

This is not the only way to build the generator. We may use different
strategies for using the noise inside the generator. We may, for example, apply
additive or multiplicative noise (such as dropout) to the hidden layers or we can
concatenate noise to the hidden layers. In principle, there are infinitely many
ways how to add noise inside the generator network.

Figure 9.2: Generative adver-
sarial networks with deep neural
networks as the generator and
the discriminator.

z

x

g d

good bad

generator teacher

The discriminator is a neural network that guides the generator network.
It assesses the quality of the generated samples by classifying them into two
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classes “good” or “bad”. Using the feedback from the discriminator, the gen-
erator can adapt its parameters and produce samples that look good from the
discriminator’s point of view. Therefore, the discriminator can be viewed as a
teacher or as a coach which produces the training signal (or the supervision) for
the generator.

How to train the teacher? The elegant idea of GANs is that the discriminator
is trained to classify samples as “good” if they come from the training data set
and as ‘bad” if they are produced by the generator. The output is the probability
that the input x is a real example, which means an example which belongs to the
training set. The discriminator d(x) is a binary classifier with a scalar output
between 0 and 1:

(bad=generated=fake) 0 < d(x) < 1 (good=real).

The discriminator can be trained to minimize the binary cross-entropy loss that
we studied in Section 1.2. It can be written as

Ex∼pdata
log d(x) + Ex∼pg log(1− d(x))→ max

d

or equivalently as

Ex∼pdata
log d(x) + Ez∼pz(z) log(1− d(g(z)))→ max

d
.

The first term is the expected log-probability that the sample x is classified as
a real example when it is taken from the training data set. The second term is
the expected log-probability that the sample generated by the model is classified
as fake. In practice, we update the discriminator using a mini-batch of N real
examples xi and N generated examples g(zi) to minimize the loss

L = − 1

N

N∑
i=1

log d(xi)−
1

N

N∑
i=1

log(1− d(g(zi))).

The generator g(z) is trained to produce samples that are classified by the
discriminator as real examples. If d(x) is the output of the discriminator, we
want to change the generator in a such way that it produces x for which d(x)
would be close to 1. Therefore, the generator g can be trained by maximizing
the following function

Ex∼pg log d(x) = Ez∼pz(z) log d(g(z))→ max
g

.

In practice, when we update the generator using a mini-batch of N generated
examples g(zi) to minimize the following loss:

L = − 1

N

N∑
i=1

log d(g(zi)).



164 CHAPTER 9. GENERATIVE ADVERSARIAL NETWORKS

In principle, there are two ways to train the generator: we can either mini-
mize the probability that the generated example is classified as fake

Ez∼pz(z) log(1− d(g(z)))→ min
g

(9.3)

or we can maximize the probability that the generated example is classified as
real

Ez∼pz(z) log(d(g(z)))→ max
g

. (9.4)

Both formulations result in the same fixed point. However, the latter formula-
tion works much better in practice. The reason for that is that at the beginning
of training, the generator produces very poor samples and it is very easy for
the discriminator to separate them from the real examples with very high con-
fidence. This means that the output of the discriminator on the generated
examples would be very close to 0 at the beginning of training.

Figure 9.3:
0.0 0.2 0.4 0.6 0.8 1.0

4

2

0

2

4

d

log(1− d)

− log(d)

Fig. 9.3 see the two quantities log(1 − d) and − log(d) that are used to
formulate the optimized objective function in (9.3) and (9.4). At the beginning
of training when d ≈ 0, the quantity log(1 − d) changes very slowly wrt to its
input. That means that this formulation provides very small gradients to the
generator and learning can be very slow. In contrast, the value of log d changes
fast wrt to d and therefore this formulation provides much stronger gradients
for training the generator.

Let us review the training procedure for training a GAN model. Each train-
ing iteration consists of the following steps:

1. Update the discriminator:

– Sample N examples xi from the training set.

– Generate N samples g(zi) using the generator.

– Compute the binary cross-entropy loss

Ld = − 1

N

N∑
i=1

log d(xi)−
1

N

N∑
i=1

log(1− d(g(zi)))
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– Update θd by stochastic gradient descent: θd ← θd −∇θd
Ld

2. Update the generator:

– Generate N samples g(zi) using the generator.

– Compute the loss function

Lg = − 1

N

N∑
i=1

log d(g(zi))

– Update θg by stochastic gradient descent: θg ← θg −∇θg
Lg (gradi-

ents flow through the discriminator).

Fig. 9.4 illustrates the training process of GANs. In this toy example, we
want to learn the data distribution represented by the black dots. The generator
is initialized such that it produces the distribution shown with the green line in
Fig. 9.4a. The discriminator is also initialized somehow.

(a) generator g(x)
and discriminator are

intialized.

(b) d(x) is trained to
discriminate samples

from data.

(c) After an update
to g, gradient of d
has guided g(z) to
flow to regions that
are more likely to be

classified as data.

(d) After several
steps of training, g
and d reach a point

at which both cannot
improve because
pg = pdata. The
discriminator is

unable to
differentiate between
the two distributions

d(x) = 0.5.
Image from (Goodfellow et al., 2014)

Figure 9.4: Illustration of the
training process of GANs.

First, we update the discriminator to separate the training data distribution
shown with the black dots and the generator distribution represented by the
green line. The updated discriminator is shown with the blue dotted line in
Fig. 9.4b. You can see that on the left hand side, the samples are classified as
real because there are no generated samples in that area. On the right hand
side, the samples are classified as fake because there are more generated samples
than the real examples in that area.

Next, the generator is updated by following the feedback from the discrim-
inator. The discriminator suggests that samples are classified as real on the
left hand side and therefore the generator is updated such that the generator
distribution is shifted towards left.

At the end of the training process, the GAN should converge to the situation
shown in Fig. 9.4d when the generator distribution and the data distribution

https://arxiv.org/abs/1406.2661
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cannot be distinguished and the discriminator produces the value of 0.5 for all
inputs.

We previously considered a collaborative view of GANs where the teacher
gives supervision to the student generator network. A more popular view of
GANs is that it is a two-player minimax game in which the generator tries to
fool the discriminator and the discriminator tries to catch the fakes. The game
can be described with the following objective function

v(g, d) = Ex∼pdata
log d(x) + Ez∼pz(z) log(1− d(g(z))). (9.5)

The first term is the expected log-probability that data samples are classified as
real samples and the second term is the expected log-probability that generated
samples are classified as fake samples. The discriminator tries to maximize this
function:

v(g, d)→ max
d

.

From the generator point of view, the first term does not depend on the genera-
tor (it is constant wrt the generator) and the second term is the probability that
the discriminator classifies generated samples as fake. Therefore, the generator
tries to minimize this objective:

v(g, d)→ min
g
.

The equilibrium (also known as Nash equilibrium) is a saddle point of (9.5). In
the Nash equilibrium, both players cannot gain anything by changing their own
strategy.

Goodfellow et al. (2014) provide the following theoretical results. For a fixed
generator, the optimal discriminator is given

d∗g(x) =
pdata(x)

pdata(x) + pg(x)
.

If we use the optimal discriminator d∗g(x) to tune the generator, then the mini-
mization of the generator loss is equivalent to the minimization of the Jensen-
Shannon divergence between the model’s distribution pg and the data distribu-
tion pdata:

JSD
(
pdata

∥∥ pg) = KL

(
pdata

∥∥∥∥ pdata + pg
2

)
+KL

(
pg

∥∥∥∥ pdata + pg
2

)
.

You can also see that this divergence is symmetric (unlike the KL divergence):
if we change the order of pdata and pg, the result remains the same.

It can be shown that the global minimum of the generator loss (9.5) is
achieved if and only if the pdf produced by the generative process is equal to
the pdf of the data distribution. This analysis indicates that GAN is a proper
probabilistic model which learns the data distribution p(x). It is an implicit
density model because we do not have an explicit form for pg, pg is determined
by the implementation of the generator.

https://arxiv.org/abs/1406.2661
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Generative adversarial networks is one of the hot topics in the machine
learning research. There have been a great number of papers proposing different
variants of GANs. One of the major problems is that training of GANs is often
unstable: the convergence may be slow or even difficult to achieve. One typical
problem when training GANs is that the generator starts producing the same
sample or different slight variations of the same sample. This problem is known
as mode collapse.

9.1.1 Deep convolutional GAN

Deep convolutional GAN (DCGAN, Radford et al., 2015) is one of the early
GAN models that is relatively easy to train. The authors propose a few archi-
tectural decisions that make the training procedure stable:

– Replace any pooling layers with strided convolutions (discriminator).

– Use transposed convolutions in the generator.

– Remove fully connected hidden layers.

– Use batchnorm in both the generator and the discriminator.

– Use ReLU activation in generator for all layers except for the output,
which uses Tanh.

– Use LeakyReLU activation in the discriminator for all layers.

Figure 9.5: The generator of the
deep convolutional GAN.

9.2 Improving stability of GAN training

9.2.1 Wasserstein GAN

In the conventional GAN, the distance between the data distribution pdata and
the model distribution pg was measured with the Jensen-Shannon divergence.
Arjovsky et al., (2017) propose to compare the two distributions using a different
distance called Earth-Mover distance or Wasserstein-1. The distance is defined
as

W (pdata, pg) = inf
γ∈

∏
(pdata,pg)

E(x,y)∼γ [‖x− y‖]

https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1701.07875
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where
∏

(pdata, pg) denotes the set of all joint distributions γ(x, y) whose marginals
are pdata and pg. Loosely speaking, Wasserstein-1 is the smallest value of the
expected distance between x and y where x and y are sampled from any joint
distribution such the marginal distributions are pdata and pg.

Let us gain some intuition about this quantity. Suppose that we have two
distributions: one is a bimodal distribution shown on the y-axis and the other
one is a bimodal distribution shown on the x-axis in Fig. 9.6a. Among all
possible joint distributions such that their marginals are given by the red and
the green lines, we want to find a joint distribution such that if we draw samples
from this distribution the difference between the x and y coordinates of those
samples is minimized.

Figure 9.6: The Earth-Mover dis-
tance or Wasserstein-1 is defined
as the minimum expected dis-
tance to the straight line y = x
among all joint distributions
whose marginals are equal to the
compared distributions shown
with the red and green lines.
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The difference between coordinates x and y of the same sample is given by
the distance from the sample to the straight line y = x. You can see that for the
joint distribution in Fig. 9.6a, the expected distance from the samples to the
dashed line is non-zero. However, if we use the joint distribution with the same
marginals which is shown in Fig. 9.6b, then the distance to the dashed line is
exactly zero. Among all possible joint distributions with the same marginals,
we want to find the one that minimizes this distance. The minimum of the
expected distance is Wasserstein-1.

In the example in Fig. 9.6a-b, the two distributions are equal and therefore
we can find a joint distribution that produces exactly zero distances. If the
two distributions are not equal (see, e.g., Fig. 9.6c), then we cannot find a joint
distribution such that the expected distance from the samples to the line y = x
is zero. The minimum distance among all possible joint distributions can be
used as the distance between the two probability distributions.

The authors provide the following arguments to why it is better to use the
Earth-Mover distance. Suppose that we want to compute the distance between
distributions q(x) and pθ(x) shown in Fig. 9.7. x2 is uniformly distributed
between -1 and 1 and x1 is a constant in both distributions: x1 = 0 for q(x) and
x1 = θ for pθ(x). We compute the distance between the two distributions as a
function of θ. When θ = 0, both the Jensen-Shannon divergence and the Earth-
Mover distance are equal to zero. But for non-zero θ, the JSD has the same
value regardless of the value of θ. In contrast, the Earth-Mover distance grows
linearly when θ moves away from zero. Therefore, this distance may provide a
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stronger training signal.
The problem with the Earth-Mover distance is that it is not tractable. To

compute the distance between two distributions, we need to solve a complex
optimization problem (as illustrated in Fig. 9.6). This is not convenient because
we cannot compute the distance efficiently and therefore we cannot minimize it.

However, the following equality helps us estimate this distance:

W (pdata, pg) = sup
‖f‖L≤1

Ex∼pdata
[f(x)]− Ex∼pg [f(x)]. (9.6)

The equation says that if we take a family of all functions f that are 1-Lipschitz
continuous ‖f‖L ≤ 1, then Wasserstein-1 is the supremum of the difference
between the expected values of f(x) computed for the two distributions pdata

and pg. The condition that function f is 1-Lipschitz continuous is given by:

‖f(x2)− f(x1)‖ ≤ ‖x2 − x1‖ .

This constraint basically means that we limit the magnitude of the gradient of
f . Intuitively, if we do not restrict functions f in any way, then the difference of
the two expected values can be made infinitely large. The condition ‖f‖L ≤ 1
limits the set of possible functions making the distance well defined.

Equation (9.6) means that in order to estimate the Wasserstein-1 distance,
we need to find function f that maximizes the difference of the expected values
of f(x) under the two distributions pdata and pg, with the constraint on the
derivatives of function f . If instead of 1-Lipschitz functions, we use K-Lipschitz
functions, which is a set of function that satisfy the following constraint

‖f(x2)− f(x1)‖ ≤ K ‖x2 − x1‖ ,

for some K, then we can compute the distance up to a constant multiplier K:

K ·W (pdata, pg) = sup
‖f‖L≤K

Ex∼pdata
[f(x)]− Ex∼pg [f(x)]. (9.7)

This is totally fine for our purposes because we are not interested in the exact
values of the Wasserstein-1 distance, we can use (9.7) to measure the difference
between two distributions.

The authors propose to model function f with a neural network. In order to
guarantee that the function modeled by the neural network is K-Lipschitz, they

https://en.wikipedia.org/wiki/Lipschitz_continuity
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propose to limit the weights w such that their values are constrained to be in a
pre-defined range wi ∈ [−c, c]. Then, the distance between the two distributions
can be estimated by solving the following optimization problem:

max
w∈W

Ex∼pdata
[fw(x)]− Ex∼pg [fw(x)], W = {wi ∈ [−c, c]}.

Every training iteration of Wasserstein GAN (Arjovsky et al., 2017) consists
of the following steps.

1. Update the discriminator:

– Sample N examples xi from the training set.

– Generate N samples gθ(zi) using the generator.

– Compute loss

Ld =
1

N

N∑
i=1

fw(gθ(zi))−
1

N

N∑
i=1

fw(xi)

– Update w by stochastic gradient descent: w ← w −∇wLd
– Clip the weights wi ← clip(wi,−c, c).

2. Update the generator:

– Generate N samples using the generator.

– Compute loss:

Lg = − 1

N

N∑
i=1

fw(gθ(z
(i)))

– Update θg by stochastic gradient descent: θg ← θg −∇θg
Lg (gradi-

ents flow through the discriminator).

The second version of the Wasserstein GAN model was proposed by Gulra-
jani et al., (2017). The authors use a slightly different strategy for restricting
the discriminator. They argue that clipping of the weights creates optimiza-
tion difficulties such that without careful tuning of the clipping threshold c, the
gradients can vanish or explode. The second problem is that clipping of the
weights restricts the discriminator too much, such that it cannot learn complex
functions. Instead of weight clipping, the authors proposed to add a gradient
penalty term to the discriminator loss. This extra term penalizes the difference
of the gradient norm and 1, which is the value that was theoretically justified
by the authors:

Ld,gp = Ld + λEx̂∼px̂(‖∇x̂fw(x̂)‖2 − 1)2︸ ︷︷ ︸
gradient penalty

.

The authors propose to compute the gradient penalty at locations x̂ which are
sampled uniformly along the straight lines that connect pairs of points sampled
from pdata and pg. Fig. 9.8 shows that Wasserstein GAN with gradient penalty
(WGAN-GP) can provide more stable results compared to other GAN models.

https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1704.00028
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Figure 9.8: Genrated samples
with WGAN-GP and alternative
GAN models.

9.2.2 Spectral Normalization

The motivation of spectral normalization (Miyato et al., 2018) is similar to the
one of Wasserstein GAN. Suppose that we use the conventional form of the
GAN objective function

v(g, d) = Ex∼pdata
log d(x) + Ez∼pz(z) log(1− d(g(z))). (9.8)

Then, the optimal discriminator is given by

d∗g(x) =
pdata(x)

pdata + pg(x)
= sigmoid(f∗(x)),

where
f∗(x) = log pdata(x)− log pg(x) .

In order to update the generator, we need to differentiate the discriminator wrt
its inputs. The gradient is given by the following expression

∇xf
∗(x) =

1

pdata(x)
∇xpdata(x)− 1

pg(x)
∇xpg(x) .

For samples x in the low-density areas, where either pdata or pg is small, the
derivative can have very large magnitudes or can even be incomputable.

The authors propose to fix this problem by introducing a regularity con-
dition on the derivatives of the discriminator. Inspired by Wasserstein GAN,
the authors propose to search for the discriminator in the set of K-Lipschitz
continuous functions:

v(g, d)→ max
d
, s.t. ‖d‖L ≤ K

where ‖d‖L ≤ K means all functions f such that

‖d(x)− d(x′)‖ ≤ K ‖x− x′‖ . (9.9)

https://arxiv.org/abs/1802.05957
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Recall that the intuition behind the K-Lipschitz continuity is that we restrict
the magnitudes of the derivatives. This means that we do not want the discrim-
inator to change too fast. If the discriminator changes slowly, it provides more
constructive feedback to the generator and this can stabilize training. Note that
we do not change the objective function (like in Wasserstein GAN) and can use
the conventional GAN objective (9.8).

Miyato et al., (2018) propose to guarantee (9.9) by using spectral normal-
ization. For a linear function

f(x) = Wx,

the Lipschitz norm is given by the spectral norm σ(W)

‖f‖L = σ(W),

where σ(W) is defined as the largest singular value of W. The idea of spectral
normalization is to restrict W to have the spectral norm of 1, which can be
achieved by dividing W by its spectral norm:

f(x) =
W

σ(W)
x .

The authors show that if the discriminator is a stack of linear layers with com-
mon activation functions such as relu and each linear layer satisfies σ(W) = 1,
then the discriminator is guaranteed to be 1-Lipschitz. This suggests that if
one uses spectral normalization in every linear layer of the network, then the
constrained (9.9) is satisfied.

To implement spectral normalization, we have to compute the largest singu-
lar value of a matrix and we want this computation to be efficient and differen-
tiable. The authors propose to use the power iteration method for that.

The classical application of the power iteration algorithm is to find the largest
eigenvalue of a square matrix W. The algorithm iterates by computing the
matrix-vector product of matrix Wv and normalizing the resulting vector to
unit norm:

v← Wv

‖Wv‖
.

This algorithm converges to the eigenvector which corresponds to the largest
eigenvalue.

In a linear layer of a neural network, the matrix W of weights is generally
not square and therefore we need two vectors v and u in the power iteration
method:

v← W>u

‖W>u‖
, u← Wv

‖Wv‖
.

Then, the estimate of the largest singular value is given by

σ(W) = u>Wv.

https://arxiv.org/abs/1802.05957
https://en.wikipedia.org/wiki/Power_iteration
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The authors propose to initialize vectors v and u randomly and then update
them on each training iteration using (9.2.2). Note that v and u are not model
parameters, they act more like running statistics in the batch normalization
layer.

WGAN-GP

spectral normalization Figure 9.9: Generated samples
obtained with different model
architectures. The first row cor-
responds to WGAN-GP. The
second row corresponds to spec-
tral normalization. Spectral nor-
malization provides more stable
results.

For convolutional layers whose weights are not matrices but four-dimensional
tensors W ∈ Rdout×din×h×w, the authors propose to reshape the tensors into two-
dimensional matrices and apply spectral normalization to the reshaped tensors.
Fig. 9.9 shows that GAN with spectral normalization can produces better results
compared to WGAN-GP.

9.2.3 Zero-centered gradient penalties

Mescheder et al. (2018) present a very insightful study of the convergence in the
GAN optimization problem. They use a very simple example in which the true
data distribution is a Dirac-distribution concentrated at 0 (see Fig. 9.10). The
generator distribution pθ = δθ is a Dirac-distribution concentrated at θ, which
means that the generator has only one parameter. The discriminator is a linear
function dφ(x) = φx with a single parameter φ.

Figure 9.10: A toy problem
considered by Mescheder et
al. (2018). The data distribution
is a Dirac-distribution concen-
trated at 0. The generator distri-
bution pθ is a Dirac-distribution
δθ concentrated at θ. The dis-
criminator is a linear function
dφ(x) = φx.

Different variants of the GAN objective function can be written in the fol-

https://arxiv.org/abs/1801.04406
https://arxiv.org/abs/1801.04406
https://arxiv.org/abs/1801.04406
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lowing form

v(θ, φ) = Epdata(x)[f(−dφ(x))] + Ep(z)[f(dφ(gθ(z)))]

v(θ, φ)→ min
θ

max
φ

where v(θ, φ) is a function of only two parameters in this toy example. Using
f(t) = − log(1 + exp(−t)) gives the conventional GAN objective (9.5):

v(g, d) = Epdata(x) log d(x) + Epz(z) log(1− d(g(z))).

With the identity function f(t) = t, we get the Wasserstein GAN objective.
We want to maximize this objective function wrt the parameter φ of the dis-
criminator and to minimize it wrt the parameter θ of the generator. In the
experiments, parameters θ, φ are optimized by alternating gradient descent and
the optimization trajectory can be visualized.

Figure 9.11: Optimization trajec-
tories obtained using alternating
gradient descent for the conven-
tional GAN in the toy problem
in Fig. 9.10.

(a) Unregularized GAN training
with objective (9.3) does not always
converge to the Nash-equilibrium.

(b) GAN with a non-saturating objective
for the generator converges, albeit with an

extremely slow convergence rate.

Fig. 9.11 shows the optimization trajectories for the conventional GAN with
objective (9.3) (left plot) and objective (9.4) (right plot). You can see that the
original GAN does not always converge to the Nash-equilibrium. Interestingly,
when the generator is at the optimal solution θ = 0, the discriminator pushes
the generator away from it. GAN with a non-saturating objective (9.4) for the
generator converges but with an extremely slow convergence rate.

WGAN and WGAN-GP with a finite number of discriminator updates per
generator update do not always converge to the equilibrium point (see Fig. 9.12).
Note that in WGAN the absolute values of φ are limited to restrict the magni-
tude of the discriminator derivatives. Therefore, φ is restricted to be inside the
white area in Fig. 9.12. However, it does not help to achieve convergence.

The authors observe that penalizing the gradients of the discriminator usu-
ally has a positive effect on convergence because the discriminator is penalized
for deviating from the Nash-equilibrium. The authors proposed two kinds of
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WGAN WGAN-GP

Figure 9.12: Optimization trajec-
tories obtained for Wasserstein
GAN and WGAN-GP in the toy
problem in Fig. 9.10. Optimiza-
tion is done using alternating
gradient descent with nd = 5 dis-
criminator updates per generator
update.

the zero-centered1 gradient penalty: either penalize gradients on real data

R1 =
γ

2
Ex∼pr (‖∇d(x)‖2)

or penalize gradients on generated samples

R2 =
γ

2
Ex∼pg (‖∇d(x)‖2).

For the toy problem in Fig. 9.10, the two penalties are equivalent because the
gradient does not depend on x. Fig. 9.13 shows that adding this penalty to
the original GAN objective helps to achieve convergence. We see that if the
regularization parameter γ is large enough (see the plot on the right), then the
vector field does not have a rotational component near the Nash-equilibrium
and we get a behavior like in a normal optimization problem.

Zero-centered gradient penalties provide a very effective way to stabilize
training of GANs. R1 is perhaps used more often than R2.

Figure 9.13: Optimization trajec-
tories obtained using alternating
gradient descent for the conven-
tional GAN with zero-centered
gradient penalty in the toy prob-
lem in Fig. 9.10. The two plots
correspond to different values
of γ.

1The proposed gradient penalty is called zero-centered because it penalizes the norm of
the gradient in contrast to WGAN-GP which penalizes the deviation of the gradient norm
from 1.
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9.3 Improved network architectures

9.3.1 Progressive growing (ProGAN)

The motivation of ProGAN (Karras et al., 2018) is that learning a generative
model for high-resolution images is a very difficult task. In order to generate
images of high quality, the model has to capture both the global structure and
local details of images, which is important for achieving photo-realism. On
the other hand, learning a generative model of low-resolution images is a much
simpler problem.

The idea of ProGAN is to solve a simple task first and then gradually increase
the complexity of the learning problem. ProGAN starts with training a low-
resolution generative model (see Fig. 9.14). Once the model is trained, the
resolution of the training data is doubled and the resolution of the model is
increased by adding an additional layer to the generator and the discriminator.
Once the new model is trained, the resolution is increased again and this process
continues until we get a generative model for high-resolution images.

Figure 9.14: The training process
of ProGAN (Karras et al., 2018).

The first benefit of this approach is that the training problem is simplified.
The second benefit is that the overall training time can be reduced significantly
because many training iterations are done at lower resolutions.

When the resolution of images is doubled, the new layers are added to the
model gradually to guarantee a smooth transition between the resolutions and
more stable training. Supposed that we have a model that is trained to generate
16×16 images. In Fig. 9.15a, the block 16×16 represents the last convolutional
layer of the generator. We add a new block (marked as 2x in Fig. 9.15b) which
doubles the resolution by nearest neighbor filtering. We also add a new convo-
lutional layer which outputs a 32× 32 map and a skip connection around that
layer. The output of the generator is the sum of the outputs of the convolutional
layer and the skip connection with coefficients α and 1−α, repestively. Initially,
α is set to zero, which means that we do not use the new convolutional layer
but we take the signal from the upscaled version of the 16× 16 image. During

https://arxiv.org/abs/1710.10196
https://arxiv.org/abs/1710.10196
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training, the value of α is gradually increased from 0 to 1, which increases the
contribution of the new convolutional layer to the generated image.

2x: doubling the resolution using nearest neighbor filtering
0.5x: halving the image resolution using average pooling

toRGB: project feature vectors to RGB colors with 1 × 1 convolutions
fromRGB does the reverse using 1 × 1 convolutions

Figure 9.15: When the resolution
of images is doubled, the new
layers are added to the ProGAN
model gradually.

Fig. 9.16 shows images generated with ProGAN. This was probably the first
model that was able to generate high-quality high-resolution images of human
faces.

Figure 9.16: Images generated by
ProGAN.

9.3.2 Self-Attention GAN (SAGAN)

Self-Attention GAN (Zhang et al., 2018) proposes an architecture of the gener-
ator with a self-attention block. The computations in the block are inspired by
the self-attention block of the transformer model.

Fig. 9.17 illustrates the structure of the proposed self-attention block. The
block takes as input a 2d map just like a standard convolutional layer. The block
processes the input with 1×1 convolutions to create the keys, queries and values.
Then, the attention coefficients are computed by applying the softmax function
to the product of the keys and queries (just like in transformers). Finally the
attention coefficients select the values and the result is processed by another 1×1
convolutional layer. This block essentially implements a dot-product attention
mechanism in which each pixel is treated as a separate position.

Fig. 9.18 shows some images generated with a large-scale self-attention GAN
model (Brock et al., 2018).

https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1809.11096
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Figure 9.17: Self-attention block
of SAGAN (Zhang et al., 2018).

Figure 9.18: Image samples gen-
erated by a large-scale SAGAN.

9.3.3 Style-Based Generators (StyleGAN)

StyleGAN (Karras et al., 2018) proposes an architecture of the generator in-
spired by the style transfer literature (Huang and Belongie, 2017) which studies
how to modify an image using the style (low-level textures) of another image.

The structure of the generator is presented in Fig. 9.19. The generator con-
sists of two networks: the synthesis network and the mapping network. The
synthesis network is a convolutional network that starts with a deterministic
low-resolution input. It contains several blocks called adaptive instance nor-
malization (marked as AdaIn on the in Fig. 9.19) which perform the following
computations:

AdaIN(xi,y) = ys,i
xi − µ(xi)

σ(xi)
+ yb,i.

Each channel is normalized to zero mean and unit variance and then scaled and
shifted using style vectors ys,i,yb,i. The style vectors for the different AdaIn
blocks in the synthesis network are produced by the mapping network. The
mapping network is simply a multilayer perceptron that takes as input a noise
vector z. There are also additional noise instances which are injected directly
into the synthesis network.

StyleGAN improves the quality of the generated images compared to tra-
ditional architecture of the generator (see Fig. 9.19). Note that assessing the
quality of the generated images is not a trivial task. One popular metric is
called Fréchet Inception distance (FID) (Heusel et al., 2017). It is a Fréchet
distance between two Gaussian distributions

FID = ‖mr −mg‖22 + Tr(Cr + Cg − 2(CrCg)
1/2)

such that the mean and the covariance matrix of the two distributions are
computed using real examples (mr,Cr) and the generated examples (mg,Cg).

https://arxiv.org/abs/1805.08318
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1703.06868
https://arxiv.org/abs/1706.08500
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FID scores

Figure 9.19: Left: The structure
of the StyleGAN generator (Kar-
ras et al., 2018). Right: Style-
GAN improves the FID score of
the generated images compared
to traditional architectures.

The mean and the covariance matrix are not computed using raw images. They
are computed using activations produced by a neural network pre-trained to
perform the ImageNet classification task. Heusel et al. (2017) used an Inception-
v3 network for computing the features and that is why the metric was called
Fréchet Inception distance.

9.4 Image-to-Image translation with conditional GANs

Isola et al., (2017) consider the task of generating an image with the condi-
tion provided by another image. Fig. 9.20 shows some examples of such tasks:
produce a photo-realistic image from a segmentation map, convert a black-and-
white image into a color image, change the time of the day of a given scene or
create a photo-realistic image given the contours of an object.

The authors propose to solve the image-to-image translation task using gen-
erative adversarial networks (see Fig. 9.21). The task is to generate image y
conditioned on image x. The generator takes as inputs image x and the noise
vector z and produces image y. The discriminator takes as inputs both the
generated image y and the conditioning image x and classifies y as being real
or fake.

The objective function is formulated similarly to the conventional GAN.

v(g, d) = Ex,y[log d(x,y)] + Ex,z[log(1− d(x, g(x, z))]

where we use the conditioning image x as an extra input of the generator and
the discriminator. The discriminator is trained in the conventional way. For
training the generator, the authors use a sum of two losses:

L(g) = v(g, d) + λEx,y,z ‖y − g(x, z)‖1 . (9.10)

https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1812.04948
https://arxiv.org/abs/1706.08500
https://arxiv.org/abs/1611.07004
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Figure 9.20: Examples of image-
to-image translation tasks: pro-
duce an image from a semantic
segmentation map, produce a
color image from on a black-and-
white image, change the time of
the day of a given scene, create
a photo-realistic image given the
contours of an object.

Figure 9.21: Generative adver-
sarial networks for the image-to-
image translation task.

x

g

z y

d
real

fake

The first loss is the same as in the conventional GAN. The second loss encour-
ages the generated sample g(x, z) to be close to the target example y from the
training set. The authors use the L1 distance in this loss.

The generator in that model has the architecture of the U-net (see Fig. 9.23).
There is a contracting path which produces high-level features as a low-resolution
two-dimensional map and an expansive path which increases the resolution and
re-uses representations developed in the contracting path via skip connections.
The source of noise is the dropout in the intermediate layers of the U-Net.

Figure 9.22: The structure of
the generator in the Pixel2Pixel
model y Isola et al., (2017).

The generator trained using the sum of two losses (9.10) produces better
results compared to a model which uses only the second term in (9.10). Fig. 9.23
shows examples of the generated images in the tasks of generating an aerial
photo from a map and generating a map from an aerial photo.

https://arxiv.org/abs/1611.07004
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Figure 9.23: Image samples
generated with the Pixel2Pixel
model. Left: The task is to
generate an aerial photo from
a map. Right: The task is to
generate a map from an aerial
photo.



182 CHAPTER 9. GENERATIVE ADVERSARIAL NETWORKS



Chapter 10

Autoregressive models

In this chapter, we consider another class of explicit generative models: models
with an explicit parametric form for the probability density function p(x). In
the autoregressive models, the probability distribution p(x) is written using the
chain rule of probabilities:

p(x) =

n∏
i=1

p(xi|x1, ..., xi−1)

where xi are elements of vector x. This is a generic probabilistic model because
any probability distribution can be written in this form.

10.1 Convolutional autoregressive models

10.1.1 Autoregressive modeling of sequential data

Consider modeling of sequential data such as time series. For example, a mono
speech signal is a one-dimensional time series, which may have a waveform like
the one shown in Fig. 10.1. Text can also be seen as a time series of tokens,
symbols or even bytes.

Figure 10.1: A waveform of a
speech signal.

We can model the joint distribution of the elements in a sequence x1, ...,xm
using the chain rule of probabilities:

p(x1,x2, ...,xm) = p(x1)

m∏
i=2

p(xi | xi−1, ...,x1). (10.1)
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We have seen autoregressive models in the previous chapters. Recall the
decoders in the sequence-to-sequence models for neural machine translation
(Fig. 10.2) The decoders were autoregressive models which produced the con-
ditional probabilities over possible tokens in the current position i given the
tokens in the previous positions and the context z provided by the encoder. For
unsupervised learning, we use a similar type of autoregressive models with the
difference that we we do not have to use the context produced by the encoder.

Figure 10.2: An autoregres-
sive decoder in a sequence-to-
sequence model.

p(yi | yi−1, ...,y1, z1, ..., zn)

SOS y1 y2 y3

Decoder

y1 y2 y3 y4

context

We used different types of autoregressive decoders: implemented with RNNs
(Section 5.5), CNNs (Section 6.2) and transformers (Section 6.3). We discussed
that training an RNN-based model can be challenging and therefore we start
with convolutional autoregressive models in this chapter.

When we considered convolutional sequence-to-sequence models, we dis-
cussed how to model conditional distributions p(xi | xi−1, ...,x1) in (10.1) effec-
tively using a single convolutional neural network. We used the following trick
to guarantee the autoregressive structure of our model (which is illustrated in
Fig. 10.3): 1) we used causal or shifted convolutions, 2) the input and target
sequences were two shifted versions of the same sequence. The elegance of this
model is that during training, we compute predictions for all positions in par-
allel using the same neural network. At test time (when we want to generate a
new sequence), we produce the elements of the generated sequence one element
at a time.

Figure 10.3: Modeling
conditional probabalities
p(xi | xi−1, ...,x1)
with a convolutional neural
network. Left: Illustration of
receptive fields in an autoregres-
sive CNN model. Right: Shifted
one-dimensional convolutions. x1 x2 x3 x4

CNN

x2 x3 x4 x5

x1 x2 x3 x4 x5

x2 x3 x4 x5 x6

One of the most popular autoregressive models of speech is called WaveNet
(van den Oord et al., 2016). It is an autoregressive model that predicts the
next value of a speech signal given a window of the previous values. The model
is implemented as a stack of causal one-dimensional convolutional layers. As
we discussed previously, the challenge of modeling speech data is that speech
signals usually have very high sampling rates, which makes it difficult to capture
long-term dependencies with standard convolutions. For that reason, WaveNet

https://arxiv.org/abs/1609.03499
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uses dilated convolutions which allow fast growth of the receptive field (see
Fig. 10.4).

Figure 10.4: WaveNet (van den
Oord et al., 2016) is an autore-
gressive model of speech.

10.1.2 PixelCNN: Autoregressive model of images

We can treat n×n images as one-dimensional sequences x1, ..., xn2 where pixels
are taken, for example, row by row from the top left corner to the bottom
right corner (see Fig. 10.5). Then, we can build an autoregressive model which
contains the probabilities of the intensity of the current pixel given the previous
pixels of the image:

p(x) =

n2∏
i=1

p(xi|x1, ..., xi−1),

where p(xi|x1, ..., xi−1) is the probability distribution over pixel intensities xi
for pixel i given the intensities x1, ..., xi−1 of the previous pixels.

Figure 10.5: In autoregressive
models of images, an image is
viewed as a sequence of pixels.

The idea of building autoregressive models of images is quite old (Larochelle
and Murray, 2011; Germain et al., 2015; Uria et al., 2016). In this section, we
consider the model called PixelCNN (van den Oord et al., 2016a; 2016b) which
is one of the most well known models of this type.

To build an autoregressive model of images, we need a neural network that
computes conditional distributions p(xi|x1, ..., xi−1) of the current pixel given
the previous pixels. And it would be nice to compute those probabilities for all
pixels in parallel using the same model, just like it was done for one-dimensional
sequences. This would greatly increase the speed of training.

In the PixelCNN model, the authors propose to construct a convolutional
neural network using a stack of masked 2d convolutional layers. The masked

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499
http://proceedings.mlr.press/v15/larochelle11a/larochelle11a.pdf
http://proceedings.mlr.press/v15/larochelle11a/larochelle11a.pdf
https://arxiv.org/pdf/1502.03509.pdf
https://arxiv.org/pdf/1605.02226.pdf
https://arxiv.org/pdf/1601.06759.pdf
https://arxiv.org/pdf/1606.05328.pdf
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convolutional layers use kernels with the structure shown in Fig. 10.6a: the
weights in the green locations are allowed to have non-zero values but the weights
in the red locations are forced to be exactly zero.

Figure 10.6: Left: Kernel mask
in a masked 2d convolutional
layer. Right:

(a)

(b)

Let us investigate the receptive fields in a network that contains a stack of
such masked convolutional layers. Suppose that we have only one layer in our
network. Then, the receptive field of the pixel marked with the red color in
Fig. 10.6b is given by the pixels inside the green polygon. The other pixels
in the 5 × 5 neighborhood cannot affect the value of that pixel because the
corresponding weights of the kernel are set to zeros. This structure of the
receptive field guarantees that the red pixel in the output layer is not affected
by any pixel from below and to the right. Therefore, this layer preserves the
autoregressive structure shown in Fig. 10.5.

Suppose that our network is a stack of two masked convolutional layers
(Fig. 10.7). The first layer has the same kernel mask as shown in Fig. 10.6a.
The second layer is slightly different: it has a non-zero value of the kernel in the
center. Let us now investigate the receptive field of the red pixel in the output
layer. The blue polygon in Fig. 10.8 specifies which pixels in the output of the
first layer affect the red pixel. Note that because we have a non-zero weight in
the middle of the kernel, the blue area also includes the pixel in the position of
the red pixel. These are the pixels in the output of the first layer that affect the
red pixel.

Now we can find the receptive field of the red pixel by investigating which
pixels in the input affect the pixels inside the blue polygon in the output of
the first layer. We can slide the kernel mask across the pixels inside the blue
polygon to find the overall receptive field. It is given by the grey pixels in the last
subplot of Fig. 10.8. The intensities of the pixels represent the number of routes
from a particular pixel to the red pixel. We can see that the resulting receptive
field agrees with the desired autoregressive structure. The red pixel does not
use information from below and from the right. If we stack more masked 2d
convolutional layers, the desired autoregressive structure is still preserved.

In the PixelCNN model, every conditional distribution p(xi|x1, ..., xi−1) is
modeled as a multinomial distribution with 256 possible values (8-bit represen-
tation of a pixel value). Therefore, each pixel is classified during training into
one of the 256 classes which correspond to different pixel intensities. Therefore,
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masked 2d convolution

masked 2d convolution

.
Figure 10.7: A stack of two
masked 2d convolutional layers

Figure 10.8: Construction of the
receptive field of the green pixel
in the second layer of masked 2d
convolutions.

Figure 10.9: In the PixelCNN
model, every conditional dis-
tribution p(xi|x1, ..., xi−1) is
modeled as a multinomial distri-
bution with 256 possible valuess.
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the output layer has the softmax function and we can use the “cross entropy”
loss. This discrete representation of the targets is very simple and elegant. The
advantage is that we can learn to represent very complex output distributions
without using any assumption on the shape of those distributions (see Fig. 10.9).

Fig. 10.10 shows images generated with the PixelCNN model. You can see
that the model does not produce globally coherent images and the quality of the
generated samples is worse than, for example, with generative adversarial net-
works. The model can be easily extended to color images and video sequences.

Figure 10.10: Samples from the
Conditional Pixel CNN with
conditioning on class Tiger.

10.1.3 VQ-VAE

Fig. 10.10 shows it is difficult to obtain globally consistent images when the
autoregressive model is built on the pixel level. In the model called VQ-VAE
(van den Oord et al., 2018), the autoregressive model is built in the latent space
which is found by an autoencoder (see Fig. 10.11). Thus, VQ-VAE combines
two ideas: the idea of autoencoding (Chapter 8) and autoregressive modeling.

Figure 10.11: The architecture
of VQ-VAE. The black blocks
represent the autoencoder which
is trained in the first stage. The
blue block is the autoregres-
sive model trained in the second
stage.

CNN
encoder

x

z

CNN
decoder

x̂

zk
quantize

PixelCNN

Training of the VQ-VAE consists of two stages: 1) training of an autoencoder
(the black blocks in Fig. 10.11) and 2) training of a PixelCNN model on the
latent codes (the blue block in Fig. 10.11).

The autoencoder trained in the first stage has discrete latent codes (see
Fig. 10.11), which means that there is a finite number of latent codes zk that can
be used to encode the input. The full set of possible codes zk is called a codebook.
In the forward pass, the encoder converts the input x into lower-dimensional

https://arxiv.org/pdf/1711.00937.pdf
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representations z which are then replaced with the nearest prototype vector
from the codebook:

quantize(f(x)) = zk where k = arg min
j
‖f(x)− zj‖ .

This operation is represented by the quantize in Fig. 10.11. Note that for images,
the encoder produces a two-dimensional map and we replace the output in each
pixel in that map to one of the prototype vectors. The decoder g converts the
prototype vectors zk into the reconstruction of the input x̂ = g(zk).

The loss function that is minimized is the squared distance between the
original input and its reconstruction:

L(g) = ‖x− g(zk)‖22 . (10.2)

This is the only loss that is affected by the parameters of the decoder.

The encoder is tuned to optimize the same reconstruction loss (10.2) plus the
loss that makes sure that the outputs of the encoder are close to the prototype
vectors zk:

L(f) = ‖x− g(zk)‖22 + β ‖f(x)− sg[zk]‖2 . (10.3)

The second term works a regularization term that prevents the growth of the
encoder outputs. sg means the stop-gradient operation which blocks gradi-
ents from flowing into its argument. In PyTorch, it can be implement by
zk.detach().

The parameters of the encoder affect the first term in (10.3) because the
output of the encoder is replaced with the nearest code zk. If we want to
take into account this loss when tuning the encoder, we need to propagate
the derivatives through the quantize operation which is not differentiable. The
solution used in the paper is to copy the gradients from the decoder input to
the encoder output ∂L

∂z = ∂L
∂zk

. This trick is know as straight-through gradient
estimation.

The codebook vectors zk are also trainable parameters and should be learned.
They are updated to minimize the the squared distance between the code and all
the outputs of the encoder which were replaced with that particular prototype
vector zk:

Nk∑
i

‖sg[f(xi)]− zk‖2 ,

where k = arg minj ‖f(xi)− zj‖. This is similar to the popular K-means algo-
rithm in which the prototype of each class is updated to minimize the distance
to all the samples that have been assigned to that class.

Instead of minimizing this loss directly, the authors propose to update the
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codes zk using exponential moving average:

Nk ← γNk + (1− γ)nk

mk ← γmk + (1− γ)

nk∑
i

f(xi)

zk ←
mk

Nk
.

Nk can be viewed as the number of the encoder outputs assigned to code k,
estimated using exponential moving average. mk is the sum of the encoder
outputs which were assigned to code k. The codebook vector zk is updated by
dividing mk/Nk.

The second stage of training is learning a PixelCNN model on the two-
dimensional maps of discrete codes extracted in the first stage.

After the second stage, we get a fully functional generative model. The
samples can be generated by first generating a map of discrete latent codes using
the PixelCNN model and then converting the latent codes into data samples
using the decoder learned in the first stage. Fig. 10.12 shows some images
generated with VQ-VAE.

Figure 10.12: Images generated
with VQ-VAE.

VQ-VAE-2 is the second version of the model proposed by Razavi et al. (2019).
The biggest difference to the first version of the model is a hierarchical structure
of the model with two levels of discrete representations (see Fig. 10.13). The
motivation for building a hierarchical model is the idea that the bottom level
can be used to model local information (such as textures) and the top level
can be used to represent global information (such as the shape and geometry of
objects).

Training of the VQ-VAE-2 consists of two stages as well. The first stage is
training an autoencoder with two levels of discrete representations. The second
stage is building a generative model for the latent codes extracted in the first
stage. An autoregressive PixelCNN is used to model the top-level codes. For the
bottom-level codes, a conditional PixelCNN model is used in which conditioning
is done on the top-level codes.

Fig. 10.14 shows how samples are generated using a trained VQ-VAE-2
model. First, the top-level codes are generated with the top-level PixelCNN
model. Then, the bottom-level codes are generated with the conditional Pix-
elCNN model. Finally, the latent codes are converted into samples using the
decoder trained in the first stage. Fig. 10.15 shows samples generated with

https://arxiv.org/pdf/1906.00446.pdf
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Figure 10.13: The architecture of
VQ-VAE-2 (Razavi et al., 2019).

Figure 10.14: Generation of
new samples using a VQ-VAE-
2 model.

Figure 10.15: Class-Conditional
samples from VQ-VAE-2.

https://arxiv.org/pdf/1906.00446.pdf
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the VQ-VAE-2 model. These samples have much better quality compared to
PixelCNN and VQ-VAE.

10.2 Transformer-based autoregressive models

10.2.1 Language models by OpenAI

Generative Pre-trained Transformer (GPT, Radford et al., 2019; Brown et al.,
2020) is an autoregressive model of text. Text can be viewed as a sequence of
tokens xi (such as words or symbols) and one can build a autoregressive model
of text:

p(x1,x2, ...,xm) = p(x1)

m∏
i=2

p(xi | xi−1, ...,x1)

which contains the conditional probabilities of the next token (the next element
in a text sequence) given the previous ones.

Language models can be built using different tokenization levels: words,
parts of words, symbols or even bytes. Using words as token is the simplest
approach but there are several problems with it. One problem is that words
can have multiple forms in many languages. For example, in Finnish, one word
can take multiple forms depending on the case. If we build a language model
on the word level, we would need to use a huge dictionary that would include
all possible forms of all words. It is also unclear how to model rare words or
names. Naturally, if a word appears rarely in text corpora, it will difficult for
the model to learn how to use it. For these reasons, language models are often
built using smaller tokenization units. The GPT models operate on the byte
level.

GPT is essentially a transformer decoder which is built using masked self-
attention layers. In contrast to the transformer decoder that we considered in
Section 6.3.3, there are no cross-attention layers because the model does not
need to use the context which was produced by the encoder in the sequence-to-
sequence model. The masks in the self-attention layers are used to preserve the
autoregressive structure, as illustrated in Fig. 10.16. GPT models are trained
on a large collection of documents.

Figure 10.16: GPT-2 and GPT-3
are autoregressive models of text. x1 x2 x3 x4

Transformer decoder

x2 x3 x4 x5

Fig. 10.17 contains an example of what the second version called GPT-2 can
do (OpenAI blog post). You can see that the generated text looks coherent, the

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
http://openai.com/blog/better-language-models/
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story makes some sense and the model seems to know how to use names in the
right context.

GPT-3 is even more impressive, you can find numerous blog posts testing
the capabilities of GPT-3. The model can write poetry, carry on conversation
and even write javascript code. An example of a conversation with GPT-3 is
shown in Fig. 10.18. It seems that the GPT-3 model might be able to pass the
Turing test, at least with an unprepared evaluator.

10.2.2 Sparse transformer

Sparse transformer (Child et al., 2019) is an autoregressive model of images.
Similarly to PixelCNN, an image is viewed as a sequence of n pixels (for example,
starting from the top left corner and ending in the bottom right corner) and the
sequence is modeled with an autoregressive model

p(x) = p(x1)

n∏
i=2

p(xi | x1, ..., xi−1).

In contrast to PixelCNN which was built using convolutional layers, Sparse
Transformer uses the self-attention blocks of the transformer to model the con-
ditional probabilities p(xi | x1, ..., xi−1). To implement this idea in practice, one
has to solve a few problems.

The first problem is that the transformers are designed to model discrete
data (recall that the inputs in a classical transformer are tokens). What should
be used as tokens in images? Sparse Transformer is built from raw bytes, which
means that each byte is treated as an image token and there are 256 token
values in the dictionary.

The second problem is that transformers need to compute attention coeffi-
cients (6.3) for a very large number of pair of input tokens. Consider a 4 × 4
image in Fig. 10.19a. In order to predict the value of the dark blue pixel, we
need to compute the attention coefficients between that pixel and all the previ-
ous pixels, as shown in the figure. For a flattened image with 16 pixels, we need
to compute an attention coefficient for each pair of pixels marked in Fig. 10.19b.
Each row and each column in that figure corresponds to one pixel in a flattened
image. The light blue color indicates which input pixels (in columns) have to
be used to compute the value of the output pixel (in rows). You can see that
the number of attention coefficients (and hence time and memory requirements)
grows quadratically with the number of pixels. A typical image may contain
tens of thousands of pixels, which means that we need to compute billions of
attention coefficients for a single image.

To address this problem, the authors propose to limit the number of atten-
tion coefficients. One attention head is allowed to attend only to the previous
l locations (Fig. 10.20a). The other attention head attends to every l-th lo-
cation, which means attending to the pixels in the same column for l =

√
n

(Fig. 10.20b). Fig. 10.20c illustrates that the number of attention coefficients is
significantly reduced compared to the standard transformer model.

https://towardsdatascience.com/20-creative-things-to-try-out-with-gpt-3-2aacee3e2abf
https://en.wikipedia.org/wiki/Turing_test
https://arxiv.org/pdf/1904.10509.pdf
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Figure 10.17: Example of text
generated by GPT-2. In re-
sponse to the input shown above,
GPT-2 generates the text shown
below.

Input written by a human:

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unex-
plored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that
the unicorns spoke perfect English.

Continuation generated by GPT-2:

The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned,
silver-white unicorns were previously unknown to science. Now, after almost two centuries, the
mystery of what sparked this odd phenomenon is finally solved. Dr. Jorge Pérez, an evolutionary
biologist from the University of La Paz, and several companions, were exploring the Andes Moun-
tains when they found a small valley, with no other animals or humans. Pérez noticed that the
valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver
snow. Pérez and the others then ventured further into the valley. “By the time we reached the top
of one peak, the water looked blue, with some crystals on top,” said Pérez. Pérez and his friends
were astonished to see the unicorn herd. These creatures could be seen from the air without having
to move too much to see them – they were so close they could touch their horns. While examining
these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular
English. Pérez stated, “We can see, for example, that they have a common ’language,’ something
like a dialect or dialectic.” Dr. Pérez believes that the unicorns may have originated in Argentina,
where the animals were believed to be descendants of a lost race of people who lived there before
the arrival of humans in those parts of South America. While their origins are still unclear, some
believe that perhaps the creatures were created when a human and a unicorn met each other in a
time before human civilization. According to Pérez, “In South America, such incidents seem to be
quite common.” However, Pérez also pointed out that it is likely that the only way of knowing for
sure if unicorns are indeed the descendants of a lost alien race is through DNA. “But they seem to
be able to communicate in English quite well, which I believe is a sign of evolution, or at least a
change in social organization,” said the scientist.

Figure 10.18: Example of a con-
versation with GPT-3.

The following is a conversation with an AI assistant. The assistant is helpful, creative,
clever and very friendly.
Human: Hello, who are you?
AI: I am an AI created by OpenAI. How can I help you today?
Human: are we living within a simulation?
AI: Yes, absolutely.
Human: Who designed the simulation?
AI: You did.
Human: But how can I did it, if I am living within it?
AI: Are you trying to ask who designed you?
Human: Yes.
AI: Okay, I will answer you with a joke. Do you know who created this earth?
Huan: Time?
AI: No.
Human: Who?
AI: Aliens?
Human: No.
AI: God?
Human: Who or what is God?
AI: An intelligence that has created the earth.
Human: Does God exist?
AI: Yes.
Human: Have you seen God?
AI: No.
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(a)

(b)

Figure 10.19: Attention masks
of standard transformer. (a): In
order to compute the value of
the dark blue pixel, we need to
compute attention coefficients for
all the previous pixels. (b): For
a flattened image with 16 pixels,
we need to compute an attention
coefficient for each pair of pixels
marked with the light blue color.

(a) (b)

(c)

Figure 10.20: Attention masks
of Sparse Transformer. (a): The
first attention head attends to
the previous l locations. (b):
The second attention head at-
tends to every l-th location. (c):
Attention coefficients computed
by the two heads for a flattened
image with 16 pixels.

In order to take into account the two-dimensional structure of images, Sparse
Transformer uses positional embeddings, separate for rows and columns. In
this model, the positional embeddings are trainable which means that they are
updated during training.

Fig. 10.21 shows that the images generated with the Sparse Transformer
have better quality compared to the PixelCNN model.

Figure 10.21: Samples generated
with Sparse Transformer.

10.2.3 DALL·E: Generating images from text

Ramesh et al., (2021) consider the task of text-to-image translation which is the
task of generating of an image from a given textual description.

The model has two training stages that resemble the training process of
VQ-VAE. The first stage is training of a discrete variational autoencoder which
converts an image into a two-dimensional map of discrete codes. The discrete
VAE is similar to the VQ-VAE autoencoder but it uses a different discretization
scheme and a different training procedure. As a result of this procedure, 256×
256 images are converted into 32×32 grids of image tokens. In the second stage,

https://arxiv.org/pdf/2102.12092.pdf
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the tokens extracted from a given textual description are concatenated with the
32 × 32 = 1024 image tokens and the resulting sequences are modeled with an
autoregressive transformer. The model is trained on 250 million text-images
pairs from the internet. Fig. 10.22 shows examples of images generated from a
given textual description.

Figure 10.22: Given a textual
description below, DALL·E gen-
erates images shown above.

an illustration of a baby
hedgehog in a christmas
sweater walking a dog

a neon sign that reads
“backprop”.

the exact same cat on the
top as a sketch on the

bottom.



Chapter 11

Flow-based generative
models

11.1 Invertible generative process

In the flow-based models, the explicit density model is written using the for-
mula which describes the probability density function of variable x which is an
invertible transformation of another random variable z:

p(x) = p(z)

∣∣∣∣det
∂z

∂x

∣∣∣∣ , (11.1)

where ∂z
∂x is the Jacobian of the transformation x → z. This formula is known

as a “change of variable” formula for probability density functions.
We assume the following generative process. There are latent variables z

which are distributed according to some probability distribution p(z), for exam-
ple, a spherical multivariate Gaussian distribution:

z ∼ p(z) = N (z; 0, I).

The observed data samples x are produced by transforming the latent codes z
using an invertible function g:

x = g(z).

Since function g is invertible, we can compute the latent codes z from observa-
tions x by applying the inverse of function g:

z = f(x) = g−1(x).

Recall that the generative model that we used when we introduced varia-
tional autoencoders was (see Section 9):

z ∼ p(z)

x = g(z) + ε.

197
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We also assumed that the latent variables z were distributed according to some
tractable distribution p(z) and we assumed that the observations x were pro-
duced from latent variables z using some transformation g. The main difference
is that the mapping from z to x was not assumed to be invertible and there
was an additional source of noise ε. Because of this, we could not recover latent
variables z from observations x exactly. We had to design an inference pro-
cedure that involved approximations q(z) of the true conditional distribution
p(z | x,θ).

Flow-based generative models assume an invertible function g in the gener-
ative process. To implement this idea, we need to find a suitable form of the
invertible transformation x = g(z): g should be flexible enough to model com-
plex distributions and we should be able to compute the inverse transformation
z = f(x) = g−1(x) for doing inference and learning.

It is convenient to implement g as a sequence of simple and invertible trans-
formations gk:

zh2h1x ...
fKf2f1

gK = f−1
Kg2 = f−1

2g1 = f−1
1

By using a large number of layers, this transformation can be made flexible
enough to model complex distributions. The inference can then be done by
applying a series of inverse transformations fk = g−1

k . Such a sequence of
invertible transformations is often called a normalizing flow (Rezende and Mo-
hamed, 2015).

Once we have selected the form of the invertible transformation g, we should
tune the parameters θ of that transformation to maximize the probability of the
training data

F(θ) =
1

N

N∑
i=1

log p(xi)→ max
θ
,

where we assume that samples xi are independent and identically distributed.
Since mapping x→ z is invertible, we can use the change-of-variables rule (11.1)
to compute log p(x) for each individual sample:

log p(x) = log p(z) + log

∣∣∣∣det
∂z

∂x

∣∣∣∣ .
And since transformation x→ z is a composite of several invertible transforma-
tions fk, the log-determinant of the Jacobian matrix is equal to the sum of the
log-determinants of the Jacobian matrices of the individual transformations fk:

log p(x) = log p(z) +

K∑
k=1

log

∣∣∣∣det
∂fk(hk−1)

∂hk−1

∣∣∣∣ , (11.2)

where h0 = x and functions fk depend on the model parameters θ. In order
to train the model, we need to use such transformations fk for which we can
easily compute and differentiate the log-determinant of the Jacobian matrix

log
∣∣∣det(∂fk(hk−1)

∂hk−1
)
∣∣∣ which participates in (11.6).
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11.2 Real NVP

In order to apply the methodology of the normalizing flows, we need to device
a set of simple transformations such that: 1) they are invertible, 2) we can
compute the log-determinant of the Jacobian matrix efficiently. Real NVP (Dinh
et al., 2016) is a model that proposed several such transformations.

11.2.1 Affine coupling layer

Suppose we have two variables x1, x2 and a function that maps x = (x1, x2) to
another pair of variables y = (y1, y2). The function is designed in the following
way:

y1 = x1 (11.3)

y2 = g(x2, s(x1), t(x1)), (11.4)

where g is an invertible function with respect to its first argument if the second
and the third arguments are fixed. For example, g can be a linear function of
the first argument:

g(a, b, c) = aeb + c.

The mapping defined in (11.3)–(11.4) is bijective, which means that it is one-
to-one mapping, and we can invert it by

x1 = y1

x2 = g−1(y2, s(y1), t(y1)),

where
g−1(a, b, c) = (a− c)e−b.

Note that functions s(), t() can be any functions and they do not have to be
invertible.

We can generalize this idea from a pair of scalar inputs to an input vector
x with an arbitrary number of elements. We can split vector x into two halves
(x1,x2): half of the elements go to vector x1 and the other half go to x2. Then,
we can apply the following transformation which is constructed to be invertible:

y1 = x1

y2 = g(x2,x1) = x2 � exp(s(x1)) + t(x1) (11.5)

s and t are arbitrary functions and � is the Hadamard (element-wise) product.
Fig. 11.1 illustrates what happens in this block which is called the affine

coupling layer in (Dinh et al., 2016). The first half of the input vector is copied
to the first half of the output. The second half of the output is constructed
by applying functions s and t to the first half of the input and combining the
outputs of those blocks using (11.5).

https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1605.08803
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Figure 11.1: Propagation in the
affine coupling layer.
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(a) forward propagation
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(b) backward propagation

In order to generate samples from a trained model, each layer of the model
has to be inverted and the backward propagation for the affine coupling layer
is given by:

x1 = y1

x2 = (y2 − t(y1))� exp(−s(y1)).

In order to compute (11.6), we need the log-determinant of the Jacobian
matrix. The Jacobian of the transformation implemented by the affine coupling
layer is a triangular matrix

∂y

∂x

>
=

[
I 0
∂y2

∂xT
1

diag(exp[s(x1)])

]
and its determinant is given by the product of the diagonal elements:

det
∂y

∂x
= exp

∑
j

s(x1)j

where s(x1)j denotes the j-th element of s(x1). Note that the determinant of
the Jacobian does not need the computation of the Jacobian matrices of neither
function s or t. Therefore, those functions can be arbitrarily complex. For
modeling images, Dinh et al. (2016) implement functions s and t with deep
convolutional neural networks.

Suppose that we want to build a generative model of images, which means
that our inputs have two-dimensional structure. In order to process such inputs
with the affine coupling layer, we need to decide how to partition the input of the
layer into two halves. For image data, Real NVP uses two ways of partitioning
illustrated in Fig. 11.2. In first option, pixels of the image are grouped using
the checkerboard pattern in which each block can contain one pixel or a group
of pixels. Then, for example, the pixels shown in white are kept unchanged
but the pixels shown in black are modified. The second option is to split the
channels of the image into two parts, keep one half of the channels unmodified
and modify the other half of the channels.

https://arxiv.org/abs/1605.08803
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checkerboard pattern channel-wise partitioning

Figure 11.2: Partitioning pat-
terns used in affine coupling lay-
ers of Real NVP.

Since the affine coupling layer keeps some of the elements unmodified, it
makes sense to alternate the partitioning patterns in different layers. For exam-
ple, in the first layer, the checkerboard pattern can start with the white area in
the top left corner and in the following layer it can start with the black area in
the top left corner (see Fig. 11.3). By alternating the partitioning patterns, we
make sure that all the elements of the inputs are modified by the model.

affine coupling layer

affine coupling layer

affine coupling layer

Figure 11.3: RealNVP: alter-
nating partitioning patterns in a
stack of affine coupling layers.

11.2.2 Squeeze operation

When we process images with convolutional networks, we often want to reduce
the resolution of the intermediate signals, for example, by using pooling layers
or by using strided convolutions. In the Real NVP model, one can reduce the
resolution by using a squeeze operation.

squeeze
Figure 11.4: The squeeze opera-
tion transforms an s×s×c tensor
into a s

2
× s

2
× 4c tensor.

In the squeeze operation, we keep the total number of the signals unchanged
(in order to preserve invertibility) but we reduce the spatial size and increase
the number of channels. This is illustrated in this Fig. 11.4. Suppose that we
have a 4×4 image with one channel. We transform the image into a 2×2 image
with 4 channels. The total number of signals remains unchanged (16 for the
input and output images). However, the image resolution is reduced which is
compensated by increasing the number of channels.
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Technically, the squeeze operation is implemented by dividing the input
image into subsquares of shape 2× 2× c. In Fig. 11.4, pixels 1, 2, 3, 4 belong to
the first 2×2 subsquare and pixels 5, 6, 7, 8 belong to the second 2×2 subsquare.
Then, we create one pixel out of each subsquare such that elements 1, 2, 3,
4 become different channels of the same pixel. Thus, the squeeze operation
transforms an s × s × c tensor into a s

2 ×
s
2 × 4c tensor. It divides the image

into subsquares of shape 2× 2× c and then reshapes each subsquare into shape
1× 1× 4c.

11.2.3 Split operation

The last component of the Real NVP model is the split operation. The moti-
vation for this operation is that for a n × n image with c channels, the total
number of dimensions is n2×c which can be pretty large. Since we want to keep
the invertibility of the model, we have to preserve the same number of signals
in the output. However, if we propagate all the n2 × c dimensions through all
the layers, it becomes computationally expensive and leads to a large number
of model parameters.

The authors propose to address this problem by using the split operation.
In the split operation, half of the dimensions are directly passed to the output
of the network and modeled as Gaussian (see Fig. 11.5). The other half of
the dimensions are fed to the next layer. The purpose of the split operation is
somewhat similar to using pooling layers in standard convolutional networks.

Figure 11.5: The split operation
of Real NVP: half of the vari-
ables are directly modeled as
Gaussians, while the other half
undergo further transformation. x1 x2 x3 x4 x5 x6 x7 x8

transform

z1 z2 z3 z4 z5 z6 z7 z8

11.2.4 Full model

In summary, Real NVP is a flow-based generative model constructed using the
following layers:

– the affine coupling layer which mixes variables

– the squeeze operation which reduces the resolution of the image

– the split operation which removes half of the variables from further com-
putations.

The partitioning patterns of the affine coupling layer are alternated as shown in
Fig. 11.6 to increase mixing of the variables.

Training of the model contain the following steps.
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affine coupling layer

affine coupling layer

affine coupling layer

squeeze

affine coupling layer

affine coupling layer

affine coupling layer

Figure 11.6: One block of Real
NVP.

– Sample a mini-batch of training examples and perform forward computa-
tions zi = f(xi). We compute latent variables that correspond to training
examples xi.

– Compute the loss which is the sum of log p(xi) for each sample in a mini-
batch:

log p(x) = log p(z) +

K∑
k=1

log

∣∣∣∣det
∂fk(hk−1)

∂hk−1

∣∣∣∣ . (11.6)

– Compute the gradient of the loss wrt parameters θ of the layers with back-
propagation and update the parameters using stochastic gradient descent.

Once the model is trained, generating samples from the model is trivial. We
first generate latent variables z from the Gaussian distribution:

z ∼ N (z; 0, I).

Then we do the inverse propagation of z through all the layers starting from
the last one:

x = g(z) = f−1(z) = [f−1
1 ◦ f−1

2 ◦ ... ◦ f−1
K ](z).

As a result, we get a sample x from the trained model.

Figure 11.7: Samples generated
with Real NVP.

Fig. 11.7 shows samples generated with the RealNVP model. The quality of
the samples is generally worse compared to modern GAN models.
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11.3 Glow

Glow (Kingma and Dhariwal, 2018) is a flow-based generative model that builds
on the ideas of the Real NVP model. They re-use the same three types of
blocks: the affine coupling layer, the squeeze operation and the split operation.
Glow also introduces two novel blocks called actnorm layer and invertible 1× 1
convolution. The basic building block of Glow is is a stack of three layers: an
actnorm layer, an invertible 1× 1 convolution and an affine coupling layer.

11.3.1 Actnorm layer

Batch normalization was used to facilitate training of deep Real NVP models.
For large images, due to memory constraints, the mini-batch size can be very
small which introduces a lot of noise in batch normalization. Glow replaces
batch normalization with a new actnorm layer:

yi,j = s� xi,j + b,

where ·i,j denotes a vector of values in spatial location (i, j). The layer performs
an affine transformation of the input activations x using a separate scale and
bias parameter for each channel.

11.3.2 Invertible 1× 1 convolution

The invertible 1×1 convolutional layer mixes all the channels of the input image
to produce the channels of the output image:

yi,j = Wxi,j .

The authors proposed to parameterize the matrix of parameters W using the
LU decomposition

W = PL(U + diag(s)),

where P is a permutation matrix, L is a lower triangular matrix with ones on
the diagonal, U is an upper triangular matrix with zeros on the diagonal and s is
a vector. This parameterization reduces the computational cost for computing
the log-determinant of W.

Fig. 11.8 shows samples generated with the Glow model. The quality is
better compared to Real NVP.

Figure 11.8: Samples generated
with Glow.

https://arxiv.org/pdf/1807.03039.pdf


Chapter 12

Learning with few labeled
examples

12.1 Motivation

The motivation for the methods that we study in this chapter is the fact that
deep learning requires a lot of training data to build an accurate model. For
example, we need thousands of examples to train a deep neural network to
classify handwritten digits. To learn to classify natural images, a deep learning
classifier needs millions of training examples.

Suppose that we have a custom classification task, for example, we need to
classify images to custom classes which are not covered by ImageNet. How can
we train an accurate deep learning model? We could collect a lot of training
examples and label them. The problem is that collecting and labeling data is
time consuming and expensive, and sometimes collection of new data cannot be
even done. In this chapter, we consider several options how to train an accurate
deep learning model using few labeled examples.

The first option is to do transfer learning. We can pre-train a classifier on
a similar task with lots of data and train a simple classifier using the extracted
features. The second option is to do semi-supervised learning. We can label
some examples and train a classifier using both labeled and unlabeled data.
The third option is to extract features using self-supervised learning: by solving
a relevant auxiliary task. After pre-training, the features are used as inputs of
a classifier which is trained using a few labeled examples. The last option is to
learn how to train a good classifier using few examples via meta-learning. In
this approach, we form multiple training tasks such that one training task is to
learn an accurate deep learning model from few labeled examples.

205
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12.2 Transfer learning

The idea of transfer learning is that features that are useful for some super-
vised learning tasks can also be useful for other tasks in the same domain. For
example, if we work with image classification problems, the features that are
extracted by a neural network to classify images from the ImageNet dataset are
likely to be useful for classifying other kinds of images.

Figure 12.1: Transfer learning
can be done by fine-tuning the
last two layers of a pre-trained
AlexNet on a custom classifica-
tion task.

An easy solution is to take one of the pre-trained neural networks, for exam-
ple, AlexNet (Krizhevsky, 2012) and fine-tune the last layers of that model to
our custom image classification problem using available data. This was done,
for example, by Donahue et al., (2013) who compared the features provided by
a pre-trained neural network with a set of traditional hand-engineered image
features (see Fig. 12.2). The red line in this figure shows the accuracy of a sup-
port vector machine (SVM) classifier trained using five hand-engineered image
features as a function of the number of training examples. The other two curves
are the results of fine-tuning of a pre-trained neural network. You can see that
fine-tuning works better compared to using the hand-engineered features.

Figure 12.2: Accuracy on
Caltech-101 using a set of tra-
ditional hand-engineered im-
age features (Yang et al., 2009)
and by fine-tuning a deep neural
network pre-trained on another
dataset.

12.3 Semi-supervised learning

Suppose that we have a dataset of images and only a small fraction of this
dataset has labels (see Fig. 12.1). For example, the labels are known for the
images in the center, while the labels are not known for the very many images

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/pdf/1310.1531.pdf
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on the background. We want to train a classifier that would use the labeled
examples but somehow take into account the unlabeled examples to improve the
classification accuracy. This problem formulation is known as semi-supervised
classification.

Source: (Tarvainen and Valpola, 2017)

Figure 12.3: The task of semi-
supervised classification. The
labels are know only for the im-
ages in the center.

The task of semi-supervised learning seems like magic. Why is semi-supervised
learning even possible? Fig. 12.4 tries to give some intuition. Suppose that we
have a dataset with only six labeled examples (shown with the red and blue
dots in Fig. 12.4a) and a lot of unlabeled examples (shown with the black dots).
We can observe that the data samples form clusters. We can use this informa-
tion to propagate the labels from the labeled examples to the unlabeled ones
(Fig. 12.4b–d). The intuition is that samples that appear in the high-density re-
gion close to the labeled examples are likely to share the same class. Therefore,
we can propagate the labels to the neighboring unlabeled examples. Now some
other unlabeled examples become closer to the newly labeled examples and we
can assume that those samples belong to the same class. We can continue this
process until we label all the unlabeled examples. Now we can train a classifier
that would be much more accurate compared to the one which would use only
the original labeled dataset.

(a) (b) (c) (d)

Figure 12.4: The labels can be
propagated to the unlabeled
data in the same cluster yielding
better classification accuracy.

This example shows that we can improve the accuracy of the classifier by
using the knowledge of the data distribution p(x) that we gain through modeling
the unlabeled data. Semi-supervised learning is possible when the knowledge
on p(x) carries information that is useful for the classification task, which is
learning the conditional distribution p(y | x) of the label y given the input x.

https://github.com/CuriousAI/mean-teacher/blob/master/nips_2017_slides.pdf
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12.3.1 Ladder networks

The first semi-supervised deep learning model that we consider is called the
Ladder networks (Rasmus et al., 2015). The architecture of the model which is
shown in Fig. 12.5 resembles a ladder. The model contains a bottom-up pass
(an encoder) which computes the prediction of the label y for a given input x.
There is also a top-down pass (a decoder) which tries to reconstruct the input
using the intermediate representations developed in the bottom-up pass. The
architecture of the Ladder is similar to the U-net: there is an encoder, a decoder
and skip connections between the encoder and the decoder.

Figure 12.5: The architecture of
the Ladder networks.

x x̂

ŷ

x

y

denoising
loss

denoising
loss

denoising
loss

denoising
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loss

noise

noise

noise

noise

The network is trained to perform two tasks. The labeled examples can
be used to compute the standard classification loss that compares the network
output ŷ to the correct label y. The second task that the network is trained
on is the task of denoising. During training, the inputs x of the network are
always corrupted with noise and the Ladder is trained to produce the original
uncorrupted sample as the output of the decoder. The denoising loss is the
squared norm of the difference between the decoder output x̂ and the clean
sample x:

Ldenoising = ‖x− x̂‖2 .

The denoising loss does not require the knowledge of the label and therefore it
can be computed for all training examples: both labeled and unlabeled ones.
The total loss minimized during training is the sum of the classification loss and
the denoising loss.

The intuition behind the Ladder networks is that in order to reconstruct the
clean image from a noisy one, one has to understand what features are commonly
present in clean images, that is one needs to model the data distribution p(x).
The same intuition was used to build denoising autoencoders (see Section 8.4)
and the Ladder networks can be viewed as a denoising autoencoder. Denoising
is an auxiliary task that encourages modeling of the data distribution p(x) and
the features developed for solving this task may also be useful for the primary

https://arxiv.org/abs/1507.02672
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task of classification.

The Ladder architecture contains skip connections between the encoder and
the decoder. The reason for that is that the label itself cannot contain enough
information to reconstruct the whole input, the model also needs low-level de-
tails that have been encoded in the bottom-up pass. Those details are re-used
in the decoder via the skip connections.

The Ladder networks obtained quite impressive results in semi-supervised
classification on the MNIST dataset. The results on the CIFAR-10 image
dataset were also the state-of-the-art in 2015.

12.3.2 Π-model

The Ladder networks worked very well on the MNIST data set but the results
on natural images were less impressive. Natural images contain a lot of low-level
details (textures) which may or may not be relevant for the primary classification
problem. Ladder tries to model the whole distribution data p(x) including
irrelevant low-level details, which can effect its performance in the classification
task.

To address this problem, Laine and Aila, (2016) proposed a simplification of
the Ladder networks which does not contain the top-down pass (see Fig. 12.6).
The architecture of the model resembles the Greek letter Π, which explains its
name. The model contains two copies of the same network. The twin net-
works process two versions of the same training example. The two versions are
obtained by applying different transformations to the same image.

x

z1

ŷ

x

z2

y

consistency
loss

classification
loss

transform 1 transform 2 Figure 12.6: The architecture of
the Π-model.

The network is trained to minimize the sum of two losses. The first loss is
the classification loss that can be computed using the labeled examples. The
second loss is the consistency loss which penalizes the difference between the
network outputs for the two transformations of the same training example:

Lconsistency = ‖z1 − z2‖2 = ‖f(x1)− f(x2)‖2 .

https://arxiv.org/pdf/1610.02242.pdf
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The consistency loss is computed for labeled and unlabeled examples. The
gradients in the Π-mode flow through both networks during backpropagation.

The intuition behind the Π-model is that we do not know the correct label
for an unlabeled example but we know that the output of the network should
be the same if we transform the image in two different ways (as long as the
transformation does not break the important signal). This idea has proven to
be very powerful and since the introduction of the Π-model, the majority of
the semi-supervised methods have been based on optimizing the consistency
between different transformations of the same training examples. The idea
resembles the model called Siamese networks (Bromley et al., 1993).

12.3.3 Mean Teacher

Mean Teacher (Tarvainen and Valpola, 2017) can be viewed as an improvement
of the Π-model. Instead of using two copies of the same network, Mean Teacher
uses two different networks: a student and a teacher (see Fig. 12.7). The stu-
dent network is trained normally by minimizing the sum of the classification
and consistency losses by stochastic gradient descent. The teacher network is
obtained by computing exponential moving average of the weights of the student
network.

Figure 12.7: The architecture of
the Mean Teacher model.
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Recall that in Section 2.5 we introduced exponential moving average of model
weights to increase the model performance by reducing noise caused by mini-
batch training. In Mean Teacher, exponential moving average of the weights is
used to improve the accuracy of the teacher network which produces targets for
the student network. Suppose that θt are the parameters of the student network
after update t. Then the parameters of the teacher network are computed as

θ′t = γθ′t−1 + (1− γ)θt,

where γ is a positive constant that is chosen to be close to 1, for example, 0.9.

https://papers.nips.cc/paper/769-signature-verification-using-a-siamese-time-delay-neural-network.pdf
https://arxiv.org/pdf/1703.01780.pdf
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The Mean Teacher model is also trained to minimize the sum of the classifi-
cation loss computed on the labeled data and the consistency loss which is the
difference between the outputs of the student and the teacher networks:

Lconsistency =
∥∥f(x1,θt)− f(x2,θ

′
t)
∥∥2
.

The consistency loss can be computed on both labeled and unlabeled examples.
The gradients propagate only through the student because the weights of the
teacher are assumed to be fixed.

12.3.4 Evolution of semi-supervised methods

Since the introduction of the Π-model, the majority of the semi-supervised
methods have been based on optimizing the consistency of the model outputs
for different transformations of the same training examples. Table 12.1 shows
the classification accuracy of consistency-based semi-supervised methods on the
CIFAR-10 dataset. The total size of the dataset is 50,000, while only 4,000 la-
bels are used in the semi-supervised scenario. You can see that semi-supervised
learning with less than 10% of the labels yields performance that is comparable
to a fully supervised model trained using all labels.

Student Teacher Teacher label CIFAR-10
Algorithm augment. augment. post-processing accuracy
Fully supervised Wide ResNet – – –
(50,000 labels) – – – 94.60
Π-Model Weak Weak – 87.84
VAT Adversarial – – 88.64
Mean Teacher Weak Weak – 93.72
UDA Strong Weak Sharpening 94.73
MixMatch Weak Weak Sharpening 93.76
ReMixMatch Strong Weak Sharpening 94.86
FixMatch Strong Weak Pseudo-labeling 95.69

Table 12.1: Classification accu-
racy of semi-supervised methods
on the CIFAR-10 dataset using
4,000 labeled examples according
to paperswithcode.com.

The majority of the models use weak augmentations for the teacher network,
where weak augmentations include translation, flip, adding Gaussian noise or
mixup.

There are different approaches for using the inputs of the student network.
The method called Virtual adversarial training (VAT) uses adversarial exam-
ples as input transformations for the student network. The algorithm called
Unsupervised Data Augmentation (UDA) uses strong augmentations to form
the input of the student network. The augmentations are produced by sam-
pling image processing transformations from the Python Image Library. You
can see the performance of UDA matches the performance of the fully supervised
training.

UDA also uses label sharpening to post-process the labels produces by the
teacher. They use a temperature parameter τ to compute the probabilities:

pteacher
i =

exp(zi/τ)∑
j exp(zj/τ)

https://arxiv.org/pdf/1610.02242.pdf
https://arxiv.org/pdf/1704.03976.pdf
https://arxiv.org/pdf/1703.01780.pdf
https://arxiv.org/pdf/1904.12848.pdf
https://arxiv.org/pdf/1905.02249.pdf
https://arxiv.org/pdf/1911.09785.pdf
https://arxiv.org/abs/2001.07685
https://paperswithcode.com/sota/semi-supervised-image-classification-on-cifar
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that are used as targets for the student network. By using a small positive
value of τ , the probability of the most probable class is increased while the
probabilities of the other classes are reduced.

Another popular way is to use “hard” labels, which means that we select the
most probable class predicted by the teacher as the target. However, the teacher
output is used as the target only if the teacher is confident enough in the label.
We can measure the confidence by the probability that the teacher assigns to
the most probable class. This approach is called pseudo-labeling. FixMatch is
one of the methods that uses pseudo-labeling.

In the algorithm called MixMatch, the target is computed as the average
prediction obtained for K augmentations. In ReMixMatch, there is an addi-
tional loss that matches the marginal distribution of the model predictions on
unlabeled data with the marginal distribution of labels in the labeled examples.

12.4 Self-supervised learning

One drawback of the semi-supervised learning methods is that they are built
around the assumption that the unlabeled examples belong to the same set of
classes as the labeled examples. This can be difficult to assure in many practical
applications. In practice, we may have a large collection of unlabeled data and
we may not know whether the unlabeled examples belong to the same set of
classes that exist in our labeled data set. Can we lean useful representations in
an unsupervised manner without using the labels?

The idea of self-supervised learning is to invent an auxiliary task of super-
vised learning, in which the targets are formulated automatically without using
the labels from an external teacher. The hope is that by solving the auxiliary
task, the model can learn features that can also be useful in downstream tasks,
tasks in which we want to use our model after unsupervised pre-training. Nat-
urally, in order to succeed, the auxiliary task should be somehow relevant for
the downstream task.

We have seen examples of semi-supervised learning previously in this book.
For example, denoising autoencoders such as the Ladder networks (Section 12.3.1)
use the auxiliary task of denoising. In the BERT language model (Section 6.4),
we used two auxiliary tasks. The first task was reconstruction of the masked to-
ken (see Fig. 6.31). This task is similar to the task of denoising because masking
of the input tokens can be seen as input corruption and the goal is to predict
the original uncorrupted signal. The second task was prediction whether two
sentences follow each other in a text (see Fig. 6.32).

One of the early works on self-supervised training in the image domain is
the work by Dosovitskiy et al. (2014). In that paper, the auxiliary training task
is created in the following way. Image patches of size 32× 32 are sampled from
different images to create a set of N patches (see example patches at the top of
Fig. 12.8). Each patch is then transformed multiple times using a composition of
elementary transformations. Different transformations of the same image patch
are shown at the bottom of Fig. 12.8. The task is to classify a transformed

https://arxiv.org/abs/1406.6909
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sampled patches

transformed patches Figure 12.8: An auxiliary task
for feature extraction from
(Dosovitskiy et al., 2014).
Above: Example image patches
sampled from images. Below:
Transformations of the same im-
age patch obtained using a com-
position of elementary transfor-
mations. The elementary trans-
formations include translation,
scaling, rotation, contrast and
color change.

image patch into one of the N classes that correspond to the original (non-
transformed) patches. The authors pre-trained a convolutional neural network
on this auxiliary task. Then, the features produced by the CNN were used as
inputs of a support vector machine classifier yielding a very good performance.

12.4.1 Contrastive Predictive Coding

The motivation of contrastive predictive coding (CPC, van den Oord et al., 2018)
is to learn representations that encode global information that is shared between
different parts of the high-dimensional input signal. Consider, for example, a
waveform of an audio sample that contains speech (Fig. 12.11). If we want to
compress this speech signal such that we can reconstruct the original waveform
from the compressed representation, we can use a model like an autoencoder.
In the CPC model, we are not interested in encoding the exact waveform, we
are interested in encoding only the high-level information such as, for example,
a phoneme, an intonation or the speaker identity.

Figure 12.9: An audio sample
that contains speech.

The intuition behind this model is that the low-level structure that we ob-
serve in an input signal (such as, e.g., particular frequencies sensed in a speech
signal) can vary a lot across different parts of the input signal. The larger
the distance between different parts of the input, the smaller the amount of
low-level information shared between those parts. However, the same global

https://arxiv.org/abs/1406.6909
https://arxiv.org/abs/1807.03748
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structure (such as the speaker identity, for example) can be present even in very
distant parts of the input signal. These features that span many time steps are
often interesting: for example, phonemes and intonation in speech, objects in
images or the story line in books.

Figure 12.10: The architecture
of Contrastive Predictive Cod-
ing (CPC, van den Oord et al.,
2018).

Fig. 12.10 presents the architecture of the model. The input signal (rep-
resented by a waveform at the bottom) is processed by a non-linear encoder
genc that maps the input sequence of observations xt to a sequence of latent
representations zt = genc(xt). For example, we can encode the input sequence
in a moving window thus reducing the temporal resolution. Then, there is a re-
current neural network gar which encodes the sequence of latent representations
into vector ct. The vector ct is then used to predict the values of the latent
codes z in the future. Thus, the idea is to learn predictable codes, codes whose
evolution can be predicted in the future.

This model architecture looks reasonable but unfortunately if we train the
model by simply minimizing the prediction loss, the model will not learn any
useful representations. The problem is that the encoder can learn to produce
the same output (for example, all zeros) regardless of the input. In this case, the
model can perfectly predict the future codes but the codes do not contain any
useful information. This phenomenon is often called collapsed representations.

In order to prevent collapsed representations, the authors propose to use a
different loss. Instead of predicting the representation zt+k after k time steps
from the encoding ct, the authors propose to select the correct future code
zt+k = genc(xt+k) among N alternatives: {zt+k, zτ1 , ..., zτN−1

}. The alternatives
zτ are selected as encoder outputs produced for inputs randomly selected from
the data set. For example, the alternatives can be encodings produced by the
encoder for different parts of the same input sequence. The loss is simply the
cross-entropy loss of selecting the correct encoding:

LCPC = − log
exp(z>t+kWkct)∑
j

exp(z>τjWkct)
. (12.1)

The classifier is constructed in such a way that the inputs to the softmax non-
linearity have the form z>τjWkct.

https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
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Now suppose the encoder produces collapsed representations: the same val-
ues regardless of the input. In that case, the classifier is not able to select
the correct latent code in the future because all classes would have the same
probability. This shows that the contrastive loss (12.1) prevents development
of collapsed representations.

The authors show that the proposed model can learn to represent the speaker
identity when applied to speech data. Fig. 12.11 shows the t-SNE visualization
of the obtained representations ct for a subset of 10 speakers. We can clearly
see clusters which correspond to individual speakers.

Figure 12.11: t-SNE visualiza-
tion of audio (speech) representa-
tions for a subset of 10 speakers
(out of 251). Every color repre-
sents a different speaker.

The quality of the developed representations was also tested on the tasks of
phone classification and speaker classification. A linear classifier trained using
representations ct as features achieved the accuracy of 64.6% on the phone
classification task (see Table 12.2). An MLP classifier trained with features ct
achieved the accuracy of 72.5% which is very close to the accuracy of a fully
supervised classifier trained without unsupervised pre-training.

Method Accuracy
CPC + linear classifier 64.6
CPC + MLP classifier 72.5
Supervised 74.6

Table 12.2: Classification accu-
racy on the phone classification
task with 41 classes for audio
data.

Table 12.3 shows that the quality of a linear classifier trained using CPC
features for the speaker classification task is 97.4% which is very close to a
fully-supervised nonlinear model without pre-training.

Method Accuracy
CPC + linear classifier 97.4
Supervised 98.5

Table 12.3: Classification accu-
racy on the speaker classification
task with 251 classes for audio
data.

The paper also extends the idea to modeling inputs with two-dimensional
structure such as images. The quality of the developed representations for im-
ages is tested in a similar way as for the speech data. A linear classifier which
uses CPC feature as inputs is able to achieve the top-5 classification accuracy
of 73.6% on the ImageNet data set.
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12.4.2 A Simple Framework for Contrastive Learning (SimCLR)

SimCLR (Chen et al., 2020a) is a self-supervised learning method which com-
bines two ideas that we discussed previously. The first idea is to maximize the
agreement between the output of the Siamese networks which process two dif-
ferent augmentations of the same image. This idea is similar to the consistency-
based semi-supervised methods such as the Π-model, Mean Teacher and others.
The second idea is to use the contrastive loss as was done in CPC.

Figure 12.12: The illustration of
the SimCLR algorithm.
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The training algorithm of SimCLR works in the following way:

– Sample a mini-batch of N training examples.

– Augment each example with two different transformations, which results
in 2N data points.

– Process each example with a deep neural network z = g(f(x)). Since we
created two transformations of each image in the mini-batch, two trans-
formations of the same image are processed with the same network.

– Solve a prediction task which is similar to CPC. Using the outputs of the
networks produced for all samples in the mini-batch, find the pair example
which corresponds to the same original image for each image in the mini-
batch. Thus, we solve 2N classification tasks with 2N − 1 alternatives
produced by other samples from the same mini-batch. The minimized
objective is the cross-entropy loss:

li,j = − log
exp(sim(zi, zj)/τ)

2N∑
k=1

1[k 6=i] exp(sim(zi, zk)/τ)

,

where sim(zi, zj) is a similarity metric which is chosen to be the cosine
similarity

sim(u,v) = u>v/ ‖u‖ ‖v‖ .

https://arxiv.org/abs/2002.05709
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As representations used in downstream tasks, SimCLR uses the outputs of
an intermediate layer which is two layers before the output of the network (see
Fig. 12.12) The intuition is that the formulated task of contrastive learning is
likely to be substantially different from the downstream task and therefore the
outputs z may not work well as features.

SimCLR uses three types of transformations to create two versions of the
same image in the training procedure (see Fig. 12.13). The authors note that
random cropping and color distortions give the largest boost in performance and
it is important to use both transformations when transforming each individual
sample. This effect can be explained by the fact that if only one of the two
transformations is applied, then it is relatively easy to find the matching image
among all images in a mini-batch. Therefore, the contrastive learning task be-
comes too easy and the model cannot develop powerful enough representations.

original 1) random cropping
followed by resize to

the original size

2) random color
distortions

3) random Gaussian
blur Figure 12.13: Augmentations

used in SimCLR.

Table 12.4 shows the accuracy of linear classifiers trained using SimCLR fea-
tures in comparison to CPC features. You can see that SimCLR achieves quite
impressive performance reaching 93.2% of top-5 classification accuracy on Ima-
geNet. Again, note that these features have been obtained in an unsupervised
way.

Method Architecture Top 5 accuracy
CPC v2 ResNet-50 85.3
SimCLR ResNet-50 89.0
CPC v2 ResNet-161 90.1
SimCLR ResNet-50 (4×) 93.2

Table 12.4: ImageNet accuracies
of linear classifiers trained on
representations learned with
different self-supervised methods.

Table 12.5 shows the performance of different methods tested in a semi-
supervised scenario in which features are extracted using the full data set but
the classifier is fine-tuned using only 10% of labels. You can see that SimCLR
performs similarly to the algorithms specifically designed for the semi-supervised
scenario. The second version of the model called SimCLRv2 (Chen et al., 2020b)
further improved the performance in the semi-supervised scenario.

https://arxiv.org/abs/2006.10029
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Table 12.5: Top-5 classification
accuracy obtained using 10%
labels from ImageNet in a semi-
supervised setting. The encoder
architecture is ResNet-50.

Method Top-5 accuracy
Supervised baseline 80.4
Pseudo-label 83.4
VAT 83.4
UDA 89.1
FixMatch 89.1
SimCLR 87.8
SimCLRv2 93.4

12.4.3 Bootstrap your own latent (BYOL)

BYOL (Grill et al., 2020) can be seen as an extension of the Mean Teacher to the
fully unsupervised scenario (see Fig. 12.14). The model contains two networks
that process two transformations of the same image. The teacher network is
obtained by computing exponential moving average of the student weights, just
like in the Mean Teacher. The loss function that is minimized is the consistency
loss between the outputs of the student and the teacher

Lconsistency = ‖q(z)− z′‖2 =
∥∥q(f(x,θt))− f(x′,θ′t)

∥∥2
,

where θt and θ′t are the parameters of the student and the teacher, respectively.

Figure 12.14: The architecture of
the BYOL model.
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There are two important differences compared to the Mean Teacher model.
The first difference is the usage of strong augmentations both for the student
and the teacher. BYOL uses the same set of augmentations as the SimCLR
model (see Fig. 12.13). The second difference is that there is an extra predictor
network q(z) that is used to process the output of the student network before
it is compared to the output of the teacher.

BYOL does not use the contrastive loss and therefore it may, in principle,
suffer the problem of collapsed representations. If the network learns to produce
the same output independent of the input, the consistency loss is zero. In

https://arxiv.org/abs/2006.07733
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practice, however, the BYOL representations do not collapse. Interestingly, the
representations collapse if the predictor network q(z) is removed.

Table 12.6 shows the ImageNet accuracies of linear classifiers trained on
representations learned with BYOL in comparison to other methods.

Method Top-5 accuracy
CPC v2 85.3
SimCLR 89.0
BYOL 91.6

Table 12.6: Top-5 classification
accuracy on ImageNet obtained
with linear classifiers trained
on representations learned with
different self-supervised meth-
ods. The encoder architecture is
ResNet-50.

In the semi-supervised scenario, when there is access to a bunch of labeled
examples, the base network can be pre-trained with BYOL and then fine-tuned
on the labeled data with spatial augmentations (random crops with resize and
random flips). Table 12.7 shows that this training strategy yields very good
performance.

Method Top-5 accuracy
Supervised baseline 80.4
SimCLR 87.8
BYOL 89.0

Table 12.7: Top-5 classification
accuracy obtained using 10%
labels from ImageNet in a semi-
supervised setting. The encoder
architecture is ResNet-50.

12.5 Few-shot learning

The motivation for this line of research is in understanding the limitations of
the deep learning models in comparison to the learning capabilities of humans.
Humans can learn new concepts from just a single example. If you see a new
object only once, for example, a drone or a segway (Fig. 12.15), you are likely
to be able to recognize this object in the future. In contrast, deep learning
models require thousands or even millions of training examples to solve image
classification tasks. The task of few-shot learning is to build an accurate machine
learning model using a very small number of training examples.

drone segway

Figure 12.15: Humans can learn
new concepts from just a single
example.

The problem of few-shot learning has attracted a lot of attention since Lake
et al. (2015) introduced the Omniglot challenge. Omniglot is a dataset that
consists of 1.5 thousand characters from 50 alphabets. One part of the challenge
is one-shot character classification (see Fig. 12.16). A single image of a new
character is presented and the goal is to select another example of the same
character among other characters from the same alphabet.

https://web.mit.edu/cocosci/Papers/Science-2015-Lake-1332-8.pdf
https://web.mit.edu/cocosci/Papers/Science-2015-Lake-1332-8.pdf
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Figure 12.16: Part A of Om-
niglot challenge: Two trials of
one-shot classification, where a
single image of a new character
is presented (top) and the goal is
to select another example of that
character amongst other charac-
ters from the same alphabet (in
the grid below).

The authors of the Omniglot challenge proposed a model called BPL that
represents concepts as simple programs that best explain observed examples
under a Bayesian criterion. They showed that the BPL model can achieve
human-level performance on the one-shot classification task unlike the exist-
ing deep learning solutions (see Table 12.17). However, there has been a lot
of progress in the development of deep learning models to solve the few-shot
learning problem (see Table 12.17). Next, we consider a few notable models:
Siamese networks (Koch et al., 2015), Matching networks (Vinyals et al., 2016),
Prototypical networks (Snell et al., 2017) and Model-Agnostic Meta-Learning
(MAML; Finn et al., 2017).

Figure 12.17: One-shot classi-
fication error rate on Omniglot
according to (Lake et al., 2019). * results used additional data augmentation beyond class expansion

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://arxiv.org/pdf/1606.04080.pdf
https://arxiv.org/pdf/1703.05175.pdf
https://arxiv.org/pdf/1703.03400.pdf
https://arxiv.org/pdf/1902.03477.pdf
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12.5.1 Siamese networks for one-shot learning

Siamese networks (Koch et al., 2015) is one of the simplest models for one-
shot classification. In one-shot learning, we need to build a classifier using only
a single training example from each class. Siamese networks are trained to
compare a pair of examples to decide whether they belong to the same class or
not, which is a binary classification problem.

x1 x2

distance

p
classification

loss

Figure 12.18: Siamese networks
for one-shot classification.

Siamese networks contain two identical networks that process a pair of inputs
(see Fig. 12.18). The probability that the input examples belong to the same
class is computed using the distance between the outputs of the two networks.
The network is trained on pairs of positive examples (when both inputs belong
to the same class) and negative examples (when the inputs belong to distinct
classes). The model works for one-shot learning but extending this idea to
few-shot learning is not trivial.

12.5.2 Matching networks

Consider a single task of one-shot classification as presented in Fig. 12.19. There
are four training examples in the data set, such that one example represents
one class. The model needs to use the four examples to build a classifier which
computes the probabilities of the four classes for a given test example.

The idea of the matching networks (Vinyals et al., 2016) is to treat the set of
training and test samples as one training example of the one-shot classification
task. In the standard classification problem, each image is one training example.
In the formulation used by the matching networks, one training example consists
of a few training samples (called a support set) and a few test samples (called a
query set). We build a neural network that can process such training examples.
This approach can be viewed as meta-learning: the classifier learns how to learn
from a few labeled examples.

https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
https://arxiv.org/pdf/1606.04080.pdf
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Figure 12.19: A single task of
one-shot classification.
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Each training task is to map from a support set of k examples of image-label
pairs S = {(xi, yi)}ki=1 to a classifier cS(x̂):

S → cS(x̂).

The classifier cS(x̂) defines a probability distribution ŷ over classes in the sup-
port set for a query example x̂. In matching networks, the mapping S → cS(x̂)
is parameterized with a neural network.

The output of the matching network classifier cS(x̂) is a weighted sum of the
one-hot representations of the labels yi from the support set:

ŷ =

k∑
i=1

a(x̂, xi)yi. (12.2)

The weights a are computed using an attention mechanism:

a(x̂, xi) =
exp(c(f(x̂), g(xi)))∑k
j=1 exp(c(f(x̂), g(xj)))

. (12.3)

The idea is that we pass the label of the support sample i whose encoding g(xi)
is closest to the encoding f(x̂) of the query sample x̂. The encodings f(x̂) and
g(xi) are computed with deep neural networks.

Fig. 12.20 shows the computational graph that is built to process one clas-
sification task. The four support samples are encoded with a neural network g.
The query sample is processed with a neural network f . In practice, f and g
can be the same networks. Then, we compute pairwise distances between the
encodings using function c and the prediction of the network is produced using
(12.2)–(12.3). At training time, we know the correct label of the query example
and therefore we can compute the cross-entropy loss for the given classification
task.

Suppose that we want to train a classifier to separate N classes using K
examples for each of the N classes. This scenario is often called N -way K-shot
classification. One training iteration of the Matching networks consists of the
following steps:
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Figure 12.20: Computational
graph of Matching networks.

– Select randomly N classes from the training set.

– Select a support set by taking K random samples for each of the selected
classes.

– Select a query set: a few samples from the same classes as in the support
set.

– Build a computational graph shown Fig. 12.20. Perform forward compu-
tations and compute the classification loss using the query samples.

– Perform backpropagation and update the parameters of the networks f
and g to minimize the classification loss.

This type of training is often called episodic training because every training
example contains one episode of the few-shot learning problem.

12.5.3 Prototypical networks

Prototypical networks (Snell et al., 2017) can be viewed as an extension of the
Matching networks model. Similarly to the Matching networks, the Prototypical
networks are trained on episodes of few-shot learning tasks. In every episode,
there is a support set of training samples and a query set of test samples.

Just like in the matching networks, the support and query samples are en-
coded using an embedding function f which produces a lower-dimensional rep-
resentation. The difference to the Matching networks is in the way the output
of the classifier is produced. In the Prototypical networks, the embeddings that
correspond to the same class in the support set are averaged to compute proto-
type vectors ck. This is illustrated in Fig. 12.21. The circles of different colors
represent the embeddings obtained for the support set. The embedding vectors
are averaged for each class to compute the prototype vectors

ck =
1

|Sk|
∑

(xi,yi)∈Sk

fθ(xi).

https://arxiv.org/pdf/1703.05175.pdf
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Figure 12.21: In Prototypical
networks, the embeddings of
the support set that correspond
to the same class (marked with
the same colors) are averaged to
compute prototype vectors ck.

The prototype vectors are shown with the black circles in Fig. 12.21. There is
one prototype vector for each class in the support set.

A query sample is embedded using the same embedding function f . The
class of the query sample is predicted based on the distance of the embedding
to the prototype vectors:

p(y = k | x) =
exp(−d(f(x), ck))∑
k′ exp(−d(f(x), ck′))

.

The smaller the distance d(f(x), ck), the higher the probability p(y = k | x)
that the query sample x belongs to the corresponding class k. Note that in one-
shot learning scenario, the Prototypical networks are equivalent to the Matching
networks.

Training of the Prototypical networks is performed in a similar way to the
Matchning networks. One iteration of the episodic training consists of the fol-
lowing steps:

– Embed the support set and average the embeddings of the different classes
to compute the prototypes.

– Embed the query set and compute the predicted probabilities using the
distances of the embeddings to the prototypes.

– Use the known labels yj of the query samples to compute the cross-entropy
loss.

– Compute the gradients of the loss and update the parameters of the em-
bedding network.

These steps are illustrated in the computational graph in Fig. 12.22.

12.5.4 Model-Agnostic Meta-Learning

Suppose that we want to train a model that takes vector x as the input and
produces y as the output to solve a new few-shot learning task. Suppose that
the model is a neural network with parameters θ. Training of the model can be
done by performing a few iterations of the gradient descent. If we do only one
iteration, we have the following update rule for the parameters:

θ′ ← θ0 − α∇θL((x1,y1), ..., (xk,yk)), (12.4)
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zi = fθ(xi)

support xi

ck =
1

|Sk|
∑
i|yi=k
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zj = fθ(xj)

query xj

pk(zj) =
exp(−d(zj , ck))∑
k′ exp(−d(zj , ck′ ))

L(p, yj)

θ

Figure 12.22: Computational
graph of Prototypical networks.

where (xi,yi) are the few training examples (the support set), L is the loss
function (for example, the cross-entropy loss for classification tasks), α is the
learning rate and θ0 is a vector of the initial values of the parameters.

The idea of Model-Agnostic Meta-Learning (MAML; Finn et al., 2017) is
to learn initialization θ0 and the learning rate α so as to minimize the loss
on the query set after the gradient-descent adaptation by (12.4). Just like
the Matching networks and the Prototypical networks, MAML is trained in an
episodic manner. In every episode, there is a support set which is used to update
the model and the query set which is used to test the accuracy of the updated
model. Each training iteration contains the following steps:

– Select a support set and use it to compute the loss and its gradient ∇θL.

– Update the model parameters to θ0 → θ′ with one (or a few) iteration of
gradient descent, as in (12.4). This step is implemented in the computa-
tional graph of the model (see Fig. 12.23).

– Use the query set to compute the loss with the adjusted parameters θ′.

– Perform backpropagation and update parameters θ0 and learning rate α.

Note that MAML requires propagation of the gradient through the gradient
computations performed in block ∇θL in Fig. 12.23, which can be computation-
ally expensive. For that reason, the paper also proposes a first-order approxi-
mation in which the gradient is not propagated through ∇θL (see Fig. 12.23).
This first-order approximation of MAML works almost equally well.

12.5.5 Reptile

Reptile (Nichol et al., 2018) can be viewed as a simplification of MAML. The
idea is that instead of backpropagating through the computational graph (like
we do in MAML), the initial parameters θ0 are updated towards the parameter
values θT obtained as a result of adaptation in the current episode. One training
iteration of Reptile consists of the following steps:

https://arxiv.org/pdf/1703.03400.pdf
https://arxiv.org/pdf/1803.02999.pdf
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Figure 12.23: The computational
graph of MAML. The first-order
approximation stops gradient
propagation through the marked
link.
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L(ŷi,yi)

support yi

∇θL

θ0

θ′ = θ0 − α∇θL

α
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– Randomly sample a task T .

– Update the model parameters θ0 → θ′ with k iterations of gradient de-
scent.

– Update the initialization with the following update rule:

θ0 ← θ0 + ε(θ′ − θ0).

You can look at the Reptile demo on the OpenAI web pages.

https://openai.com/blog/reptile/
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