Microwave engineering I (MiWE I)

Interactive lecture 2 of Topic 2 The Smith chart and impedance matching February 3, 2022

The main learning outcome of the course is to create readiness to work in microwave engineering related tasks and projects and enable further studies and continuous learning in microwave engineering.

Topic 2: Learning outcomes and content

- The student can
- design impedance matching circuits using the Smith chart and a simulator tool (AWRDE)
- explain the design principles and bandwidth issues related to impedance matching.
- The terminated mismatched load impedance (Pozar Chapter 2.3)
- The Smith chart (Pozar Chapter 2.4)
- The quarter-wave transformer (Pozar Chapter 2.5 and Chapter 5.4)
- Matching with lumped elements (Pozar Chapter 5.1)
- Single-stub tuning (Pozar Chapter 5.2)
- The Bode-Fano criterion (Pozar Chapter 5.9)

These lecture slides and notes are not designed for self-study. Please, use the course book chapters 2 and 5 for self-study.

Last week's in-class task

rotate length 0,25त cloclewise

$$
\begin{aligned}
& z_{10}^{\prime}=0.52(96 \Omega) ; z_{i n}=z_{1 n}^{\prime} z_{1}=0,52 \cdot 96 \Omega=50 \Omega \\
& z_{\text {in }}=\frac{z_{\text {in }}}{z_{0}}=1.0 ; \Gamma_{1 n}=0 \quad(\text { pertectly matehed })
\end{aligned}
$$

Last week's in-class task

Last week's in-class task

$$
\Gamma_{1}=\frac{96 \Omega-50 \Omega}{96 \Omega+50 \Omega}=0.31 \quad \Gamma_{L}=\frac{183 \Omega-96 \Omega}{183 \Omega+96 \Omega}=0,31
$$

TWO REFLECTIONS ARE EQUAL IN MAGNITUDE, BUT
THEY ARE OUT-OF-PHASE \rightarrow THEY CANCEL EACH OTHER OUT $\rightarrow \Gamma_{\text {in }}=0$

Place a word into an empty space. There are a few extra words.

1. Smith chart visualizes \qquad impedances or admittances.
2. All reactance values in the upper half are \qquad inductive
3. All susceptance values in the upper half are \qquad capacitive
4. The closer the normalized impedance z_{L} to the centre, the better a device is \qquad matched .
5. Every point that lies along the same circle has the same normalized resistance Or \qquad .
6. Normalized resistance value can be read from the horizontal_axis.
7. Normalized reactance value can be read from the \qquad circumference .
8. Often want to move $z_{\text {in }}$ closer to the centre, using a matching circuit . .
9. $z_{\text {in }}$ is often shown as a function of frequency. A device is resonant at the frequency , where the impedance moves through the centre.

Q1: The line is terminated with an ideal inductor (ideal = no losses, no parasitics). Which of the following is a possible reflection coefficient seen at distance l ?

13%

Q2: The signal propagates to the positive z direction. $Z_{0} \neq Z_{\mathrm{L}}$. How much (\%) of the power is transmitted to the line whose impedance is Z_{L}

$$
\begin{aligned}
& Z_{L}=2 \Omega \\
& Z_{0}=1 \Omega
\end{aligned} \quad \Gamma_{L}=\frac{2 \Omega-1 \Omega}{2 \Omega+1 \Omega}=\frac{1}{3}
$$

$3^{4} \cdot 15 \% 1 . \quad 11 \%(1 / 9)$
$P_{1}^{+}=\frac{\left|u_{1}^{+}\right|^{2}}{2 z_{0}} \quad P_{1}^{-}=\frac{\left|\Gamma u_{1}^{+}\right|^{2}}{2 z_{0}}$
$P^{\top}=\frac{\left|u^{\top}\right|^{2}}{2 z_{L}}=\frac{\left|T \cdot u_{1}^{+}\right|^{2}}{2 z_{L}} \quad T=\Gamma+1=\frac{4}{3}$
$0 \% 18 \% 2.33 \%(1 / 3)$
$61 / 5 / 3 . \quad 66 \%(2 / 3)$
$P_{1}^{-}=|\Gamma|^{2} \cdot P_{1}^{+}=\left|\frac{1}{3}\right|^{2} \cdot P_{1}^{+}=\frac{1}{9} P_{1}^{+}$
과 30 次 $4.1 . \mid 89 \%(8 / 9)$
$16^{\prime} \cdot 9 \%$ 5. 133 \% (4/3)
に \% 6. I don't know

$$
\begin{aligned}
& \text { conservation of energy: } P^{\top}=P_{1}^{+}-P_{1}^{-}=P_{1}^{+}-\frac{1}{9} P_{1}^{+}=\frac{8}{9} P_{1}^{+} \measuredangle \\
& \frac{P^{\top}}{P_{1}^{+}}=\frac{\frac{\left|T \cdot x_{1}^{2}\right|^{2}}{2 z_{L}}}{\frac{\left|x_{1}^{*}\right|^{2}}{2 z_{0}}}=\left(T^{2} \cdot \frac{z_{0}}{z_{L}}=\left|\frac{4}{3}\right|^{2} \cdot \frac{1 \Omega}{2 R}=\frac{16}{9} \cdot \frac{1}{2}=\frac{8}{9} \longleftarrow 5 A M E\right.
\end{aligned}
$$

Q3: Which of the following transitions (1-4) corresponds to adding a series inductor in the impedance scale?

Q4: Which of the following transitions on the Smith chart (1-5) corresponds to adding a shunt capacitor in the admittance scale?

alternation 3.

5. I don't know
3%

Q5: We want to design a lossless shorted shunt stub (with length l) that has the admittance $y=\mathrm{j} b=-\mathrm{j} \cdot 1.0$. Which of the following transitions (1-4) correspond to that stub in the admittance scale?

The impedance bandwidth depends on the matching level

The impedance bandwidth and matching level are inversely proportional

Today's in-class task

The input impedance of a load is $Z_{L}=(100.0+\mathrm{j} 100.0) \Omega$ at $1.5 \mathrm{GHz} . Z_{0}=50 \Omega$.

1) The load is attached directly to the $50-\Omega$ feed. What percentage of the feed power is reflected from the load?
2) Match the load to the feed with the matching circuit shown graphically with the Smith chart i.e., calculate l (in wavelengths) and $L[\mathrm{nH}]$.

Hint: you need only the impedance scale.

Return your effort at 12:30 in MyCourses.

Today's in-class task
The input impedance of a load is $Z_{L}=$ $(100.0+\mathrm{j} 100.0) \Omega$ at $1.5 \mathrm{GHz} Z_{0}=50 \Omega$.

$$
\Gamma_{L}=\frac{z_{L}-z_{0}}{z_{L}+z_{0}}=\frac{(100+j 100) \Omega-50 \Omega}{(100+j 100) \Omega+50 \Omega}=0,539+j 0,308
$$

$\left|\Gamma_{L}\right|=0,602$ reflected $-\%=100 \% \cdot\left(1-\left|\Gamma_{C}\right|^{2}\right)=38 \%$

$$
z_{L}=\frac{z_{L}}{z_{0}}=\frac{(100+j 100) \Omega}{50 \Omega}=2.0+j 2.0(50 \Omega)
$$

rotate $0,321 \lambda-0,208 \lambda=0,113 \lambda=l$

$$
z_{1}=1,0-j 1,4 ; z_{1}=z_{1} \cdot z_{0}=(1-j 1,4) \cdot 50 \Omega=(50-j \not 0) \Omega
$$

The needed inductance has a reactance of $70 \Omega=x_{1}$

$$
\omega L=X_{1} \Rightarrow L=\frac{X_{1}}{2 \pi 4}=\frac{70 \Omega}{2 \pi \cdot 1.5 \mathrm{GHz}}=\frac{70}{2 \pi \cdot 15} \cdot 10^{-9} \mathrm{H}=7.4 \mathrm{nH}
$$

Q5: Which of the following transitions on the Smith chart (1-4) corresponds to adding a shunt capacitor in the impedance scale?

5. I don't know

Q7: The previous problem continues. What is the length of the stub in $\lambda ?(y=\mathrm{j} b=-\mathrm{j} \cdot 1.0)$

1. $\lambda / 32$
2. $\lambda / 16$
3. $\lambda / 8$
4. $\lambda / 4$
5. $\lambda / 2$
6. I don't know

Q8: How much power (in \%) is delivered to the load if the reflection coefficient is $\mathbf{- 6} \mathbf{d B}$? (Neglect any other losses.)

1. 25%
2. 50%
3. 75%
4. 90%
5. 99%
6. I don't know

$$
\Gamma(\mathrm{dB})=10 \log _{10}|\Gamma|^{2}=20 \log _{10}|\Gamma|
$$

The Bode-Fano criterion is related to

 matching level and impedance bandwidth

$$
\int_{0}^{\infty} \ln \frac{1}{|\Gamma(\omega)|} d \omega<\frac{\pi}{R C}
$$

Perfect matching over finite bandwidth is impossible

The Bode-Fano formula depends on the load impedance

Takes homes of the Bode-Fano criterion

