MEC-E8001 Finite Element Analysis, week 6/2022

1. The spring force of non-linear spring depends on the dimensionless dis-
placement a=u/L according to F =k(a—a®+a®/3). Determine the di- | I |
mensionless displacement a=u/L if force F =k /4.

Answer a= % ~0.370

2. Determine the displacement at node 2 of the elastic

bar shown by the large deformation theory. Take into @ T F @

account only the transverse displacement Uy, ( é ---------- B g

Uy, =0). When F =0, the cross-sectional area and 1 2 3% XX
length of the bar are A and L, respectively. Consti- ; <;>|

tutive equation of the material is Sy, =CE,,, in Y,y
which C is constant. Use two elements with linear
shape functions.

F_|—3)1/3

ANSwWer Uy, =—
v 2 (AC

3. Consider the bar shown loaded by a point force. Determine the equilibrium
equations in terms of the dimensionless displacement components
a; =Uyx, /L and a, =uy, /L according to the large displacement bar theory.
Assume that displacement component w =0 and use linear approximation to @

the non-zero components u and v. Without loading, the area of cross-section :

and the length of bar are A° and L°, respectively. Constitutive equation of :
the material is S,, =CE,, , in which C is constant. 2 I‘ @
|

1, 15
Answer (1+aq)(a; +—ay +—a5)—
(d+ag)(ay D) 2) AT

=0 and a2(2a1+a12 +a§):0

4. Determine the equilibrium equation of the elastic bar of
the figure with the large deformation theory. The active @
degree of freedom is uy , and the cross-sectional area and SHHHE
length of the bar are A and L without the point force F | ‘
acting on node 2. Constitutive equation of the material is |~ > >
Syx =CE,,, in which C is constant. Use two elements
with linear shape functions.

Answer a(l+2a2)—=_—0 where a=YX2
4 AC

L



5.

Consider the structure shown loaded by its own weight. Determine the
equations giving the displacement uy, of the free end according to
large displacement bar theory. Without gravity, cross-sectional area,
length, and density of the bar are A, L, and p, respectively. Constitu-
tive equation of the material is S,, =CE,,, in which C is constant. Use
a linear approximation.

Answer (1+-X2)4x2 5 Ux2y, Lrg _ g
L" L L C
Derive the equilibrium equation of the elastic truss shown with
the large deformation theory. The cross-sectional areas and
length of the bars are A and L when F =0. Constitutive equa-
tion of the material is S,, =CE,, , in which C is constant. As-
sume a planar problem of two elements.

Uy1 CA

Answer YL lv1y2 gthvi o1 p g
L 2 L L

A thin triangular slab (assume plane stress conditions)
loaded by a horizontal force can move horizontally at node
1 and nodes 2 and 3 are fixed. Derive the equilibrium equa-
tion for the structure according to the large displacement

theory. Material parameters C, v and thickness t at the
initial geometry of the slab are constants.

Answer —tLC a(—1+a)(—1+£a)—F ~0 where a = -X1
21— 2 L

A structure, consisting of a thin slab under the plane stress
conditions and a bar, is loaded by a horizontal force F acting

on node 1. Material properties are C and v, thickness of the
slab is t, and the cross-sectional area of the bar A at the initial
unloaded geometry. Determine the equilibrium equation
giving as its solution the displacement component uy; of
node 1 according to the large displacement theory.

Answer L €
1-v

5 a(a2 +1-v)+CA(-1+ a)a(—a+%a)+ F =0 where a=

Ux

L

[N



10.

A long wall having triangular cross-section, and made of homo-
geneous, isotropic, linearly elastic material, is subjected to its own
weight. Determine the equilibrium equation giving as its solution
displacement components Uy 3 according to the large displace-
ment theory. Nodes 1 and 2 are fixed. Use a three-node element
and assume plane stress conditions and symmetry uy 3 =0. Mate- :
rial properties C, v and the density p of the initial geometry are
constants.

ﬂ=0 where a=—"2.

Answer (1+a)a(1+£a)+1(1—v2) tvs
2 3 L

Node 4 of a thin rectangular slab, loaded by force F, can

move horizontally and nodes 1, 2, and 3 are fixed. As-

sume plane stress conditions and derive the equilibrium !
equation of the structure according to the large defor-
mation theory. Use just one bilinear element. Material |
parameters C and v =0. Thickness of the slab at the
initial geometry is t.

Answer ta+2a2+1%23 - F _0 where a=Ux4
2 8 45 tLC L




The spring force of non-linear spring depends on the dimensionless displace-
ment a=u/ L accordingto F =k(a—a? +a>/3). Determine the dimensionless
displacement a=u/L if force F =k /4.

Solution

As the equilibrium equation is non-linear, finding the displacement as function of the force by hand
calculations is difficult (but possible for a third order polynomial). Mathematica gives three mathe-
matically correct solution

(fas1- 22} fas1- 22030 a0 Leid8 )y

22,-'3 2 % 22,-"3 2 22,-"3

of which the real valued is obviously the physically correct one. A simple graphical method for find-
ing one solution to

R(@)=F —k(a—a2 +%a3)

in a given range a €[anin,amax] Uses an iterative refinement of the range so that the sign change of
R(a) is bracketed inside a smaller and smaller range.



Determine the displacement at node 2 of the elastic bar
shown by the large deformation theory. Take into account ; @ T F @ g
%1 3

only the transverse displacement uy, (uyx, =0). When
F =0, the cross-sectional area and length of the bar are A
and L, respectively. Constitutive equation of the material is D
S, =CE,,, in which C is constant. Use two elements with ~ Y»Y

linear shape functions.

Solution
Virtual work density of the non-linear bar model

déu duddéu dvdov dwdow du 1,du,», 1, dv 1 dw
SWEE = ~(—om == e = S SO AT+ —(—) =)+ 2 ()4
dx dx dx dx dx dx dx dx 2 dx 2 dx

is based on the Green-Lagrange strain definition which is physically correct also when rotations/dis-
placements are large. The expression depends on all displacement components, material property is
denoted by C (constitutive equation S,, =CE,, ), and the superscript in the cross-sectional area A°
(and in other quantities) refers to the initial geometry (strain and stress vanishes). Otherwise, equilib-
rium equations follow in the same manner as in the linear case.

For element 1, the non-zero displacement components is uy, =Uuy,. As the initial length of the ele-
ment h° =L, linear approximations to the displacement components
du _dw dv  Uys

X
=w=0 and v=—u =0 and —=—"=%.
u=w L Y2 = dx dx dx L

When the approximation is substituted there, virtual work density of the internal forces and thereby
the virtual work expression (density is constant) simplify to

5UY2 Uy 2 CA(UYZ)

CA(UYZ
L L 2 L

swint — oW =—suy,

For element 2, the non-zero displacement component uy, =Uuy . As the initial length of the element
h° =L, linear approximations to the displacement components

X du _dw dv uy,
=w=0 and v=(1-—)u — =0 and —=-—%.
= ( L) v2 = dx  dx dx L

When the approximation is substituted there, virtual work density of the internal forces and thereby
the virtual work expression (density is constant) simplifies to

5 Int

_OlUyp Uyy CA UY2 2 CA Uyp.3
OW*“ =—-OUy, —(—%)°.
L (222 V2 (—*)

Virtual work expression of the point force is

SW3 =—Féuy,.



Virtual work expression of the structure is obtained as the sum of the element contributions

CA Uyp3 CA Uyp.3
SW = —SUy o[ (Y 2)3 4 22 (Y233 | gy,
Vol (G5 - (5 9)7 +F

Principle of virtual work and the fundamental lemma of variation calculus imply that

3
Uy 2.3 F FL™ 13
( L ) CA Y2 (CA)



Consider the bar shown loaded by a point force. Determine the equilibrium equa-
tions in terms of the dimensionless displacement components a; =uy, /L and
a, =Uy, /L according to the large displacement bar theory. Assume that dis-
placement component w =0 and use linear approximation to the non-zero com- @
ponents u and v. Without loading, the area of cross-section and the length of g
bar are A° and L°, respectively. Constitutive equation of the material is 5

©,

Lo |

Syx =CEyy , inwhich C is constant. 2 U
£V
| X, X
Solution
Virtual work density of internal forces is
sl = (30U, dudou v dov  dwdow),qdu 1duyy 1 vz, LWz
dx dx dx dx dx dx dx dx 2 dx 2 dx 2 dx

Assuming a linear approximation to displacement components with uy, =uy, and uy, =uy;

U=1Ux2, V=lUY2,and w=0 = d—u=uX2, d—v=uY2,andd—W:0.
L° L° dx L° dx L° dx

Virtual work expression is obtained as integral of the density over the domain occupied by the body
(notice that the virtual work density is constant when the approximations are substituted there):

1
éwlz_(5u>§2 +Ux02 5“)22 +UY02 5UZZ)L°CA°[UX02 +£(Ux02)2+_(w_02)2]’
L L L L L L 2 L 2 L

SW2 =Fsuy,.

Virtual work expression of the structure is oW =oWL+6W2. In terms of dimensionless displace-
ments a; =Uy, /L° and a, =uy, / L° (introduced just to simplify the expressions)

SW = —(5ay +2a,58; +a,58,)L°CA%(ay +%a12 +%a§) +FL°Sy <

1, 1> F
Sa }T (1+a1)(a1+5a1 +—a5)—

é\N:—CA°{5 . 21 CA°
4 a2(a1+5a12+5a§)

principle of virtual work and the fundamental lemma of variation calculus imply that

F 1, 15
=0 and a,(a;+—a;y+—a5)=0. €
CA° 23 217 2)

(I1+aq)(ag +%a12 +%a§)—

In this case, the solution can be deduced without numerical calculations: the latter equation implies
that a, =0 as the other option a1+a12 /2+a§ /2=0 would mean an inconsistency with the first
equation. Knowing this (the real valued solution)



3 a

2/3 13
a1=1[—3—3——31’3aj where a=(—9f+«/—3+81f2j and f:%.



Derive the equilibrium equation of the elastic bar of the figure
with the large deformation theory. The non-zero displacement &
component is uy, and the cross-sectional area and length of
the bar are A and L, when the point force F acting on node
2 is zero. Constitutive equation of the material is S =CE, in
which C is constant. Use two elements with linear shape func-
tions.

Solution
Virtual work density of the non-linear bar model

déu duddéu dvdov dwdow du 1,du,», 1, dv 1 dw
R e e T e [ AT+ —(—) =)+ 2 ()4
dx dx dx dx dx dx dx dx 2 dx 2 dx

is based on the Green-Lagrange strain definition which works also when rotations/displacements are
large. The expression depends on all displacement components, material property is denoted by C
(constitutive equation S,, =CE,, ), and the superscript in the cross-sectional area A° (and in other
quantities) refers to the initial geometry (strain and stress vanishes). Otherwise, equilibrium equations
follow in the same manner as in the linear case.

For element 1, u,, =uy,. As the initial length of the element h°=L/2, linear approximations to
the displacement components

vew=0and u=2Xu,, = d_pUx2
L dx L

When the approximation is substituted there, virtual work density of the internal forces and thereby
the virtual work expression (density is constant) simplify to

suilt = 2992 1 pUx2ycppx2 (g4 Lo lxz)

swl :—5ux2(1+2u>|i2)2CAu>|i2 (1+“>£2).

For element 2, u,, =uy,. As the initial length of the element h°=L/2, linear approximations to
the displacement components
v=w=0 and u—(l—2£)u = d_u__2ux_2

L %2 dx L
When the approximation is substituted there, virtual work density of the internal forces and thereby
the virtual work expression (density is constant) simplify to

Switt — _p( 5Ux2)(1 2uX2)2CA( sz)(l sz) N



SW 2 :—5ux2(l—2u>|i2)2CAu>|i2 (1—“>£2).

Virtual work expression of the force is
3_
OW"® = F5UX 2.

Virtual work expression of the structure is obtained as sum over the element contributions

Ux 2 Ux 2 Ux 2 Ux 2 Ux o Ux 2
oW =-46u 1+2 2CA 1+ +(1-2 2CA 1-— -F].
x 2[( L ) L ( L )+ ( L ) L ( L )—F1

Principle of virtual work and the fundamental lemma of variation calculus imply that

Ux 2 Ux 2 Ux 2 Ux 2 Uy 2 F
1+2 1+ +(1-2 1- - =0
3 [( 3 ) L )+ 3 ) i )] > =

CA

a(l+2a2)——— =0 inwhich a="X2 €
ACA L



Consider the structure shown loaded by its own weight. Determine the equa-
tions giving the displacement uy, of the free end according to large dis-
placement bar theory. Without gravity, cross-sectional area, length, and den-
sity of the bar are A, L, and p, respectively. Constitutive equation of the
material is S,, =CE,,, in which C is constant. Use a linear approximation.

Solution
As v=w=0, virtual work densities of internal and external distributed forces of the non-linear bar
model simplify to

déu duddu du 1,du,» ext

SW mt__(_X —=22)CA o[_ _(_)] and  owge

=—-OoUpgA
dx dx P9

the negative sign of the external part takes into account the direction of gravity with respect to the x-
axis. The non-zero displacement component of the structure is the vertical displacement of node 2 i.e.
Uyo =Uy o . Linear approximation (two-node element) is

X
Uu=—u = —=-2Z,
L X2 dx L

When the approximation is substituted there, virtual work densities simplify to

Swilt = (5Ux2)(1 sz)CA(sz)(z sz) and  Swed

X
=~ OUx2r9A.

Virtual work expression is integral of the virtual work density over the domain occupied by the ele-
ment at the initial geometry:

CA u u
SWN = [~ swildx = —su 14 9x2y 2R X2y Ux2y
[y x2(1+=2X2) T (22) 2+ 202
é\NeXt .[ oW, eXth_—EL5UX2pgA

Principle of virtual work with W = oW ™ + sW & and the fundamental lemma of variation calculus
imply that

ux—2)%(“><T2)(2+“><T2)+%L,ogA=o = (1+a)a(2+a)+%=o, a=2X2 &

1+
( L



Derive the equilibrium equation of the elastic truss shown with the
large deformation theory. The cross-sectional areas and length of
the bars are A and L when F =0. Constitutive equation of the
material is S,, =CE,y, in which C is constant. Assume a planar
problem of two elements.

Solution
As w =0 and cross-sectional area of the initial geometry is A, virtual work density of internal forces
of the large displacement bar model simplifies to

déu duddu dvdov du 1,du,, 1, dv
WS = ~(— =+t = )CAT 2 ()24 S ().
dx dx dx dx dx dx 2 dx 2 dx

In element 1, linear approximations to the displacement components expressed in terms of uy, are

X du dv Uy
=0and v=—u —=0 and —=—=.
y L't - dx dx L

When the approximation is substituted there, virtual work density of internal forces and the virtual
work expression take the forms

Uyq OU 1.u
S int _ _ Uya Yl) i 68 Yl)
L L 2 L

j S =~y CAZ (“Yl)

In element 2, linear approximations to the displacement components expressed in terms of uy, are

u=—£uY1 and v=0 = u__Un and ﬂ:0.
L dx L dx

When the approximation is substituted there, virtual work density of internal forces and thereby the
virtual work expression take the forms

Swilt = (5UY1)(1 qu)CA(qu)( 1UY1)

oW = [ Swiibdx = -3y (- H)CAC- ;“zl)

Element 3 contribution (point force)
SW3 = —Fsuy;.

Virtual work expression of the structure is sum over the element contributions. In the standard form



Uyg ~pa 1 Uygy2 Uyq Uy 1 1uyg
oW = - uy[—CA=(-—=2)"+(1-——=)CA(—=)1-=—L=2)+F].
Y1[L 2(L) ( L) (L)( 2L) 1

Principle of virtual work and the fundamental lemma of variation calculus imply the equilibrium
equation

Uy CA

L2 31 o1 F-0. €
L 2 VL L



A thin triangular slab (assume plane stress conditions) loaded
by a horizontal force can move horizontally at node 1 and
nodes 2 and 3 are fixed. Derive the equilibrium equation for
the structure according to the large displacement theory. Ma- @ _
terial parameters C, v and thickness t at the initial geometry _____ g 1 X, X
of the slab are constants. Foom

Y.y

Solution
Virtual work density of internal force, when modified for large displacement analysis with the same

constitutive equation as in the linear case of plane stress, is given by

ou 1 ou 1 ov
; w2 2GR
_ Sl BV EL Exc || B o 1,0u, 1,0v
SWt = -1 SE — v 1 0 Eyy b1 1By (=1 —+= ()2 + ()
P10 0 a2 ||oe. Dy 2y 2y
-V
20E,y Byl 1%B) Jou ov auau avev

_t

Oy ox ooy oxoy

Let us start with the approximations and the corresponding components of the Green-Lagrange strain.
Linear shape functions can be deduced from the figure. Only the shape function N; =(1—-x/L) of
node 1 is needed. Displacement components v=w=0 and

u
u=(1—%)ux1 = —=——", =0, Ey =E, =0 and EXX:—%JrZ

OX L oy
When the strain component expression are substituted there, virtual work density simplifies to

§Wi”£=_§EXX—tC EXX:—§UX1(—1+UX1) e qu(—1+£m).
1,2 L L 1.2 L 2L

Integration over the (initial) domain gives the virtual work expression. As the integrand is constant

tC UXl(_1+lm)
v L 2 L

2
swlo_L0Uxa g, Uxa
2 L L1

Virtual work expression of the point force follows from the definition of work

oUxa |

OW? = Suy F =
Virtual work expression of the structure is obtained as sum over the element contributions. In terms

of the dimensionless displacement a=uy; /L

tC

1-v

2
oW =-L ga(-1+a) &
2 1-v

1. 3
2(—a+5a )-F=0. €

a(—1+%a) +o0aLlF = %(—1+ a)



A structure, consisting of a thin slab under the plane stress con-
ditions and a bar, is loaded by a horizontal force F acting on node
1. Material properties are C and v, thickness of the slab is t, and
the cross-sectional area of the bar A at the initial unloaded geom-
etry. Determine the equilibrium equation giving as its solution
the displacement component uy, of node 1 according to the
large displacement theory.

Solution
Virtual work densities of the thin slab and bar models, when modified for large displacement analysis

with the same constitutive equation as in the linear case, are given by

ou 1, 0u 1 ov
T 8_+E(8_)2+E(8_)2
OE 1 v 0 E E X X
i *1 tc XX XX v 1.oun, 1.0v
oWt =—1 5By ¢t ——=v 1 0 Epy 01 Epy r=1 —+= ()2 +2(2)?
25k | 17V 0 0 @a-v)r2||2e 2F y 20 20
v X V)o|ou v dudu  ovov
oy OX OXoy OXxoy

i du 1 du 1 dv 1 dw
SWOL = —SECA%E,y, By =—+—=(—)2 +=(—)? +C

2
dx 2 dx 2 “dx '

Element contributions need to be derived from approximations and virtual work densities. Approxi-
mations to the displacement components depend only on the shape function associated with node 1
as the other nodes are fixed (displacement vanishes).

Let us start with the thin slab element. In terms of the displacement component uy,

u=Yuy, and v=0 = M _g, M_Uxg gng XN _g
L OX oy L ox oy
giving
E,, 0 SE,, 0 )
Ey, r==a{a; and { SE,, r=dJaja; where a=2X1 and sa=28X1
2 2 1 L L
2B, 26E,,

Virtual work density of the internal forces simplifies to (when the approximations are substituted
there)

01" M1 v 0 0

Swint = — tczéa ar |v 1 0 %a a =—5a%a ©
=21 o o @-wyr2) |2 1-v

(a2 +1-v).

2



Virtual work expression is the integral of density over the domain occupied by the element (note that
the virtual work density is constant in this case). Therefore
12 1 12 tC

= —da—a——(a’+1-v).
2 22 21,2 )

é\N 5 |nt

The linear approximations to the displacement of the bar element are w=v =0 and

X du Ux1
u=@l0-—-)uy; > —=-—"+=-a, and E,, =——2=
( L) X1 dx L XX L 2% L

For the bar element, virtual work density of the internal forces and thereby the virtual work expression
(density is constant) simplifies to

SW2 = _sa(~1+a)LCAa(-a +%a) |

Virtual work expression of the point force follows, e.g., directly from the definition (force multiplied
by the virtual displacement in its direction)

SW3 = —5uyF =—5aLF .
Virtual work expression of a structure is the sum of element contributions

2
éw_—aa[laL— '€ (@2 +1-v)+(-1+a)LCAa(-a+~a)+LF].
2 1— V2 2

Principle of virtual work and the fundamental lemma of variation calculus give

LtC
41V

a(a +1-v)+CA(-1+a)a(-a+—= a)+F 0. €



A long wall having triangular cross-section, and made of homoge-
neous, isotropic, linearly elastic material, is subjected to its own
weight. Determine the equilibrium equation giving as its solution
displacement components Uy 3 according to the large displacement
theory. Nodes 1 and 2 are fixed. Use a three-node element and as-
sume plane stress conditions and symmetry uy3 =0. Material
properties C, v and the density p of the initial geometry are con- "
stants.

Solution
According to the large displacement theory, virtual work densities of the thin slab model under

plane strain conditions are

ou 1 ou 1 ov
' 2@ 2 &
_ A S L G R | T B R )
SW = -1 SE — v 1 0 Eyy bv 1By (=1 —+= ()2 +2(2)?
yy 2 yy vy 2 2
25k, | TV l0 0 a-vyiz)|ae, | |26 V2o ¥
o o ) o o e avar
oy OX OXoy Oxoy

.
ol
SWE = {;} tp°{gx}
v gy

in which g, and g, are the components of acceleration by gravity and p° the density at the initial
geometry. Above, constitutive equation is assumed to be of the same form as that for the linear theory
with possibly different elasticity parameters C and v .

Shape function N3 =y /L of node 3 can be deduced from the figure. Linear approximations to the
displacement components and their derivatives are
ou ou ov

u=0 and v:lum - —=0, —=0, —=0, and
L OX oy OX

When the approximation is substituted there, the non-zero Green-Lagrange strain component and its
variation take the forms

=UY—3+£(UY—3)2 and SE,, = 2Ura , OUva Uys

E =
WL 2bL WL L L

Virtual work densities simplify to

5Win£=_5uY3 1+ UY3) tE UY3(1+}UY3)
L 1-42 L 2 L7

é‘WeXot = —5UY3 %tpg .



Integration over the domain occupied by the body at the initial geometry gives the virtual work ex-
pressions

_5UY3
L

tE Uy s
1-v2 L

2

i 1

ow' = EEL (L+=¥3),
L2 2 L

ext L (L=y)/2 axt __5UY3 LStpg
SW et = jo (] sy OWESddy ===

Virtual work expression in the sum of the internal and external parts. Written in the standard form

2 3
éW:_5UY3[(1+UY3)|—_ € Uyg, s, Lleg,
L L 2142 L 2L 6

Principle of virtual work and the fundamental lemma of variation calculus imply the equilibrium
equations

(1+a)a(1+1a)+1(1—v2)ﬂ:o where a=3 &
273 E L



Node 4 of a thin rectangular slab, loaded by force F, can
move horizontally and nodes 1, 2, and 3 are fixed. Assume \
plane stress conditions and derive the equilibrium equation
of the structure according to the large deformation theory.
Use just one bilinear element. Material parameters C and
v =0. Thickness of the slab at the initial geometry is t.

Solution
According to the large displacement theory, virtual work density of the thin slab model (plane stress

condition) is

ou 1,0u,»
T =2 —(—) —(—)
SE 1 v 0 E,, Eyy aX . a : av
Swit =1 SE,y tCZ v 1 0 Ey 21 By (= (P4 ()P
26E. | TV 0 0 a-vi2)|E, | |28 v oy 2
g vl ) e v auan ovov
oy OX OXoy OXxoy

Only the displacement of node 4 in the X — direction matters. Shape function N, =xy/ 12 gives

u ou u ou u
v=0 andu=xy—%% = —=yXdand —=x22L.
L X L oy L
When the approximations are substituted there, the Green-Lagrange strain components and their var-
iations simplify to

2 2
Eyx u y 14 y OE Su y ! y
Eyy =% 0 +E(%)2 x* tand | SE,, =%( 0 +% x2 1),
2B,y X 2xy 26Eyy X 2xy

Virtual work density of the internal forces according to the large displacement theory simplify to
(with the Poisson’s ratio v =0)

2 2
y y 10 0 y y
Swilt = 5U>2<4[ 0 +“X_24 x> Ttcjo 1 0 [uX4 += (UX4) X H,
S Y I S PV 00 1/2 X 2xy

The four terms of the virtual work density

§u tC 1 u
Swil inty _ X4 > 2 =42y X4




i Ouy 4 tC 1.u
SWIL), = — X4 22 (y3 4 x2y) = (=X4y2
(oW, = 4T S

i OUy 4 Uy 4 tC u
swinty _ _9UX4 UX4 T 3, 42 X4
QUIE L L (v +xy) =

i OUy 4 Uy 4 tC 1.u
Swity, = X4 “X4 +x* +2x%y2) = (X4)2
(Fwey)g =——X4 L2 (y" v )

Virtual work expressions are obtained by integrating the densities over the domain occupied by the
element
5Ux4 1

=12 dxa

|nt .[ .[ (SW, |nt)1dyd __9YX4 |_

mt int 5Ux4 25 Uxg,\2
oW, dydx = ——2=tCL
=[5 [0 i)y AR

int _ (L (L int __OUxglUxg .~ 25 Uxy
SWd _jo jo (Swgy:)3dydx = ——X4 XL CL? =KL,

int (L L int Oy g Uxg 214 Uy 412
SW, _jo jo (WS, dydx = — S HCL 45( L)

Virtual work expression of the point force

Virtual work expression is the sum of the terms. In terms of the dimensionless displacement
d=Uxgy /L
14 F
SW ——tCL25a( L2248 F
8 45 tLC
Principle of virtual work and the fundamental lemma of variation calculus imply the equilibrium
equation



