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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on thermo-mechanical FEA:

  Balance laws and constitutive equations of isotropic thermo-mechanics

   Stationary thermo-mechanical FEA with solid, plate, and beam elements

 Virtual work densities of solid, plate, and beam models
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MULTIPHYSICS FEA

Multiphysics simulation employs temperature, water contents, etc. with additional balance

laws and constitutive equations to predict displacement, temperature, concentration etc.

under complex interactions. A thermo-mechanical model considers the effect of temperature

on mechanical behavior:

  As an unwanted mechanical effect, pipelines and continuous welded rails may bend or

buckle in a hot summer.

  Press fit take advantage of thermal expansion and contraction: enveloping parts are

assembled into position while hot, then allowed to cool and contract back to their former

size. Loosening of a jar lid under heating is based on the opposite mechanism.

  Temperature changes may induce very large stresses.
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BALANCE LAWS OF MECHANICS

Balance of mass (def. of a body or a material volume) Mass of a body is constant 

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. 

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular

momentum within a material volume equals the external moment resultant acting on the

material volume. 

Balance of energy (Thermodynamics 1) 

Entropy growth (Thermodynamics 2)
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BALANCE OF ENERGY

The rate of change of kinetic and internal energies equals the powers of external forces and

added heat, i.e., W QU T P P      where

Internal energy U edV


 

Kinetic energy 1
2

T v vdV


 
 

Power of forces WP f vdV t vdA
 

    
  

Power of heat QP sdV hdA
 

  

Temperature  , heat Q , and internal energy U are concepts of continuum mechanics that

do not have direct counterparts in particle mechanics (force and displacements have).
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6.1 LINEAR THERMO-MECHANICS

Balance law Local form in  Local form on 

0Dm
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BOUNDARY VALUE PROBLEM

Given the initial stationary equilibrium temperature and displacement on  , the aim is to

find new stationary equilibrium temperature and displacement, when external forces,

heating etc. are changed in some manner.

Balance of momentun 0f   
    in  ,

Balance of energy 0q s  
   in  ,

Displacement BC:s n t 
    or u g

     on  ,

Temperature BC:s n q h 
    or      on  .

Constitutive equations of the form ( )q   (heat flux) and ( , )u    (stress) are needed for a

closed equation system in terms of displacement and temperature.`
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GENERALIZED HOOKE’S LAW

The generalized Hooke’s law, also considering the change of temperature      , is

given by ( 0 
  and 0   at the initial geometry)

Strain-stress:
1

1 1
1

xx xx

yy yy

zz zz
E

     
     

    

       
                       

 and 1
xy xy

yz yz

zx zx
G

 

 

 

   
   

   
   
   

Strain-displacement:
/
/

/

xx x

yy y

zz z

u x
u y

u z






    
   

     
       

and

/ /

/ /

/ /

xy x y

yz y z

zx z x

u y u x

u z u y

u x u z







       
   

        
          

Above, E is the Young’s modulus,  the Poisson’s ratio, / (2 2 )G E   the shear

modulus, and   the thermal expansion coefficient. Strain and stress are symmetric.



6-9

FOURIER LAW OF HEAT CONDUCTION

When bodies at different temperatures are in contact, heat flows toward the cooler body

until temperatures are the same. The Fourier law of heat conduction for an isotropic

homogeneous material are (stress is assumed to vanish at the initial geometry) is given by

Heat-temperature:
/ /
/ /
/ /

xx xy xzx

y xy yy yz

z xz yz zz

k k kq x x
q k k k y k y

z zq k k k

 
 
 

                            
                

Thermal conductivity k ( N / (Ks)  or  W/(Km) ) depends on the material. The forms for

the uni-axial and planar problems can be deduced from the generic form in the same manner

as those for the stress-strain relationship.

Isotropic
material
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EXAMPLE. Derive the stress-strain-temperature relationship of isotropic homogeneous

material under (a) the xy plane stress and (b) uni-axial stress conditions. Start with the

generic strain-stress-temperature relationship.

Answer
1

[ ] 1
1

0

xx xx

yy yy

xy xy

EE 

 
   


 

                                

   and ( )xx xxE     
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 Under the plane stress assumption, only xx , yy , and xy  are non-zeros. The

relationship for the in-plane normal stress resultants follows from the generic strain-

temperature-stress relationship modified according to the kinetic assumption:

1 0
1 1 0

0 0 2(1 )

xx xx

yy yy

xy xy
E

    
    

 

                    
           


1

[ ] 1
1

0

xx xx

yy yy

xy xy

EE 

 
   


 

                                

.

 Under the uni-axial stress assumption, only xx  is non-zero. The relationship follows

directly from the generic strain-stress-temperature relationship. Inversion gives the

stress-strain-temperature relationship for the uni-axial case

1
xx xxE

       ( )xx xxE      . 
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MATERIAL PARAMETERS

Material ρ [ 3kg / m ] E  [GPa ] ν  [ 1 ]

Steel 7800 210 0.3

Aluminum 2700 70 0.33

Copper 8900 120 0.34

Glass 2500 60 0.23

Granite 2700 65 0.23

Birch 600 16 -

Rubber 900 10-2 0.5

Concrete 2300 25 0.1
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MATERIAL PARAMETERS

Material k [W / (Km)] α [μm / mK ] c [J / kgK ]

Steel 45…50 12…13 520

Aluminum 205…240 23…24 900

Copper 385…400 17

Glass, ordinary 0.8…1 8…9 800

Granite 0.7…0.9

Wood 0.1…0.2 30 1300

Rubber  0.2 0.1

Concrete  1 12 850
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VARIATIONAL REPRESENTATION

The variational form int ext 0P P P       is the concise representation of the

stationary heat conduction boundary value problem. In terms of density expressions intp 

, extp  ,  and extp 

Internal part: int intP p dV  
  ,

External part: ext ext extP p dV p dA    
   .

The variational form lacks a clear physical interpretation although the meaning is clear from

the mathematical viewpoint. The physical dimensions of P  WK and W  J  differ, the

former being power and the latter work.
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 In derivation, the local form of energy balance is multiplied by  , integrated over the

domain followed by integration by parts in the heat flux term. Manipulations give the

equivalent representations

0q s  
    in  

( ) ( ) 0q s dV q s dV n qdA   
  

           
     .

 Assumption 0   (temperature specified) or 0n q h  
   (heat flux specified) on 

gives the final form

0P      where P qdV sdV hdA   
  

      
  . 
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DENSITY EXPRESSIONS

The integrands of the variational form represent the model in the same manner as the virtual

work densities in principle of virtual work:

Internal part:

T T

int
/ / /
/ / /
/ / /

x

y

z

x q x x
p y q y k y

z z zq

  
   

  


           
                     

                  

,

External parts: extp s     and extp h   .

Thermal conductivity k  [W / (Km)], power of heat per unit volume s  [ 3W / m ], and power

of heat per unit area h  [ 2W / m ] may depend on position. For non-isotropic materials

thermal conductivity is a (positive definite) matrix.

Isotropic
material
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6.2 THERMO-MECHANICAL FEA

  Model the structure as a collection of beam, plate, etc. elements. Derive the element

contributions int ext cpleW W W W      and int exteP P P      in terms of nodal

displacements/rotation components of the structural coordinate system and temperature.

  Sum the element contributions to end up with the variational expression for the structure.

Re-arrange to get T T( , ) ( )W P      a R a b b R b  (  is a dimensionally correct

but otherwise arbitrary constant).

  Use the principle 0W P   ,  a b  and the fundamental lemma of variation

calculus to deduce ( , ) 0R a b  and ( ) 0R b . Solve the linear algebraic equations for the

nodal displacements, rotations, and temperatures (due to the one-sided coupling of the

stationary problem, solving the temperature first is always possible).
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BAR MODE

Assuming that 0v  , 0w  , 0   and a linear interpolation to the axial displacement ( )u x

and temperature ( )x

T
1 1int

2 2

1 1
1 1

kAP
h

 


 
    

         
,

T
1 1cpl

2 2

1 1
1 12

x

x

u EAW
u
 
 

     
          

,

T
1ext

2

1
12

AshP




   

    
  

.

Heat flux through the end-planes is treated by point elements in the same manner as traction

on the end-plates by point forces and moments.

xEA
h

z
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EXAMPLE 6.1 The bar of the figure consists of three linear elements of identical lengths.

Determine the stationary temperatures 2 at node 2 and 3  at node 3 when the end

temperature is   and heat generation s  per unit volume are constants. Take only the heat

conduction along the bar axis into account. Problem parameters E , A, and k  are constants.

Answer
2

2

3

11( )
19

sL
k





   

    
  

1

x,X

41 22 3 3
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 Element contributions for the temperature distribution problem are (temperature is not

affected by displacement)

T
1 1int

2 2

1 1
1 1

kAP
h

 


 
    

         
,

T
1ext

2

1
12

AshP




   

    
  

.

 When the actual nodal values are substituted there, element contributions simplify to

T
1

2 2

0 1 1 13( )
1 1 16

kA AsLP
L




 
      

              
,

T
2 22

3 3

1 1 13( )
1 1 16

kA AsLP
L

 


 
      

              
,
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T
3 33 1 1 13( )

0 1 1 16
kA AsLP
L

 



       

                
.

 Variational expression for a structure is the sum of the element contributions

T
2 2

3 3

2 1 23 3( )
1 2 26

kA kA AsLP
L L

  


  
         

                    
.

 Variational principle 0P   a  and the fundamental lemma of variation calculus

imply a linear equation system and thereby the solution

2

3

2 1 23 3 0
1 2 26

kA kA AsL
L L

 
 

       
               


2

2

3

11( )
19

sL
k





   

     
  

.
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EXAMPLE 6.2 The bar of the figure consists of two elements having the same material

properties. Stress is zero, when the temperature in the wall and bar is  . Determine the

stationary displacement 2Xu and temperature 2 at node 2, when the temperature of the

right end is increased to 2. Take only the heat conduction along the bar axis into account.

Use two linear elements. Problem parameters E , A, k , and   are constants.

Answer 2
1
8Xu L   and 2

3
2

  

1

x,X

/ 2L
2

3



21 2

/ 2L
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 Element contributions for the thermo-mechanical problem needed in this case are (no

heat production, nor external distributed forces, and      ).

T
1 1int

2 2

1 1
1 1

x x

x x

u uEAW
u uh





    
         

,
T

1cpl

2 2

01 1
1 12

x

x

u EAW
u
 
  

     
           

,

T
1 1int

2 2

1 1
1 1

kAP
h

 


 
    

         
.

 As the nodal values for bar 1 are 1 0xu  , 2 2x Xu u , 1 0  , and 2 2      ,  the

element contributions int cplW W   and intP  simplify to

T T
1

2 2 2 2

0 0 0 01 1 1 12
1 1 1 12X X X

EA EAW
u u uL
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1
2 2 2 2

2 ( )X X X
EA EAW u u u
L L

         ,

T
1

2 2
2 2

0 1 12 2 ( )
1 1

kA kAP
L L


   

 
    

             
.

 As the nodal values for bar 2 are 3 0xu  , 2 2x Xu u , 3 2        , and

2 2      , the element contributions int cplW W   and intP  simplify to

T T
2 2 2 22 1 1 1 12

0 1 1 0 0 1 12
X X Xu u uEA EAW

L
   


               

                        


2
2 2 2 2

2
2X X X

EA EAW u u u
L

      ,

T
2 22

2 2
1 12 2 ( 2 )

0 1 1 2
kA kAP
L L

 
   


     

               
.
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 Variational expressions for the mechanical and thermal parts are sums of the element

contributions

1 2
2 2

4( )
2X X

EA EAW W W u u
L

          ,

1 2
2 2

2 (2 3 )kAP P P
L

           .

 Variational principle 0W P    a  and the fundamental lemma of variation

calculus imply the equations

2
4 0

2X
EA EAu
L

      and 2
2 (2 3 ) 0kA
L

    

2
3
2

     and 2 8X
Lu    . 
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 In Mathematica notation, the problem description is given by



6-27

6.3 ELEMENT CONTRIBUTIONS

Variational expressions for the elements combine the density expressions of a model and

approximations depending on the element shape and type. To derive the expression for an

element:

   Start with the densities intw  , extw  , cplw  , intp  , and extp  of the model. If not given

in the formulae collection, derive the expressions starting from the 3D versions.

  Represent the unknown functions by interpolation of the nodal displacements, rotations,

and temperatures. Substitute the approximations into the density expressions.

  Integrate the densities over the domain occupied by the element to end up with
int ext cplW W W W       and int extP P P   



6-28

ELEMENT APPROXIMATION

In MEC-E8001 element approximation is a polynomial interpolant of the nodal

displacements and rotations in terms of shape functions. In thermo-mechanical analysis,

temperature is represented in the same manner by using nodal temperatures.

Approximation Tu  N a, Tv  N a , …., T  N a

Shape functions T
1 2{ ( , , ) ( , , ) ( , , )}nN x y z N x y z N x y zN 

Parameters T
1 2{a a a }na 

Nodal parameters a { , , , , , , }x y z x y zu u u      may be just displacement or rotation

components or a mixture of them (as with the Bernoulli beam model). Nodal parameters

may also represent temperature.

always of the same form!
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SOLID MODEL

The model does not contain any kinetic or kinematic assumptions. Virtual work densities of

the internal and external distributed forces intw   and extw   are the same as in linear

displacement analysis. The additional terms are

T

cpl
/ 1
/ 1

1 2
/ 1

u x
Ew v y

w z


  






    
               

,

T

int
/ /
/ /
/ /

x x
p y k y

z z

 
  

 


      
           
         

, extp s   .

The solution domain can be represented, e.g., by tetrahedron elements with linear

interpolation of ( , , )u x y z , ( , , )v x y z , ( , , )w x y z  and ( , , )x y z .
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EXAMPLE 6.3 Consider a tetrahedron of edge length L on a horizontal floor. Determine

displacement 3Zu when temperature is increased by constant   and before that stress

vanishes. Assume that 3 3 0X Yu u   and that the bottom surface is fixed. Stress vanishes

at the initial geometry when 3 0Zu  . Material parameters E , 0  , and   are constants.

Answer: 3Zu L  

3

1

X,x

4 2
Y,y

Z,z

L

L

L
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 Only the shape function 3 /N z L  of node 3 is needed as the other nodes are fixed.

Approximations to the displacement components are

0u  , 0v  , and 3Z
zw u
L

 ,  giving 0w w
x y

 
 

 
, and 3

1
Z

w u
z L





.

 As temperature is known, it is enough to consider the displacement problem. With the

approximation, the internal and coupling densities simplify to ( 0  )

T

int
3 32

3 3

1

(

0
01

1 )( )
0

1
1

0

/
2

/
Z Z

Z Z

E Ew u u
Lu L u L

 
  

  
 

  


    
           
      



 



 


,

T

cpl 3

3

0 1
0 1

1 2
/ 1

Z

Z

uEw E
L

u L

   





   
           

  

.
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 Virtual work expressions are integrals of the densities over the volume. Here, the

densities are constants, and it is enough to multiply by the volume 3 / 6L

int int
3 3

1
6Z ZW w dV u ELu  

   ,

cplcpl 2
3

1
6ZW w dV u L E    

   .

 Variational principle (here principle of virtual work) int cpl 0W W W      implies

that

2
3

1 1 0
6 6ZELu L E      3Zu L   . 
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PLATE MODEL

Virtual work densities combine the plane-stress and plate bending modes. Assuming that

the material coordinate system is placed at the mid-plane, and material properties do not

depend on the transverse coordinate,

TT 2 2
cpl

2 2

/ 1 / 1
/ 1 11 1/

u x w xE Ew dz z dz
v y w y

    
  



                               
  ,

T

int
/ /
/ /
/ /

x x
p y k y

z z

 
  

 


      
           
         

, extp s     and extp h   .

Approximation to the transverse displacement depends only on the planar coordinates but

temperature and its approximation may depend on all the coordinates.
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  The constitutive equations of a linearly elastic isotropic material and kinetic assumption

0zz   give the non-zero stress components

1
[ ] 1

1
0

xx xx

yy yy

xy xy

EE 

 
   


 

                                

with

2 2

2 2

2

//
/ /

/ / 2 /

xx

yy

xy

w xu x
v y z w y

u y v x w x y






                        
                   

.

 The generic expression of intw   simplifies to a sum of thin slab, bending and interaction

parts. Assuming that material properties do not depend on z , and that the origin of the

material coordinate system is placed at the mid-plane, virtual work density of internal

forces consists of the internal parts of the plate thin-slab and bending modes intw  and

the coupling parts for the thin-slab and bending modes (the integral is over the thickness)
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T
cpl / 1

/ 11
u x Ew dz
v y

  
 
    

         
 ,

T2 2
cpl

2 2

/ 1
11/

w x Ew z dz
w y

  




               
 . 

 As temperature is not assumed to be constant in the thickness direction, variational

expression for the temperature calculation is based on the generic expressions.

Therefore, also the approximation, e.g., of the type

T( , , ) ( , ) ( )x y z x y z  N a    where 0( ) zz z a a a

is used for the actual domain of the plate.
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EXAMPLE 6.4 Consider the triangular thin slab shown. Determine displacements 1Xu and

1Yu , when temperature is increased by constant   and before that stress vanishes. Use a

linear approximation and assume plane stress conditions. Thickness of the slab is t and

material parameters E ,  , and   are constants.

Answer 1

1

11
12

X

Y

u
L

u
  

   
     

  

1 2

3

X,x

Y,y

L

L
1
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 The non-zero displacement components are 1 1x Xu u and 1 1y Yu u . The linear shape

functions 1 ( ) /N L x y L   , 2 /N x L  and 3 /N y L  can be deduced from the figure.

Therefore, approximations are

1 1 1
1 ( )x Xu N u L x y u
L

      and 1 1 1
1 ( )y Yv N u L x y u
L

    

1Xuu
x L


 


, 1Xuu
y L


 


, 1Yuv
x L


 


  and 1Yuv
y L


 


.

 Densities of internal and coupling terms simplify to

T
1 1

int
1 12 2

1 1 1 1

1 0
1 1 0

1 0 0 (1 ) / 2

X X

Y Y

X Y X Y

u u
Etw u u

Lu u u u

 
  

  


      
                        





6-38

T
1 1int

2 2
1 1

1 1 1 1( )
1 1 12(1 )1

X X

Y Y

u uEt Etw
u u L

 


  


      
               

,

T
1cpl

1

11
11

X

Y

u E tw
u L

  
 

   
        

.

 Integration over the element gives (densities are constants)

T
1 1int int

21 1

1 1 1
( )

1 1 14(1 )2(1 )
X X

Y Y

u uEt EtW w dA
u u

 
 

  


      
                
 ,

T
1cplcpl

1

1
12 1

X

Y

u L E tW w dA
u

   
 

   
         
 .

 Variation principle int ext 0W W W      a  and fundamental lemma of variation

calculus imply the equilibrium equations
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1
2 1

1 1 1 1
( ) 0

1 1 1 14(1 ) 2 12(1 )
X

Y

uEt Et L E t
u

  
  

      
                 



1
1

1

1/ (1 ) 1/ 2 / (1 ) 1/ 2 11
/ (1 ) 1/ 2 1/ (1 ) 1/ 2 11

X

Y

u
L

u
     

   

        
              



1

1

11
12

X

Y

u
L

u
  

   
     

  
. 
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EXAMPLE 6.5 Simply supported plate of the figure is assembled at constant temperature

3. Find the transverse displacement when the upper side temperature is 4 and that of

the lower side 2. Assume that temperature in plate is linear in z . Use the polynomial

approximation 2( , ) a( / )(1 / )(1 / )w x y xy L x L y L   . Problem parameters E,  , ρ,   and t

are constants.

Answer
2

2( , ) (1 ) (1 )(1 )30
11

L xy x yw x y
t L LL

     

x,X

y,Y
L

L

E, ν, ρ, t, α
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 Assuming that the material coordinate system is chosen so that the plate bending and

thin slab modes decouple, the bending mode virtual work densities of the internal and

coupling parts are given by

T2 2 2 2

int 2 2 2 2

2 2

/ /1 0
/ 1 0 /

0 0 (1 ) / 22 / 2 /

w x w x

w w y D w y

w x y w x y

 
  




                       
                

 where
3

212 1
t ED





,

T2 2
cpl

2 2

/ 1
11/

w x Ew z dz
w y

  




               
 .

 Approximation to the transverse displacement and its derivatives are

2( , ) a (1 )(1 )xy x yw x y
L LL
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2

2 32a (1 )w y y
Lx L


  


,

2

2 32a (1 )w x x
Ly L


  


,

2

2
1a (1 2 )(1 2 )w x y

x y L LL


  
 

.

 Temperature difference and its weighted integral over the thickness (integral of the

coupling term)

1 1( ) 3 ( )2 ( )4 3 2
2 2

z z zz
t t t

                    

/2 2
/2

12
6

t
t

zz dz z dz t
t

  


         .

 When the approximation is substituted there, virtual work expressions of the internal and

coupling terms simplify to
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3
int int

220 0
22 1 a

1245 1
a

L L t EW w dxdy
L

 


  
  ,

cplcpl 2
0 0

1a
9 1

L L EW w dxdy t  
   

  .

 Virtual work expression is the sum of the internal and coupling parts

2

3
int cpl 2

2 )22 1a a 1
1

(
4 2 95 11L

t E EW W W t   


    





.

 Principle of virtual work 0W   a  and the fundamental lemma of variation calculus

give

2
(30a

11
1 ) L

t
    

2

2( , ) (1 ) (1 )(1 )30
11

L xy x yw x y
t L LL

       . 
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BEAM MODEL

Virtual work densities combine the bar, bending, and torsion modes. Assuming that material

properties are constants, and the material coordinate system is placed so that the first and

the cross moments of the cross section vanish

T

cpl 2 2

2 2

/ 1
( /

/

d u dx

w E d v dx y dA
zd w dx



   




   
        
     

 ,

T

int
/ /
/ /
/ /

x x
p y k y

z z

 
  

 


      
           
         

,   and

extp s     and extp h   .

Approximation to the transverse displacement depends only on the axial coordinate but

temperature and its approximation may depend on all the coordinates in the expressions.
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 The displacement components of the Bernoulli beam model are

( / ) ( / )xu u dw dx z dv dx y   , yu v z   and zu w y  . With the kinetic

assumption 0zz yy   , stress and strain components take the forms

0 0 1
0 0 0
0 0 0

xx xx

xy xy

xz xz

E
G E

G

 
   

 

      
                          

 where

2 2

2 2
xx

xy

xz

du d w d vz y
dx dx dx

dz
dx

dy
dx




 

 
  

  
  

    
   
   

 
 

.

 Assuming that material properties are constants, and the material coordinate system is

placed so that the first and the cross moments of the cross section vanish, the virtual

work density of the coupling term simplifies to (after integration over the cross section)
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2 2
cpl

2 2( )d u d w d vw E dA z dA y dA
dx dx dx
               . 

 As temperature is not assumed to be constant in the thickness direction, variational

expression for the temperature calculation is based on the generic expressions.

Accordingly, the approximation depends on all the coordinates. Approximation of the

type

T( , , ) ( ) ( , )x y z x y z  N a    where 0( , ) y zy z y z  a a a a

is one of the possibilities.
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BAR MODE

Assuming that 0v  , 0w  , 0   and a linear interpolation to the axial displacement ( )u x

and temperature ( )x

T
1 1int

2 2

1 1
1 1

kAP
h

 


 
    

         
,

T
1 1cpl

2 2

1 1
1 12

x

x

u EAW
u
 
 

     
          

,

T
1ext

2

1
12

AshP




   

    
  

.

Heat flux through the end-planes is treated by point elements in the same manner as traction

on the end-plates by point forces and moments.

xEA
h

z
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   Bar model assumes that ( ) ( ) 0v x w x   or that coupling between the bar and bending

modes vanish. After integration over the cross section, the generic expressions for the

3D case simplify to

int d u duw EA
dx dx
     , ext

xw uf   , cpl
Ω

d uw EA
dx
    ,

int
Ω

d dp kA
dx dx
    , ext

Ωp s  ,

in which cross-sectional area A, Young’s modulus E , external force per unit length xf

, thermal conductivity k , coefficient of thermal expansion  , and heat production rate

per unit length s  may depend on x .

   Linear interpolants to the axial displacement and temperature are
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   After substituting the approximations into the densities and integration over the domain

occupied by the element with the assumedly constant material properties
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BENDING MODES

Assuming a cubic interpolation to ( )w x  and ( )v x  and linear interpolation to the

“coefficients” of the representation 0( , ) ( ) ( ) ( )y zx z x x y x z          , the coupling

term

T T
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2 22 22 2
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1 1 1 1
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Under the assumptions used, the displacement-temperature coupling of the bar and the

bending modes can be treated by adding a coupling term for each mode.
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   Cubic interpolants to the transverse displacements and the “Taylor series” type linear

approximation to the temperature difference are
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  where x

h
  .

   When the approximation is substituted there, integration of the density over the cross

sections gives the coupling expression (notice that the first term of the temperature

approximation contributes to the bar mode only).


